Physical modeling of active bacterial DNA segregation

Jean-Charles Walter

Laboratoire Charles Coulomb, CNRS & Université de Montpellier, France

> *iPoLS 2017* Institut Pierre-Gilles de Gennes June 29

Jean-Charles Walter Active segregation of Bacterial DNA

Bacterial DNA segregation

<ロ> <同> <同> < 同> < 同> < 同> 、

The ParABS operon

- ParA: "motor" protein (ATPase, Walker-type)
- ParB: binding protein (specific or non-specific binding)
- parS: centromere-like DNA sequence

How does ParABS work?

Cell Systems 2015

Interactions between ParABS components

Self-consistent non-linear system

ParA-ADP:
$$\frac{\partial u}{\partial t} = D_1 \Delta u - k_1 u(\mathbf{r}, t) + k_2 v(\mathbf{r}, t) \sum_i S(\mathbf{r} - \mathbf{r}_i(t))$$
ParA-ATP: $\frac{\partial v}{\partial t} = D_2 \Delta v + k_1 u(\mathbf{r}, t) - k_2 v(\mathbf{r}, t) \sum_i S(\mathbf{r} - \mathbf{r}_i(t))$ ParBS: $m\gamma \frac{d\mathbf{r}_i}{dt}(t) = \varepsilon \int_V \nabla v(\mathbf{r}', t) S(\mathbf{r}' - \mathbf{r}_i(t)) d^3\mathbf{r}'$

Feedback between the partition complexes and ParA densities
 → Non-linear system with dynamical instability

A (B) > A (B) > A (B) >

Stable and unstable (TW) dynamical regimes

Threshold of dynamical stability obtained with Traveling Waves (TW) ansatz: $u(x, t) = u(\xi)$; $v(x, t) = v(\xi)$, where $\xi = x - c_{TW} t$

Density profiles

イロト イヨト イヨト イヨト

3

Modeling versus microscopy experiments

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

- Minimal reaction-diffusion system without extra mechanism:
 - \rightarrow sufficient to explain segregation and positioning of bacterial genome
- Self-consistent non-linear system of the components
 - \rightarrow transient regime
 - \rightarrow global dynamical picture

→ Published on ArXiv/1702.07372 – to appear in Phys. Rev. Lett. Walter J.-C., Dorignac J., Lorman V., Rech J., Bouet J.-Y., Nollmann M., Palmeri J., Parmeggiani A. & Geniet F. *Surfing on protein waves: proteophoresis as a mechanism for bacterial genome partitioning*

The screening length is in charge of equipositioning in the stable regime

How does ParABS work ?

Cell Systems Article

・ロト ・ 四 ト ・ 回 ト ・

Stochastic Self-Assembly of ParB Proteins Builds the Bacterial DNA Segregation Apparatus

Aurore Sanchez,^{1,2} Diego I. Cattoni,² Jean-Charles Walter,^{1,2,4} Jirôme Rech,^{1,2} Andrea Parmeggiani,^{2,4} Marcelo Nolimann,³ and Jean-Yves Bouet^{1,2,7}

• Partition complexes: diameter $\sigma \approx 50 - 75$ nm containing ≈ 300 proteins

 \rightarrow porous particle with volumetric interactions