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Abstract

This thesis presents an investigation of di�erent topological phases in mercury-cadmium-telluride

(HgCdTe or MCT) based heterostructures. These solid state systems are indeed a perfect playground

to study topological states, as their band structure can be easily varied from inverted to non-inverted,

by changing internal or external parameters.

If a system has an inverted band ordering, its electronic structure has a non-trivial topology. One

cannot change its topological order without closing the band gap, which is inevitably accompanied

with the appearance of massless particles in the bulk. A system, that has an inverted band structure

and a �nite gap in which the Fermi level is positioned, is called a topological insulator. These novel

materials are insulators in the bulk, but host gapless metallic states with linear dispersion relation

at boundaries, protected against disorder and backscattering on non-magnetic impurities. These

states arise at the interfaces between materials characterized by a di�erent topological order. A 2D

topological insulator is thus characterized by a set of 1D spin-polarized channels of conductance at

the edges, while a 3D topological insulator supports spin-polarized 2D Dirac fermions on its surfaces.

The 2D and 3D massless fermions have already been demonstrated experimentally in HgCdTe-

based heterostructures. However, the topological phase transitions during which the massless par-

ticles appear remain barely explored. The HgCdTe band structure can be tuned from inverted to

non-inverted using chemical composition, pressure, temperature, or quantum con�nement. These pa-

rameters therefore allow to probe the system in the vicinity of di�erent topological phase transitions.

In this thesis, the use of temperature as continuous band gap tuning parameter allows to study the

appearance and the parameters of semi-relativistic 2D Dirac and 3D Kane fermions emerging at the

points of phase transitions.

The systems investigated were Hg1−xCdxTe bulk systems and HgTe/CdTe quantum wells charac-

terized by an inverted and regular band order, and strained HgTe �lms which can be considered as

3D topological insulators with a residual quantum con�nement. All these systems exhibit topological

properties, and the experimental results are interpreted according to theoretical predictions based on

the Kane model. This thesis is complemented by an overview and the preliminary results obtained

on a di�erent compound � a InAs/GaSb broken-gap quantum well, which was also identi�ed as a

topological insulator. The structures were studied by means of terahertz and mid-infrared magneto-

transmission spectroscopy in a speci�cally designed experimental system, in which temperature could

be tuned in a broad range.
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Résumé

Cette thèse porte sur l'exploration de di�érentes phases topologiques présentes dans des hétérostruc-

tures à base de mercure, cadmium et tellure (HgCdTe). Ces systèmes sont de parfaits cas d'études

des états topologiques dans la matière condensée. En e�et, leur structure de bande peut aisément être

modi�ée d'inversée à non-inversée par le biais de paramètres internes ou externes.

Lorsqu'un système présente une structure de bande inversée, il a une topologie non triviale. Il

est impossible de modi�er cet ordre topologique sans fermer son gap, ce qui inévitablement entraîne

l'apparition de particules sans masse dans son volume. Un système présentant une structure de

bande inversée et un gap d'énergie �nie dans lequel se trouve le niveau de Fermi, est appelé isolant

topologique. Ce nouveau type de matériau est isolant dans son volume, mais abrite des états mé-

talliques sans gap sur ses bords. Ces derniers ont une relation de dispersion linéaire et sont protégés

des e�ets liés au désordre et de la rétrodi�usion par des impuretés non magnétiques. Ces états partic-

uliers apparaissent à l'interface de matériaux présentant des ordres topologiques di�érents. Ainsi, un

isolant topologique 2D se caractérise par des canaux 1D de conductance polarisés en spin à ses bords,

alors qu'un isolant topologique 3D accueille des fermions de Dirac 2D, polarisés en spin, aux surfaces.

L'existence de fermions sans masse 2D et 3D a déjà été démontrée expérimentalement. Cependant,

la transition de phase topologique durant laquelle apparaissent les particules sans masse n'a que très

peu été explorée. Il est possible de modi�er la structure de bande de HgCdTe d'inversée à non inversée

par le biais de la composition chimique, la pression, la température ou le con�nement quantique. Ces

paramètres permettent ainsi de sonder le système au voisinage de di�érentes transitions de phase

topologiques. Dans ce travail, l'utilisation de la température comme paramètre d'ajustement continu

du gap permet d'étudier au point de transition de phase l'apparition de fermions semi-relativistes de

Dirac (2D) et de Kane (3D) ainsi que leurs propriétés.

Les systèmes étudiés au cours de ces travaux de recherche sont des cristaux massifs de Hg1-xCdxTe

et des puits quantiques HgTe/CdTe présentant des structures de bandes inversées et non inversées, ainsi

que des couches minces de HgTe contraintes pouvant être considérées comme des isolants topologiques

3D ayant un con�nement quantique résiduel. Tous ces systèmes possèdent des propriétés topologiques.

L'interprétation des résultats s'appuie sur les prédictions théoriques basées sur le modèle de Kane.

En annexe, une vue d'ensemble des puits quantiques composites InAs/GaSb, structures également

identi�ées comme isolants topologiques, est présentée, comportant les résultats préliminaires obtenus

sur ces dernières.

Toutes les structures ont été étudiées par magnétospectroscopie en transmission dans les domaines

de fréquence terahertz et infra-rouge moyen à l'aide d'un dispositif expérimental spéci�quement conçu

pour permettre des mesures sur une large plage de températures.
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Chapter 1

Introduction

Since the dawn of science, people always wanted to encounter new frontiers and cross them,

expanding the boundaries of the universal knowledge. Even in the modern times, it is still our duty

to explore the matter around us and the laws governing it. Although throughout the XIX and XX

century, chemistry succeed in �nding and classifying most of the elements � building blocks of matter,

there is still plenty of work to do in discovery and classi�cation of the distinct states of matter, called

phases. Matter in the quantum approach can form di�erent phases, such as crystalline solids, magnets

and superconductors.

Nowadays, the interest of a part of condensed matter physics is focused on a discovery and char-

acterization of novel phases and particles, which appear at the point of phase transitions in solid

state materials. These particles appear generally when matter undergoes a speci�c transition be-

tween di�erent quantum phases. The particles often behave in the most uncanny manner � like the

Dirac fermions, which behavior mimics the behavior of relativistic particles, or the exotic Majorana

fermions, which are their own antiparticles. These kind of excitations and more can be realized in

various condensed matter systems.

1.1 Topological States of Matter

One of the most remarkable achievements of condensed matter physics in the recent times is the

classi�cation of quantum states of matter by the principle of spontaneous symmetry breaking [1]. The

pattern of symmetry breaking led to a unique concept of order parameter, which can be understood

in terms of the famous work of Landau-Ginzburg [2], where the notion of the e�ective �eld theory is

described. The e�ective �eld theory is determined by the general properties like the dimensionality

and symmetry of the order parameter, and can be used to give a universal description of quantum

states of matter.

The following examples can be given to better understand the concept of states of matter and

symmetry breaking: a crystalline solid breaks translation symmetry, despite the fact that the interac-

tion between its atomic cells is translationally invariant. A rotational symmetry in magnetic systems

is spontaneously broken, even though the fundamental interactions are isotropic. A superconductor

breaks the more subtle gauge symmetry, which leads to phenomena such as �ux quantization and

cooper pair formation [3].

The concept of symmetry breaking and local order parameter used to describe the phase transition

is well accepted. However, it fails to explain some interesting phenomena such as the integer Quantum
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2 CHAPTER 1. INTRODUCTION

Hall E�ect (QHE) [4] and many body phases of the fractional QHE [5]. The study of these e�ects

ultimately led to a new paradigm in the classi�cation of condensed matter systems � the concept of

topological order [6] [7].

1.1.1 Quantum Hall E�ect

An electronic band structure of a given system at high magnetic �eld forms a set of distinct Landau

levels. The way how levels are occupied determines whether a current can �ow through the system

or not. According to the standard band theory, which successfully explains most of the electrical

properties of solids, there should be no current �owing through the sample if the chemical potential of

the system lies between Landau levels. On the other hand, if the chemical potential crosses a Landau

level, the current can �ow.

Yet, a system in the quantum Hall state behaves in a di�erent manner. Even if its bulk is insulating

(there is an energy gap between the highest occupied band and the lowest empty band), the electrical

conductivity is nonzero. The electric current is still carried along the edges of the system, forming

discrete channels of conductance. Those edge states are chiral � the direction of current propagation

depends on the direction of magnetic �eld. The current in the channels avoids dissipation and has a

very precise value of resistance, giving rise to QHE.

The quantum Hall state turned out to be the very �rst example of a quantum state being topo-

logically di�erent from all other states of matter known before. The state in which the quantum Hall

occurs de�nes a speci�c topological phase, meaning that some particular fundamental properties are

insensitive to smooth changes in general parameters of the system. The very fundamental reason for

such a quantization is the existence of topological invariants � in the case of the QHE such an invariant

is the electrical conductance, which takes values only of integer units of e2/h, and is independent on

the type of material investigated. Moreover, it does not change (is invariant) with smooth variations

of material parameters � it can be considered as a non-local order parameter of the system.

1.1.2 Topological Invariant

Topological invariant, also called Chern number, was connected for the �rst time with the quantized

value of Hall resistance by Thouless et al. [7]. The idea is related to a speci�c phase that is acquired

by the Bloch wave functions of bulk electrons as the wave-vector k varies over the boundary of the

Brillouin zone. This phase was named Berry phase, after Sir Berry, who described it in 1984 [8]. The

Chern number is de�ned as a sum of the Berry phases over all occupied bulk bands, and is strongly

related to the number of conducting edge modes de�ning the Hall conductivity in the quantum Hall

regime. This means that the topological properties of the edge channels are directly related to the

bulk. This relation is called the bulk-boundary correspondence and is necessary for understanding

of the topological insulators.

The topological invariant was introduced as a mathematical concept used to classify di�erent

geometrical objects into broad classes. An example of such invariant might be a number of holes on

a geometrical surface. The most famous illustration of this geometrical analogy is a co�ee mug and a

torus. Both of them are classi�ed to the same topological class because both of them possess exactly

one hole. Moreover, one can be deformed, via a smooth transformation, into the other, and vice-versa;

a sphere can be smoothly deformed into an ellipsoid, because they share the same number of holes

(zero), etc. Topology tends to disregard the small di�erences of objects and focus on their general
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properties. In this context the quantized conductance of quantum Hall state, which can be found in

a variety of materials of di�erent shape, remains unchanged � is invariant.

1.1.3 Topology in Condensed Matter

The connection between geometrical classes of objects and condensed matter physics is indirect

� topology in the solid state physics has very little to do with a shape of considered material, and

de�nitely the subject is much broader than just the QHE. Those two disciplines were probably �rst

linked for study of topological insulators by the works of Berezinski [9][10], and Kosterlitz and Thouless

[11]. It is worth highlighting that a Nobel Prize in Physics in the year 2016 was divided � one half was

awarded to David J. Thouless, the other half jointly to F. Duncan, M. Haldane, and J. M. Kosterlitz

for theoretical discoveries of topological phase transitions and topological phases of matter.

In topological geometry there are surfaces, holes, and smooth transformations of surfaces, which

do not require tearing the surface or making holes in it. In condensed matter Hamiltonians are used

to describe any system, providing information about its band structure and energy gaps (which may

play a role of holes in geometry). There are always ways to transform a given Hamiltonian into a

di�erent one, by changing some parameters that the Hamiltonian depends on. If the transformation

is smooth in a sense that it does not require a closing of a gap (an equivalent of creating a hole in

geometry) an any point, then the transformation preserves the topology of the system. For example

� it is impossible to transform a sphere into a torus without tearing its surface. In the same way it is

impossible to transform a band structure of a system from a topological insulator phase into a trivial

insulator phase without closing the bulk gap.

The name and the idea of topological insulators can be traced back to the works of Kane and

Mele, where an universal concept of identifying another topological index (invariant) was described

[12]. They proposed a realization of such a system in graphene [13], where the spin-orbit coupling

(SOC) opens a band gap, rendering the bulk of the sample insulating. In a similar way magnetic

�eld suppresses bulk conductivity in QHE. However, SOC does not require an application of external

magnetic �eld. Nevertheless, at a boundary of this system a set of topologically protected edge

states should emerge, being analogous to the states of the QHE. The di�erence is that these states

are protected by a time-reversal symmetry, thus they are not chiral, as chirality is forbidden, but

helical (spin-polarized). That is why the e�ect of emergence of spin-polarized quantum Hall edge

states without magnetic �eld was called the quantum spin Hall e�ect (QSHE), and a 2D topological

insulator, in which the QSHE occurs � a quantum spin Hall (QSH) insulator.

However, the proposed realisation of the QSHE in graphene turned out to be unrealistic, because

the energy gap opened by SOC is extremaly small, of the order of 1 μeV [15][16]. Finally, in 2006,

QSHE was predicted to exist by Bernevig et al. [17][18] in a HgTe/CdTe quantum well (QW) system.

One year after the theoretical proposal of Bernevig, the Molenkamp's group at the University of

Würzburg fabricated devices and performed the �rst transport experiments showing a signature of

the QSH insulator phase [14]. Their work showed that for thin quantum wells with well width d

< 6.3 nm, the insulating regime exhibits a conventional behavior of neglectable conductance at low

temperature. However, for thicker quantum wells (d > 6.3 nm), a nominally insulating regime exhibits

a plateau of residual conductance of value close to 2e2/h. The residual conductance was independent

on the sample dimensions, indicating that it is caused by the edge states [14].

Low temperature ballistic transport via edge states can be understood within a basic Landauer-

Büttiker [19] framework, in which the edge states are populated adequately to the chemical potential.
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Figure 1.1: Panel a) Schematic of the spin-polarized egde channels in a quantum spin Hall insulator.

Panel b). The longitudinal resistance of various normal (I) and inverted (II, III, and IV) quantum

well structures as a function of gate voltage, measured for B = 0 T at T = 30 mK. The image comes

from the work of König et al. [14].

As a consequence, conductance is quantized and equal to e2/h for each set of edge states. Furthermore,

the residual conductance is destroyed by an application of small external magnetic �eld. A quantum

phase transition at the critical thickness, dc = 6.3 nm, was also determined independently from the

insulator-to-semimetal phase transition induced by magnetic �eld. After the prediction of topological

insulating phase in HgTe/CdTe quantum well, a similar phase was predicted by Liu et al. [20] in an

InAs/GaSb, and strained GaAs [18].

The initial �ndings of 2D topological insulators were followed by a prediction of the 3D topolog-

ical insulating phase in the Bi1−xSbx alloys for a speci�c compositions x [22], and shortly after the

topologically nontrivial surface states were observed by the angle-resolved photoemission spectroscopy

(ARPES) by Hsieh et al. [23]. Similarly, the topological insulators in 3D were predicted in Bi2Te3,

Sb2Te3 [24] and Bi2Se3 [24][21] alloys. These compounds exhibit a large bulk band gap and gapless

surface states consisting of a single Dirac cone. Xia et al. [21] and Chen et al. [25] observed a linear

dispersion relation of this states using ARPES (Figure 1.2). However, Bi-based compounds often

su�er from low mobility, caused by high unintentional doping [26], which makes the observation of

surface states di�cult due to a high bulk conductivity [27].

On the other hand, a semimetallic HgTe crystal is characterized by a very high crystal quality.

Under applied strained it is predicted to belong to 3D TIs [28]. In 2011, Brüne et al. proved that

strained �lms of HgTe indeed exhibit a TI phase [27], by performing magneto-transport and ARPES

measurements.

1.1.4 Properties of Topological States

Interesting phenomena take place at a boundary of two materials characterized by a di�erent

topological number, such as Chern number. The best description can be found in [29], which explains

that the presence of the edge states is a fundamental aspect of many topological insulators. The

argument revolves around a direct observable manifestation of a Chern number � Hall conductance.

Given a set of two insulators (each with a di�erent value of the Chern number) put in a close

proximity (so they have a common boundary), and the two insulators extend to in�nity (away from

the boundary). The Chern number is always integer, de�ned separately on both sides of the interface

between the two insulators. It cannot be changed unless the bulk gap closes and reopens again with
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Figure 1.2: ARPES measurements of Bi2Se3 (111) evidencing the surface states with a linear energy

dispersion, forming a unique Dirac cone in the bulk near the Γ point. The image comes from the work

of Xia et al. [21].

a di�erent Chern number on the other side. This means that the boundary region connecting two

insulators with di�erent values of Chern number must possess a gap-closing and gap-reopening point

somewhere on it � which forms precisely an edge mode. Otherwise, the whole space would be gapped,

which by de�nition means that the Chern number in the whole space would be the same, which does

not ful�ll the assumptions. This kind of considerations can be applied to any boundary region between

two topologically di�erent insulators, as long as the boundary holds the symmetry that protects the

bulk-insulating states.

These gapless states, existing at the bonduary (egde in 2D, surface in 3D) of a topological insulator,

lead to the existence of conducting states with predicted properties unlike any other electronic systems,

like a vanishing e�ective mass and a relativistic (linear) dispersion relation. The e�ective mass in

electronic band in the inverted regime is negative. This is a consequence of the shape of a band, but

can also be understood in a relativistic approach. Einstein, in his famous equation, stated that energy

is proportional to mass, thus in a system with a negative energy gap the mass should be negative.

When the bands tend to join continously with a positive gap insulator at the boundary, the energy

gap and the e�ective mass switches to positivie. The transition has to be smooth, therefore going

from negative to positive value at some point the system has to have a gap closure, when the e�ective

mass collapses as well. At this point the particles have to be described by the relativistic equation

with a linear dispersion relation [30].
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1.2 This Work

At the beginning of this section a history of studies and discoveries related to selected areas of

topological insulators will be presented, starting where the previous section �nished � at the �rst

discoveries of 2D and 3D topological insulators. The covered areas will deal with the most promi-

nent features of topological insulators and the development of related technology and experimental

techniques.

The �rst paragraph will describe the experiments con�rming the properties of the edge channels �

like quantized conductance, helicity, lack of dissipation, and spin polarization. The second paragraph

will focus on e�orts concerning the ampli�cation of the bulk band gap in order to lower its conductivity

and to highlight the in�uence of the edge channels on the total transport properties of a given system.

This is related but not limited to the strain engineering, which allows to open the bulk band gap.

Finally, a brief description of phase transitions will be given, which is directly related to the subject

of this thesis.

1.2.1 State of the Art

Edge Channels

The discovery of the QHE [4], in which the conductance is quantized, was a surprise to the physical

community. This e�ect occurs in layered metallic structures at high magnetic �elds. As a result,

conducting one-dimensional channels develop at the edges of the sample. In each of the channels the

current �ows only in one direction and its conductance is quantized, which is a sign of one-dimensional

transport [31]. Moreover, the current �owing through these edge states is resistant to scattering. The

value of the quantum Hall conductance is strictly connected to the number of edge channels in the

sample. Before the discovery of QSH insulators, the existence of a state exhibiting the quantum Hall

conductance was limited to low temperatures and high magnetic �eld, which was a formidable obstacle

to overcome in terms of possible applications.

In the QSH phase the conductance of the edge channels is quantized. The time reversal symmetry

requires the edge channels to be helical, which means that electrons with spin up and spin down

propagate in opposite directions along the edge of the sample with conserved helicity. As a conse-

quence, carriers on time-reversed paths around a non-magnetic impurity in the helical edge interfere

destructively, which results in a zero probability of backscattering. This property was predicted by

Murakami et al. [32], Kane and Mele [13], and Bernevig et al. [18].

A detection of the edge states is an experimentally di�cult task. In an ideal QSH phase the current

is carried only via the edge states while the bulk is fully resistant. In practice however, the band gap

is small, usually a few meV (≈ 4 meV for InAs/GaSb QW [33][34], ≈ 15 meV for HgTe QW [14]).

Because of that, assuring the low temperature of measurements is essential in order to prevent thermal

excitations of electrons. Moreover, a processing of samples is required � only gated structures have

the possibility to tune the chemical potential with enough accuracy into the band gap. Growing the

structures where the chemical potential intrinsically lies inside the band gap is a virtually impossible

task.

König et al. [14] observed for the �rst time quantized conductance in a HgTe QW in a nontrivial

regime, which was the �rst indication of the existence of the edge channels. Later, in 2009, helicity

and dissipationless of the channels was con�rmed by studies of a nonlocal transport on multiterminal

devices carried out by Roth et al. [35] and Büttiker et al. [36] (focus paper). However, a direct
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evidence of the spin polarization of helical states was still missing.

The existence of the spin polarization of the edge states was con�rmed for the �rst time by Brüne

et al. [37]. By using specially-designed "H-shaped" HgTe QW-based structures, it was possible to

detect the spin polarization of the QSH edge states via the inverse spin Hall e�ect [38][39]. The

investigated structures were in a two-gate con�guration, and could be tuned locally from a metallic

state into a QSH state, as the carrier concentration in two legs could be adjusted separately. This

con�guration allowed the metallic state to act as a source of spin-polarized carriers and the QSH state

as a detector, and vice-versa.

In the case of InAs/GaSb QWs the situation is more complicated. Except of the quantized chan-

nel conductance, there are evidences of a residual bulk conductivity, even at very low (20 mK) tem-

peratures. Knez et al., having studied a set of InAs/GaSb samples with various dimensions and

length/width ratios, was able to identify a contribution of the edge channel transport, characterized

by a conductance comparable with the expected value. However, the the highest observed resistance

was 2-3 times smaller than ~/2e2, which can be attributed to the conductivity of the bulk of the

order of 10e2/~ [40]. Theoretical investigations of Naveh and Laikhthman [41] concluded, that even

a �nite-level broadening due to the carrier scattering could result in non-zero conductivity, even at

T = 0.

Later, in 2011, Knez et al. remarked that edge modes persist alongside the conductive bulk and

show only a weak magnetic �eld dependence. This decoupling of the edge from the bulk is a direct

result of the gap opening, which takes place away from a center of the Brillouin zone and, as a

consequence, there is a large disparity in Fermi vectors between bulk and edge states. This leads to

a qualitatively di�erent QSHI phase than in the case of a HgTe/CdTe QW, in which the gap opens

at the center of the zone [42]. By performing magnetotransport measurements, Knez concluded that

despite the fact that conductive bulk allows edge electrons to tunnel from one side to another, the

probability of this e�ect to occur is reduced by a large Fermi wave vector mismatch. The probability

of scattering of electrons between the edges is increased if a weak disorder or scattering interactions

are taken into account. In a theoretical work Zhou et al. [43] found that the edge states on the

two sides can couple together to produce a gap in the spectrum. As a result, the single electron

elastic backscattering of the edge states is no longer forbidden, and the edge states are not protected

completely by the time-reversal symmetry.

Up to that moment, because of the strong bulk in�uence in electron transport, all the evidences

of the quantized edge channels were indirect and unclear. A proposed solution to this problem was

to change the transport properties of the bulk, while preserving the conductance of the edge states.

There have been several methods applied so far. Suzuki et al.[44] performed a systematic study on a

set of specially designed six-terminal small Hall devices with a doping layer of beryllium in the QW

barrier. The doping allowed to lower the carrier concentration and place the Fermi level closer to the

energy gap. As a result, it was possible to tailor the structure to exhibit conducting edge channels

while maintaining the gap in the bulk region. Du et al. [45] implemented a Si doping directly in

the QW, at the interface of InAs and GaSb layer. Silicon acts as a donor in InAs and acceptor in

GaSb, inducing a disorder in the structure. Generally, a disorder reduces transport properties of a

structure. However, the edge states are topologically protected in nature, therefore the disorder has

a small impact on their existence and transport properties. As a result, the carrier mobility in the

bulk is greatly reduced. This idea was followed by Knez et al. [46], who studied InAs/GaSb QWs

in a disordered regime. A similar concept to suppress the bulk conductivity was implemented by

Charpentier et al. [47]. However, his idea was to use a gallium source with impurities, which has a
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direct in�uence on the transport properties of a structure. He compared two sources of gallium and

obtained drastically di�erent results in terms of mobility. The sample grown using "low mobility"

gallium had more than one order of magnitude lower mobility that the sample grown using "high

mobility" gallium.

A remarkable evidence of the edge channels was provided in 2013 at Stanford by a use of a

micrometer SQUID (Superconducting Quantum Interference Device) loop [48] to directly image the

current density in a HgTe QW [49] and in 2014 InAs/GaSb BGQW [50]. It was shown that the

current in the sample �ows via the edge states only if the structure is in an inverted regime, which is

presented in Figure 1.3 for the case of an InAs/GaSb system. The edge conductivity persisted despite

the fact that the sample was much bigger than the ballistic limit (around 2 μm [42]), even at higher

temperatures (up to 30 K).

Figure 1.3: Flux and current maps in a four-terminal device made from a Si-doped InAs/GaSb quantum

well. Panel (a): Schematic of the device. Si doping (shown in orange) suppresses the residual bulk

conductance in the gap. Panel (b): Schematic of the measurement. Alternating current (orange

arrows) �ows from the left to the right on the positive part of the cycle. A voltage (Vg) applied to

the front gate (yellow box) tunes the Fermi level. The SQUID's pickup loop (red circle) scans across

the sample surface, with a lock-in detection of the �ux through the pickup loop from the out of plane

magnetic �eld produced by the applied current. Panel (c): Four-terminal resistance R14,23 = V23/I14

as a function of Vg, showing both the upwards (black) and downwards (gray) gate sweeps. R14,23 is

maximized when the chemical potential is tuned into the gap. Panel (c, d): Flux images for the

sample tuned into (d) the bulk gap, Vg = −2.35 V, and (e) the n-type regime, Vg = 0 V. The image

comes from the work of Spanton et al. [50].



1.2. THIS WORK 9

Strain Engineering

Despite the numerous e�orts in increasing of the bulk resistivity, the residual conductivity persists

even at low temperatures. This limits a possibility to observe the special properties of the edge

channels only to cryogenic temperatures for both HgTe/CdTe and InAs/GaSb QW systems. The

energy gap in the case of HgTe/CdTe is around three times larger than in InAs/GaSb, which puts it

in a privileged position, as the in�uence of the bulk on the sample conductance can be neglected at

low temperatures [14].

In order to decrease the bulk conductivity (by enlarging the band gap) an implementation of a

strain engineering was proposed. A band gap in InAs/GaSb originates from a hybridization of electron

and hole levels. However, a strength of this e�ect strongly depends on an overlapping of electron and

hole wave functions. Electrons and holes exist in separate layers, thus a spatial separation reduces the

overlapping and the hybridization gap as a consequence. The overlapping can be improved by making

the layers thinner, however it can be done only up to a point where the structure has an inverted

band ordering. Further decrease of thickness of the layers results in a normal band ordering.

One of the possible solutions to this issue was proposed [51] by Smith and Maihiot in 1987. They

studied inverted InAs/GaSb superlattices for infrared detectors. They implemented a strain in the

structure by alloying GaSb with InSb (which has lattice constant around 6.4 Å). The strain in a

growth plane shifts an energy of the conduction band in InAs downwards, while an energy of the

valence band in InGaSb splits into a heavy hole level and a light hole level. The energy of heavy

hole level is higher than the original top of the valence band in pure GaSb. As a consequence, the

InAs/InGaSb structures can be grown thinner to achieve the stronger overlapping of the bands, while

maintaining the same (inverted) energy structure.

This idea was implemented and further developed by Du et al. [52]. An investigation of samples

based on InAs/InxGa1−xSb with x = 0.25 allowed to induce an enchanced interacton of wave functions

of electrons and holes, which resulted in an increase of the hybridization gap from around 4 meV up to

even 12 meV. The crystalline stucture remained coherent across the heterostructure interfaces despite

the 1.2 % in-plane strain. As a consequence, transport measurements revealed for the �rst time an

existence of a truly insulating hybridization gap at low temperature [52]. A similar investigation was

carried out by Akiho et al. [53], who used structure with x = 0.25 indium content as well but di�erent

thicknesses of the layers, and obtained a similar increase of a hybridization gap, estimated to be equal

to 10.8 meV. Akiho also presented calculations for di�erent indium contents, and claimed that it is

possible to increase the hybridization gap even more, up to 25 meV, for x = 0.25 [53], by inducing a

2.45 % strain.

Strained HgCdTe layers

The studies conducted in 1985 by Volkov and Pankratov [54] on strained HgTe/CdTe quantum wells

revealed an increase of energy gap and an emergence of the interface states which lie within the gap.

Bernevig, Hughes, and Zhang [17], as well as Fu and Kane [28] identi�ed the strained HgTe �lms as

a 3D topological insulators. Shortly after, Dai et al. [55] published results of numerical calculations

supporting the existence of boundary states in a strained HgTe �lm. These �ndings were followed by

ARPES measurements [37] [56], reporting an observation of the surface states and an opening of the

gap between the light-hole and the heavy-hole bands.

A standard approach to the strain engineering of HgTe involves a use of MBE grown substrates

based on pure CdTe and Cd0.96Zn0.04Te. Both of those materials have the lattice constants larger

than HgTe, which results in a tensile strain in the epilayers. Under such conditions, the largest gap
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achieved are Eg = 17 meV and 25 meV for QWs grown on CdTe and Cd0.96Zn0.04Te, respectively

[57]. In order to obtain a larger gap, a stronger strain is required. However, highly strained structures

often su�er from a low crystal quality.

The idea to deal with this problem, implemented by Leubner [58] et al., was to use strained-layer

superlattices based on CdTe-Cd0.5Zn0.5Te. These superlattices, grown on GaAs substrate, provided

a straigthforward control of the strain in the following HgTe layers. This allowed to apply a tensile

or compressive strain at will. Out of three samples studied by Leubner, two had almost the same

thickness (≈ 15 nm, which is well within the inverted regime), but due to the strain their properties

di�er signi�cantly. The third one was grown thinner (≈ 7.5 nm) and with a di�erent composition of

barriers. The comparison of the samples characterized by a similar thickness revealed that the strain

in the layers primarily a�ects a shape of the valence band. The tensile strain induced an overlap of

the valence band and the conduction band, which resulted in a phase transition from a topological

insulator to a topological semimetal. At the same time the sample with compressive strain remained

a topological insulator with an enlarged band gap up to 17 meV. The band gap in the third sample,

characterized by even stronger compressive strain, was enlarged up to 55 meV, which is well above

the thermal energy at the room temperature (≈ 26 meV at 300 K) [58].

Topological phase transitions

Phase transitions give a special possibility to study the topological states of matter, as they grant

a direct access to the physics occurring in both phases and give a clear evidence of the di�erences

between them. The study of phase transitions in topological insulators began with a theoretical work

of Bernevig [17] et al., as he proposed that HgTe/CdTe QW can be tuned via a topological transition

from a nontrivial phase to a trivial one, just by varying the QW width. The idea is presented in Figure

1.4. The edge channels with well de�ned conductivity appear only if the system is in an inverted band

gap regime, which takes place for a speci�c range of QW widths. At the critical thickness the phase

transition occurs, and the system changes its phase to a semiconducting with a positive band gap.

This transition causes the edge channels to vanish.

However, long before that, in the early sixties, there were many works devoted to studies of an

inverted band structure of bulk HgCdTe systems and its properties. Even back then it was realized

that by varying the chemical composition of the structure, mainly the cadmium content, it is possible

to change the band order of the system from semimetallic (for low Cd content) to semiconducting

(for high Cd content). This subject will be broader discussed in Chapter 3. There are more systems,

which can exhibit a phase transition driven by a variation of a chemical composition, like topological

crystalline insulators Pb1−xSnxTe or (Pb1−xSnxSe), which were studied by ARPES measurements by

Xu et al. [59], and by magnetooptics by Assaf et al. [60] and Phuphachong et al. [61] from Guldner's

group.

Phase transitions can be induced not only by a strain and a change of a layer thickness and/or

chemical composition. There are far more factors like electric and magnetic �eld, temperature, pres-

sure, etc. Some of them will be described in this thesis. Recently, there have been multiple ideas to

induce and investigate topological phase transitions. One of the most important is to use tempera-

ture as an external parameter driving the HgTe/CdTe QW from a topological insulator phase to a

semiconductor phase by studying electrical properties in both phases [62].
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Figure 1.4: Panel A) Experimental setup of a six-terminal Hall bar showing pairs of edge states, with

spin-up states in green and spin-down states in purple. Panel B) A two-terminal measurement on

a Hall bar would give GLR close to 2e2/h contact conductance on the QSH side of the transition and

zero on the insulating side. In a six-terminal measurement, the longitudinal voltage drops µ2 � µ1 and

µ4 � µ3 vanishes on the QSH side with a power law as the zero temperature limit is approached. The

spin Hall conductance has a plateau with the value close to 2e2/h. The image comes from the work of

Bernevig, Hughes, and Zhang [17].

1.2.2 Scope of this Thesis

The principle idea behind this thesis is to demonstrate the possibility to investigate the topological

insulators and other narrow-gap semiconductors/semimetals by the means of THz spectroscopy. The

systems under the scope of this work are composed of three kinds of mercury-cadmium-telluride

heterostructures, which were chosen accordingly to expose some of the topological properties described

before.

Chapter 2 is divided into two parts. The �rst part introduces the actual methods of investigation.

It starts with an overview of the interactions of matter with light through the absorption coe�cient. It

is explained that the Fermi Golden Rule and optical joint density of states are crucial for understanding

of the mechanism of absorption. The density of states for systems with parabolic and linear dispersion

relation is calculated, as well as the its dependence on magnetic �eld. The second part is where the

experimental set-up is described and the general principles of the Fourier spectroscopy are brie�y

explained with an insight how to read and interpret the results.

Chapter 3 presents the �rst investigated system � a set of two genuine HgCdTe bulk samples
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with thickness of few microns. One of the samples is a positive gap, thus is a regular semiconductor.

The other is semimetallic at low temperatures and undergoes a temperature induced semimetal-to-

semiconductor phase transition. In this chapter an evolution of the band structures of the both

samples is presented, and a special attention is put on the point of phase transition, in which the

quasi-relativistic Kane fermions arise.

Chapter 4 is divided into two parts. The �rst part (4.1) gives the details about the second investi-

gated systems � a set of two HgTe/CdTe QWs with thickness close to the critical, and are referred to as

narrow QWs (or simply QWs). These QWs were grown having a well-chosen set of parameters in order

to investigate the possibility to observe a temperature induced topological insulator-to-semiconductor

phase transition. Again one of the samples is used as a reference and has a positive band gap at

the whole temperature range, while the other undergoes a topological phase transition at the critical

temperature, characterized by an appearance of the Dirac fermions.

The second part (4.2) overviews the third of investigated systems � a set of three HgTe thick QWs

(or �lms) with di�erent thicknesses above the critical. The �lms were grown with a strain, which

opened the bulk band gap. In this way a semimetallic structure becomes a topological insulator. The

thicknesses of the samples are between 15 nm and 50 nm, which means that these systems are in the

intermediate state between QW and bulk � are referred to as 3D systems by the literature, however

a quantum con�nement is still present. These systems give a special opportunity to investigate the

physics of HgTe/CdTe interface states, and their possible coupling with bulk states.

At the end, a brief summary with a conclusion and some perspectives and ideas for future work

are presented. Some of which are related to another solid state system, which was identi�ed as a 2D

topological insulator � an InAs/GaSb QW. An overview and the �rst experimental results obtained

on this system are presented in Appendix A.



Chapter 2

Optical Properties of Matter

In this chapter the principal properties of matter, related to optical phenomena, are presented.

From the point of view of spectroscopy, an interaction between light and solid state systems is crucial.

This chapter explains the mechanism of an absorption of light inside a solid state system via optical

transitions, which is based on two pieces. The �rst piece depends on a probability of transition, while

the second is based on an optical joint density of states, and its dependence on external conditions

like temperature and magnetic �eld.

The chapter starts with an introduction of an absorption coe�cient via the electromagnetic wave

equation. Later, a probability (also called rate or strength) of an optical transition is explained

via a perturbation Hamiltonian. This probability, related to the Fermi Golden rule, is based on an

interaction of quantum states taking part in transitions.

Further, the density of states for all-dimensional systems is presented for linear and parabolic

electronic dispersion relations, and is explained how does it change while magnetic �eld is applied. All

the concepts in this chapter are presented in a rather qualitative way, under two assumptions. The

�rst assumption is that all the transitions are direct � they take place at k = 0, which is valid since

the momentum of a photon is negligible in comparison to the momentum of an electron. The second

assumption is that the �elds of an electromagnetic wave are small, therefore the calculations require

only terms linear with ~E and ~B. This assumption is valid, because the only sources of light intense

enough to be considered in terms of the nonlinear optics are the strongest lasers, usually working in

a pulse mode, which are not in the scope of this work.

2.1 Review of Fundamental Relations for Optical Phenomena

The absorption spectroscopy allows to investigate an energy band structure, impurity levels, lattice

vibrations, excitons, localized defects and many more. The studies are based on measuring certain

quantities, which manifest themselves via an interaction of light with matter. The most important

quantities are the dielectric function ε(ω) and the optical conductivity σ(ω), which are directly related

to the energy structure of solids.

2.1.1 The Dielectric Function and Optical Conductivity

The wave equation for electromagnetic waves can be derived from the basic equations of electro-

magnetism � the Maxwell's equations. The equations are characterized by two very basic constants,

13
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representing electrical permittivity ε and magnetic permeability µ. The wave equation for electric

�eld resembles:

∇2 ~E =
εµ

c2
∂2 ~E

∂t2
+

4πσµ

c2
∂ ~E

∂t
, (2.1)

where σ represents the electrical conductivity of space.

In the vacuum, where µ = 1, ε = 1, and σ = 0, the electromagnetic wave propagates freely and

in�nitely. However, if the electrical conductivity of the medium is �nite, the behavior of the wave is

governed by the coe�cient of refraction in form:

N =
√
µεc =

√
µε

(
1 +

4πiσ

εω

)
= ñ(ω) + ik̃(ω), (2.2)

where ñ and k̃ are real and imaginary parts of the coe�cient of refraction. The coe�cient k̃ is

responsible for an exponential decay of an amplitude of the wave, thus it is often called the extinction

coe�cient. It can be related with the absorption coe�cient via a relation

α(ω) =
2ω

c
k̃(ω). (2.3)

The absorption coe�cient depends on a frequency of the light. It is responsible for energy dissipation

of the wave inside a solid. The rate of decay is strongly related to the properties of medium µ, ε, and

σ, which is re�ected in the band structure, carrier density, etc.

The absorption coe�cient takes di�erent values for di�erent optical processes. The full description

of dispersion of absorption coe�cient in solids can be found in the book of Dresselhaus [63]. The

dominant processes described in this thesis are direct optical transitions. In this case the absorption

coe�cient can be written as

α(ω) =
~ω × numer of transitions/unit volume/unit time

incident electromagnetic flux
. (2.4)

The denominator in Equation 2.4 (incident electromagnetic �ux) can be calculated from the Poynting

vector and is proportional to ω2. The numerator of the Equation is related with the probability

of transition, which is governed by the quantum-mechanical transition rate and the joint density of

states. This means that the e�ective absorption coe�cient for optical transitions can be expressed as:

α(ω) ∝ 1

ω
×DOS(ω), (2.5)

where DOS is the density of states.

2.1.2 Probability of Absorption

The absorption of light in a semiconductor can be described classically in the terms of the Beer-

Lambert's law. It states that if a beam of light of given intensity I0 penetrates a surface of a solid,

then an intensity of the light decreases with the penetration depth z as

I(z) = I0e
−α(ω)z, (2.6)

where α is an absorption coe�cient of a solid. The absorption coe�cient is closely related to a

quantum-mechanical transition rate Wif given by the Fermi Golden Rule. The Fermi Golden Rule

expresses the probability per unit time that a photon of energy ~ω excites an electron from an initial

state 〈ψi| to a �nal state |ψf 〉:

Wif =
2π

~
| 〈ψf |H′if |ψi〉 |2ρ(~ω). (2.7)
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In this expression, the matrix element H′if corresponds to an external optical perturbation, and ρ(~ω)

expresses the joint density of states (DOS) function describing a density of states associated with an

energy of the excitation photon (E = ~ω).
The derivation of perturbation Hamiltonian H′if starts with a standard one-electron Hamiltonian

without magnetic �eld, which takes form of:

H0 =
p2

2m
+ V (~r), (2.8)

where V (~r) is a scalar periodic potential. The momentum is replaced by a term i~∇, and in the e�ective
mass approximation the periodic potential is replaced by the e�ective mass m∗.

The single electron Hamiltonian in the presence of magnetic �eld changes via a substitution ~p →
~p− (e/c) ~A, thus the full form of Hamiltonian is the following

HB =
1

2m

(
~p− e

c
~A
)2

+ V (~r) =
p2

2m
+ V (~r)︸ ︷︷ ︸
H0

− e

mc
~A · ~p+

e2A2

2mc2︸ ︷︷ ︸
perturbation

, (2.9)

where the �rst part resembles the HamiltonianH0 from Equation 2.8, and the second is a perturbation.

The optical �elds are usually very weak in comparison with �elds inside a crystal, thus in a good

approximation only the term linear with ~A remains. The expression for the perturbation Hamiltonian

is

H′ = − e

mc
~A · ~p+

e2A2

2mc2
≈ − e

mc
~A · ~p. (2.10)

The matrix element, 〈ψf |H′ |ψi〉 expressing the coupling of the initial and �nal states through the

optical �elds, determines the strength of optical transitions, which depends on the electromagnetic

�eld perturbation H′.

2.2 Density of States and Optical Transitions

The standard density of states can be quickly derived assuming Born-Karman's periodic bound-

ary conditions for the Bloch functions describing electronic states of a �nite periodic crystal lattice.

Assuming that the states in the reciprocal space are evenly distributed, and considering the electron

spin degeneracy, the k -space density of states takes form of

ρ3D(k) =
2

(2π)3
, ρ2D(k) =

2

(2π)2
, ρ1D(k) =

2

2π
, (2.11)

for three, two, and one dimensions, respectively. This function describes the momentum-depended

density of states per volume (surface) unit of the reciprocal space of a �nite crystal. Knowing that the

DOS function is related to the amount of energy states per unit of energy ρ(E) = dN/dE, a relation

to the reciprocal space can be found by

ρ(E) =
dN

dE
=
dN

dk

dk

dE
, (2.12)

where dN = ρD(k)dVk. The DOS function ρD(k) and an element of volume in k -space dVk have

to take forms of a proper dimension. Now only a dispersion relation E(k) is needed to calculate

the energy-depended DOS function. Two cases of an energy dispersion relation will be described �

parabolic and linear.
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2.2.1 Density of States in Parabolic Bands

In the case of parabolic bands and in the e�ective mass approximation the dispersion relation takes

form of:

E(k) =
~2k2

2m∗
, (2.13)

thus
dk

dE
=
m∗

~2

1

k
. (2.14)

If the element of volume dVk is equal to the di�erence of volumes of two balls (in 3D) or two discs (in

2D) with radii k+ dk and k, then the amount of states in the element of volume can be expressed as:

dN3D = ρ3D(k)dVk =
2

(2π)3
· 4πk2dk,

dN2D = ρ2D(k)dVk =
2

(2π)2
· 2πkdk,

dN1D = ρ1D(k)dVk =
2

2π
· dk.

(2.15)

Substituting Equations 2.14 and 2.15 into Equation 2.13 gives the DOS function per unit energy for

parabolic bands for 3, 2, and 1 dimensions:

ρ3D(E) =
1

2π2

(
2m∗

~2

) 3
2

E
1
2 , (2.16)

ρ2D(E) =
m∗

π~2

∑
i

Θ(E − Ei), (2.17)

ρ1D(E) =
1

π

(
m∗

~2

) 1
2 ∑

i

Θ(E − Ei)√
(E − Ei)

, (2.18)

where Θ(E−Ei) is the Heaviside function, equals 1 if E > Ei, and the summation is over the electronic

energy states i. The plot of DOS as a function of energy is shown in Figure 2.1.

Figure 2.1: Density of states function of 3D (blue curve), 2D (black curve), and 1D (red curve)

systems.
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2.2.2 Density of States in Linear Bands

In the case of linear band the dispersion relation takes form of:

E(~k) = ~vf~k, (2.19)

thus
dk

dE
=

1

~vf
. (2.20)

The dispersion relation does not in�uence the element of volume dVk, therefore the DOS function per

unit energy for linear bands for 3, 2, and 1 dimensions:

ρ3D(E) =
E2

~3v3
fπ

2
, (2.21)

ρ2D(E) =
E

~2v2
fπ
, (2.22)

ρ1D(E) =
2

~vfπ
, (2.23)

Optical Joint Density of States

Not all states take part in an optical transition. The conservation of energy requires that a di�erence

of energies of available states has to be equal to the energy of an exciting photon ~ω. This requires a
modi�cation of the calculated DOS functions 2.16 by substituting E by a term ~ω −∆E, where ∆E

is a di�erence of energy between the �nal and the initial states. Because of that, the function ρj(E)

was named optical joint density of states, and for the case of the 3D parabolic band it takes form of:

ρj(ω) =
1

2π2

(
2m∗

~2

)(3/2)

(~ω −∆E)
1
2 . (2.24)

The only energy range, where the physical solutions of Equation 2.24 exist, requires that ~ω ≥ ∆E.

2.2.3 Optical Transitions

The process called interband optical transition is based on an absorption of a photon by an electron,

which results in an excitation of an electron into a di�erent energy band. There are also intraband

transitions, which take place between levels of a single band. This however requires splitting of

the band into subbands, which can be stimulated, for example, by magnetic �eld or a quantum

con�nement.

There are few rules, which optical transitions have to obey:

• There is a threshold energy, related to the di�erence of energies of the initial and �nal states.

Obviously, photons carrying lower energies than this threshold are not absorbed as there are

no �nal states available for the electrons to be excited to. The photons carrying higher energy

may or may not be absorbed, depending on the internal band structure and allowed relaxation

processes in the system.

• The transitions are either direct or indirect. The conservation of momentum yields that ~kv =

~kc± ~k~ω. The momentum of a photon ~k~ω is few orders of magnitude smaller than the dimensions

of the Brillouin zone, thus ~k~ω can be neglected, rendering ~kv ≈ ~kc. However, the transition

can still be indirect if a phonon is involved. Nevertheless this is a three-body process thus its

probability is much lower than the probability of a direct transition.
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• A transition occurs of course from an occupied initial state into an empty �nal state. If the �nal

state is occupied, due to the Pauli Exclusion Principle, the process cannot take place. Similarly,

if the initial state is empty, there is no electron to absorb a photon and the transition does not

occur.

2.2.4 Density of States in Magnetic Field

The presence of magnetic �eld causes changes in the movement of electrons in a solid, forcing the

energy bands to split into a set of levels. Without the magnetic �eld all the states in k -space are

distributed evenly. If the magnetic �eld is applied in the z-direction, only the states in the x, y plane

are a�ected, as they lie in a perpendicular plane to B. An application of magnetic �eld acts as a form

of quantum con�nement, creating an additional quantization of energy and momentum states. This

limits the available states in k -space to concentric rings (in 2D) or tubes (in 3D) with k = 0 in the

center.

To calculate the available energy states for electrons with a parabolic dispersion in magnetic �eld

the two-dimensional Hamiltonian can be used:

H =
P̂2

2m
. (2.25)

The canonical momentum P̂ is

P̂ =
~
i
∇+

e

c
A. (2.26)

The magnetic potential is, assuming the Landau gauge, expressed as A = (0, Bx, 0). The Schrödinger

equation takes form:

Hψ(~r) =
~2

2m

[
−∇2

x +

(
1

i
∇y −

eB

~c
x

)2
]
ψ(~r) = Eψ(~r). (2.27)

The choice of gauge grants that the Hamiltonian is independent of y, thus x, y wave functions can be

separated:

ψ(x, y) = eikyφ(x). (2.28)

Moreover, by separating the wave functions, the result is a one-dimensional Schrödinger equation

Hxφ(x) = Eφ(x), with the e�ective Hamiltonian:

Hx =
~2

2m

[
−∇2

x + (x− xk)2
]
. (2.29)

This Hamiltonian expresses a one-dimensional harmonic oscillator centered at xk = l2Bk, where lB =√
~c
eB is the magnetic length. Its solution is a set of equidistant energy levels, called Landau Levels

(LLs), which energy can be described by:

En = ~ωc
(
n+

1

2

)
, (2.30)

where ωc = eBz

m∗
c
is the cyclotron frequency, and n = 0, 1, 2... is an integer quantum number corre-

sponding to di�erent LLs. The Equation 2.30 is valid for a 2D system. In a 3D case the energy of

LLs takes form En,z = En + E(z) = ~ωc
(
n+ 1

2

)
+ E(z).

The amount of independent states in a system of dimensions Lx × Ly can be estimated using

boundary conditions for the function ψ (Equation 2.28) in the y-direction:

k =
2π

Ly
my, (2.31)
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for any integermy. This means that the allowed values of xk are separated by ∆x = l2B∆k = 2πl2B/Ly.

If Ly � lB , which is not the case only for 1D systems, then ∆x � lB so the energy separation of

successive states is much smaller than their width. The total number of states is equal to (LxLy)/2πl2B

and each LL has 1/(2πl2B) states per unit area. It is convenient to introduce a quantity, which is related

to the way how electrons occupy the LLs, called �lling factor ν. The �lling factor takes only integer

values and describes the amount of occupied LLs. It is closely related with conductivity in plateau of

the QHE σxy = νe2/h, and can be expressed as

ν(B) =
ne
B

h

e
, (2.32)

where ne is the electron concentration. The �lling factor expresses the amount of occupied LLs at

given magnetic �eld.

Selection Rules

If the magnetic �eld is applied to a sample, optical transitions have to follow a selection rules,

described separately for the Faraday and the Voigt con�gurations. In the Faraday con�guration

the magnetic �eld vector is parallel to the direction of incident light, which is usually along growth

direction and the z-axis. In the Voigt con�guration the magnetic �eld vector is perpendicular to the

direction of incident light. Only the Faraday con�guration is relevant concerning this work, therefore

in all calculations and descriptions involving magnetic �eld it can be assumed that magnetic �eld is

applied along the z direction.

In the Faraday con�guration, in case of an unpolarized light, the optical transitions can be ex-

ecuted only between adjacent (∆n = ±1) LLs, characterized by the same spin orientation. This is

a consequence of the law of angular momentum conservation. The photons are characterized by ±
angular momentum, which becomes transferred to electrons, as the absorption occurs.

Density of States in Magnetic Field

Magnetic �eld in�uences the 3D allowed states only in a plane perpendicular (kx, ky) to the applied

magnetic �eld direction (z). This results in a collapse of DOS function of k-space into a set of

concentric tubes parallel to ~B. It transforms the DOS as presented in Figure 2.2.

In 2D case the quantization in z-direction is provided by the quantum well, therefore the allowed

energy states are fully quantized. This results in an appearance of a distinct LL ladder of states in

form of delta functions. However, in real-life systems those levels are broaden due to the scattering

e�ects. In systems with parabolic dispersion relation the LLs are equidistant in energy, as states

Equation 2.30. In systems with linear dispersion of bands, the energy di�erence of LLs has a
√
B-like

dependence. Figure 2.3 presents the DOS(E) function for a case of graphene at B = 5 T. The LLs in

forms of broadened delta functions are visible, and the levels are not equidistant.
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Figure 2.2: Panel (a) Electron energy bands for a 3D solid as a function of the z-direction wave vector

for di�erent Landau levels (n = 0, 1, 2...). Panel (b) density of states function for the Landau levels

compared with the free electron gas for the case B = 0. The image comes from the work of Martinez

et al. [64].

Figure 2.3: Sequence of Landau levels in graphene is unique; the energy spacing depends on the

magnetic �eld as ∆ELL ∝
√
B, instead of ∆ELL ∝ B as in conventional 2D systems and there exists

a LL at E = 0, shared equally by electrons and holes. The image comes from the work of Belluci and

Onorato [65].
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2.2.5 Fermi Level

From the point of view of the optical properties of a solid, the Fermi Golden Rule (Equation 2.7)

describes only the strength (or probability) of transitions between two states. However, if a transition

is to be executed, the initial state has to be occupied by an electron, which can be excited by a photon.

Moreover, the �nal state has to be unoccupied, as the Pauli exclusion principle forbids two electron

to occupy the same quantum state.

The total concentration of electron in a solid has to be distributed on available states. This

distribution is governed by two factors � the DOS function (Equation 2.12) and, as the electrons are

fermions, the Fermi-Dirac distribution:

f(E) =
1

1 + exp
(
E−µ
kBT

) , (2.33)

where µ is the chemical potential, and kB is Boltzmann's constant. The chemical potential is equal

to the Fermi energy at T = 0 K.

2.2.5.1 Temperature E�ects

As stated in Equation 2.33, the Fermi distribution depends on temperature. For T = 0 K it

resembles a step function � all states below the Fermi level are occupied with probability 1, and all

states above are completely empty, as presented in Figure 2.4 (black curve). As the temperature

increases, the Fermi distribution gets smoother � the population of electron states of energy above Ef
increases at the expense of electron states of energy below Ef . This e�ect has a profound consequences

concerning the optical properties of a solid, as they vary with a change of temperature.

Figure 2.4: Fermi distribution for various temperatures in range 0K ≤ T ≤ 300K. The Fermi level

Ef = 0 meV. The horizontal grey dashed line marks the probability 0.5.

At the beginning of this section (2.2.5) a concept of Fermi level and electron distribution was given.

The way how the electrons are distributed on the bands is crucial for the shape of an absorption spectra.

This means that even if the given transition's strength is high, and there are su�cient electron states
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related to the transition (which is governed by the joint density of states), the transition might not

occur, unless the initial state is occupied while the �nal state is be empty.

At low temperature an occupation of given level varies very rapidly while crossing the Fermi

energy � the bands are either completely �lled or empty. With increasing temperature the electron

distribution is smoother as a function of energy and some levels with energy close to the Fermi energy

are occupied partially, meaning that there are possibilities to execute transitions into and from these

partially occupied levels.

2.3 Experimental Methods

2.3.1 FIR Spectroscopy

The whole electromagnetic (EM) spectrum includes all the frequencies � from low-energetic radio

waves (≈ 100 Hz) to high energy gamma rays (up to 1022 Hz). There is no single spectroscopic method

which allows to study the light and matter at the whole EM spectrum. As the properties of matter

di�er with the frequency, di�erent spectroscopic techniques have to be used to investigate speci�c

physical phenomena in a given spectral region. For example, in solid state physics the electronic

energy levels span over a wide energies in a range from few meV to few eV. This corresponds to

energies of photons from far-infrared (FIR), through visible, to ultraviolet range.

The parts of EM spectrum, relevant in the scope of this thesis, are the THz and FIR regions, as

they allows to investigate physical phenomena in narrow-gap semiconductors (NGS) and topological

insulators (TI). In general, the THz region spans over the frequency domain between 0.3 THz to 30

THz, which translates to 10 - 1000 cm−1, or ≈ 1.25 − 125 meV. This energy range covers most of

the possible inter- and intra-LL transitions in NGSs and TIs, which allows to investigate their band

structure in a thorough way.

2.3.2 Experimental Set-up

The experimental work of this thesis is based on the infrared/THz magneto-spectroscopy measure-

ments of TIs and NGSs. The spectroscopy experiments were performed using a specially customized

Oxford liquid helium cryostat coupled to a Bruker Fourier spectrometer IFS 66v/S. The schematics of

the system is presented on Figure 2.5. At the bottom of the cryostat an additional chamber was placed

(white space), separated from the rest of the system by a diamond window, which is well transparent

in the infrared range and isolates thermally the chamber itself. A composite germanium bolometer

QGEB/X was placed inside the chamber, being cooled by a liquid helium. A helium bath assures that

the bolometer is kept at low temperature at all times. Sensitivity of a bolometer is strongly related

to an operational temperature, and decreases drastically with increasing temperature.

A thermal separation provided by the diamond window assures the optimal environment for the

bolometer while the temperature can be varied in the vicinity of the sample in a broad range. A

temperature sensor and a heater are place near the sample. A combination of these two devices is

used to set the temperature in the vicinity of the sample space on demand up to around 140 K.

Higher temperatures are di�cult to obtain due to the thermal radiation emitted by the sample and its

surroundings, which heats up the bolometer, decreasing its sensitivity. The temperature in the cryostat

can be decreased to around 1.6 K, by lowering the liquid helium pressure. At the ambient pressure the
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Figure 2.5: Sketch of the experimental set-up. The �rst part is composed of a Fourier (FT Spec-

trometer) spectrometer with a Gobar lamp (Source), which works using the Michelson interferometer

principle. The radiation is guided (by a Waveguide) into the cryostat. The liquid-helium cryostat is

supplied with a liquid nitrogen coating. The sample is placed inside the cryostat in a variable temper-

ature insert (VTI). The superconducting coil (Coil 1) can provide magnetic �eld with inductance up

to 16 T, while the compensating coil (Coil2) keeps the overall magnetic �eld at zero in the vicinity of

the bolometer. Near the sample there is a temperature controller, allowing to vary and stabilize the

temperature. The bolometer is separated (by a Diamond Window) from the sample space.

boiling temperature of helium is equal to 4.2 K. At the λ point helium becomes super�uid � at around

22 mbar the temperature reaches around 1.8 K, which is the lowest possible in this experimental

set-up.

A system of two superconductive coils was embedded into the cryostat (Figure 2.5). The main coil

(Coil 1) is capable of creating a constant and homogeneous magnetic �eld of inductance up to 16 T

in the vicinity of the sample. At the same time, the second coil (Coil 2) compensates the magnetic

�eld created by the Coil 1 in the vicinity of the bolometer. This procedure is required to maintain

zero magnetic �eld at the position of the bolometer. This system allows to perform measurements

in a broad range of temperatures and magnetic �elds, while preserving optimal environment for the

bolometer.

In the experiment a globar lamp integrated with the spectrometer was used as a radiation source.

Globar is a broadband thermal emitter, which is typically used for infrared spectroscopy. It is formed

by a silicon carbide rod heated electrically up to a couple of hundreds degrees Celsius. Its radiation

is suitable for spectroscopy as it is continuous and resembles the blackbody radiation. The radiation

is delivered to the cryostat via a waveguide, which ends with a light-focusing cone. The focused light

passes through and interacts with the sample. The transmitted light is detected by the bolometer. An
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electrical response of the bolometer is passed back to the spectrometer, where the Fourier transform

occurs and the �nal spectra are calculated.

Fourier spectrometer

A fourier transform spectrometer has a Michelson interferometer in its core. The Michelson inter-

ferometer consists of two mirrors, one in a �xed position and one is moveable, and a beamsplitter.

The light from the source is split into two paths and gets re�ected by the mirrors. By moving the

movable mirror over some distance, the relative optical path of two beams is varied, and an interfer-

ence pattern is created that encodes the spectrum of the source. The interference pattern is a Fourier

transform signal of the original spectrum. The Fourier spectrometer has some advantages over the

regular spectrometers:

• it can scan multiple wavelengths simultaneously, greatly increasing the operational speed,

• high speed allows to increase the number of measurements, increasing the signal-to-noise ratio,

• it does not require prism/grating to split the beam in order to analyze it.

A coupling of a Fourier spectrometer as a source of light and a bolometer as a detector can be

used to perform spectroscopy of solid state systems quickly and e�ectively.

Bolometer

A bolometer is a device used to measure the power of incident electromagnetic radiation through

heating of an absorptive element. Any radiation illuminating the absorptive element raises its tem-

perature � the higher the absorbed power, the higher the increase of temperature. The temperature

change can be measured directly with an attached resistive thermometer, or the resistance of the

absorptive element itself can be used as a thermometer. Nowadays, most of the bolometers are based

on semiconductor or superconductor absorptive elements, which allows them to operate at cryogenic

temperatures, signi�cantly increasing the sensitivity.

Analysis of spectroscopic data

Transmission spectra are used to characterize samples and give an insight to their energetic structure.

The peak positions in an FIR spectrum correlate with an optical transitions between distinct energy

levels within the sample. The standard way to obtain a transmission spectrum is to acquire a spectrum

with respect to some reference. A use of a reference spectrum allows to remove features, which are

related to the experimental set-up itself, and do not provide any useful information about the sample.

For example, in magneto-spectroscopy, a spectrum taken at zero magnetic �eld (TB=0T ) can serve as

the reference to a di�erent spectrum, taken at nonzero magnetic �eld (TB 6=0T ). Both of the obtained

spectra are in�uenced by all of the optical parts of the set-up, therefore a formula for the measured

reference spectrum can be expressed as

fB=0T (~ω) = Esrc(~ω) · Tsetup(~ω) · Tsample,B=0T (~ω) · Sdet(~ω), (2.34)

where Esrc is the emission spectrum of the source, Tsetup is the transmission of the elements of the

experimental set-up, Tsample is the actual transmission through the sample, and Sdet is the sensitivity

of the detector. All of those parameters depend on the frequency of light (ω). A similar formula can

be written for a spectrum at nonzero magnetic �eld

fB 6=0T (ω) = Esrc(ω) · Tsetup(ω) · Tsample,B 6=0T (ω) · Sdet(ω), (2.35)
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where all but one (Tsample) elements are the same. This is obvious since magnetic �eld in�uences only

the sample. The �nal transmission is obtained by dividing the spectrum at nonzero magnetic �eld

(Equation 2.35) by the reference spectrum (Equation 2.34):

T (ω) =
fB 6=0T (ω)

fB=0T (ω)
=
Esrc(ω) · Tsetup(ω) · Tsample,B 6=0T (ω) · Sdet(ω)

Esrc(ω) · Tsetup(ω) · Tsample,B=0T (ω) · Sdet(ω)
. (2.36)

this division allows to explicitly remove parts depending on Esrc, Tsetup, and Sdet. Only the parts of

the transmission related to the sample remain

T (ω) =
Tsample,B 6=0T (ω)

Tsample,B=0T (ω)
. (2.37)

To obtain a complete evolution of optical transition as a function of magnetic �eld, this procedure

has to be repeated at di�erent values of magnetic �eld, with a proper resolution. There exits exper-

imental set-ups, where the detector is situated close to the sample, where magnetic �eld can have

an in�uence on the detector as well. In these systems, the parameter Sdet does not reduce itself in

Equation 2.36, thus additional reference spectra have to be obtained to eliminate the magnetic �eld

dependence of the detector on the signal.

T (ω) =
Tsample,B 6=0T (ω)

Tsample,B=0T (ω)
· Sdet,B=0T (ω)

Sdet,B 6=0T (ω)
, (2.38)

Figure 2.6: Panel (a): Transmission spectra calculated from spectra from panel (b). Panel (b):

Example spectra obtained at B = 0 T (blue) and B = 8 T (red). The minima present in both spectra

are explained by the absorption on the parts of experimental set-up, phonons, or impurities. The

minima present only in red spectrum correspond to optical transitions marked as T1 and T2. Each

minimum on transmission spectra was connected to a corresponding minimum of the raw spectra.
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An example of infrared spectra, as well as the transmission obtained via the described procedure, is

presented in Figure 2.6. Panel (b) shows two curves, which are an example of raw spectra obtained by

a spectrometer. Both spectra are presented as a plot of counts versus energy, where counts correspond

to the intensity of light detected at given energy (wavelength) of light. The blue spectrum was taken

at zero magnetic �eld, while the red spectrum at B = 8 T. The spectra are similar at the whole energy

range, except at the vicinity of two wavelengths, 340 cm−1 and 475 cm−1, where red spectra exhibit

a visible minimum, absent in blue spectra. Those minima correspond to optical transitions marked as

T1 and T2.

Those minima are linked with corresponding minima of a transmission spectra presented on Panel

(a). The transmission spectrum was obtained by a division of the red spectrum (TB=8T ) by the blue

spectrum (TB=0T ), and it presents �ve absorption peaks (with one broad around 260-320 cm−1).

The minima on red and blue spectra, which are related to the sample itself have their corresponding

minima on the transmission spectra:

• Two minima around 120 and 150 cm−1 correspond to an absorption on impurities and defects

of the sample. As they are present at both magnetic �elds, they potentially could be removed

from transmission spectrum by division. It is not the case because the absorption is almost

100%, which means that the intensity detected is very small (therefore the signal-to-noise ratio

is high), and it results in such artifacts in division of two very small numbers.

• The broad absorption, visible around 260-320 cm−1, corresponds to the absorption by the phonon

bands. It remains visible in the transmission spectra because of the same reason � the absorption

is almost 100% leading to division artifacts.

• The actual optical transitions T1 and T2, which resulted from an evolution of energy levels in

magnetic �eld and transitions between them.

The rest of minima are absent in transmission spectra, which means that they are related to the

absorption by the experimental set-up, rather than by the investigated sample.
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HgCdTe Bulk Systems

In this work a signi�cant attention will be paid to 3D bulk systems, 2D quantum well heterostruc-

tures, and strained HgTe layers with intermediate thickness. This variety of systems gives a unique

opportunity to study di�erent physical e�ects taking place in the structures.

At the beginning of the chapter a general introduction to HgCdTe-based materials will be given.

Later, the bulk system will be described. A Hg1−xCdxTe system is very versatile in terms of band

structure. In a HgCdTe crystal in an inverted band order phase the conduction and valence bands

overlap, which means that the bulk is conductive. However, if a bulk band gap is opened by strain or

a di�erent mechanism, the system could exhibit a TI phase. In a regular band order phase, a band

gap is present, which means that HgCdTe can be either a semiconductor or a semimetal, depending on

its both internal and external parameters. It will be shown that it is possible to demonstrate a phase

transition from inverted to regular band order, which makes these systems particularly interesting. In

the bulk systems in a gapless state a new class of relativistic excitations arises, called Kane fermions,

which can be studied using THz spectroscopy.

The description and experimental results on HgTe/CdTe QWs will be presented in the Chapter 4.1.

The band structure of a QW might exhibit a topologically insulating phase, as there is a way to obtain

a band inversion with a bulk energy gap, which is provided by the quantum con�nement within the

QWs structure. Finally, in Chapter 4.2, an overview and preliminary experimental results obtained

on strained HgTe �lms will be presented. HgTe �lms can be considered as thick QWs, because the

quantum con�nement is still present in these systems. However, it is too small to open an energy gap.

A di�erent mechanism of gap opening is used � a strain.

3.1 Introduction to HgCdTe Systems

HgCdTe alloy crystal is formed by II-VI compounds which crystallize in a zincblende structure,

which consists of two face-centered cubic sublattices. In the zincblende structure each of Te-ions has

four nearest neighbors, which can be either Hg or Cd. The presence of a di�erent atom on each lattice

site breaks the inversion symmetry, which results in reducing the point group symmetry from cubic

to tetrahedral.

Both compounds, HgTe and CdTe, are well lattice-matched, having the lattice constant parameter

equal to 6.45 Å and 6.48 Å, respectively. Hg1−xCdxTe mixed crystals have a direct band gap, which

value varies from 1.6 eV for pure CdTe, a relatively large gap semiconductor, to -0.3 eV for pure HgTe,

a semimetal. A negative band gap is a consequence of an unusual band alignment in the crystal, where

27
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p-type (Γ8) bands lie around 0.3 eV above the s-type (Γ6) bands. This is caused by an extraordinary

large SOC in HgTe (due to the presence of a heavy element Hg), which leads to an inverted band

structure. The light-hole Γ8 band forms the conduction band, the heavy-hole band forms the �rst

valence band, and the electron s-type Γ6 band is pulled below the Fermi level and lies between the

heavy-hole band and the spin-orbit split-o� band Γ7. The band order of both CdTe and HgTe is

presented in Figure 3.1.

Figure 3.1: Inverted band order of HgTe and normal band order of CdTe. Figure comes from work

[17].

3.2 Overview of HgCdTe Bulk Crystals

The earliest studies of Hg1−xCdxTe crystals were aimed at a development of infrared detectors,

especially for radar applications. In 1958, Lawson et al. syntesized for the �rst time a mixed crystal

of HgCdTe at the Royal Radar Establishment in England. Their work was published [66] a year later.

Because of its extraordinary properties, HgCdTe was recognized early as the most versatile material

for detection over the whole infrared range, with a special attention put on the wavelength of around

10 μm. This is the range of the second wide atmospheric window, which made it of a great interest

for communication applications. Moreover, it covers the range of the maximum of thermal radiation

at the room temperature, which opened a way for possible applications for everyday life.

The following studies were focused on a determination of the band gap of mixed compounds with

composition ranging from x ≈ 0.2 to x ≈ 0.6 by optical methods [67][68] (based on a detection of

the absorption edge), which provided the band structure parameters for a wide range of temperatures

and empirical formulae for the value of the band gap as a function of Cd content and temperature.

Moreover, an indication of a semimetal-to-semiconductor phase transition was observed. The studies

of samples with band gaps close to zero were performed by Groves et al. [69] and Saur [70]. Further

magneto-optical studies performed on samples with small energy gap by Kim et al. [71] explored the

properties of the band structure in a semimetalic regime. The �rst extensive magneto-spectroscopic

studies of HgCdTe in a semiconducting [72] and a semimetallic [73] phase were performed by Guldner

et al. and Rigaux [74]. The investigations allowed to explore the phenomena such as the band structure

evolution at the point of phase transitions or polaron anomalies.
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Recently, as the growth techniques have gradually advanced over the years, the quality of HgCdTe-

based structures improved signi�cantly. Especially, a Molecular Beam Epitaxy (MBE) method gives

a possibility to grow structures of immense quality. Despite this, the growth of Hg-based structures

is still a challenging task and requires a lot of experience and know-how to be done properly. That is

why there are only few laboratories in the world (like CEA-LETI, Würzburg or Novosibirsk) where

the growth process was mastered.

MBE method is an epitaxial method of growing crystalline �lms on top of a monocrystal substrate.

MBE takes place in an ultra-high vacuum environment (around 10−10 mbar). The vacuum prevents

a deposition of unwanted molecules, reducing the amount of non-intentional impurities. In a solid

source MBE, pure elements are heated separately in e�usion cells or electron beam evaporators until

they start to slowly sublimate. The gaseous elements are delivered to a wafer, where they condensate,

forming a crystal. They may also react with each other, creating mixed crystals. The quality of

the growth can be controlled in-situ by a re�ection high energy electron di�raction, which provides

information about a growth rate. There are also other methods of epitaxial crystal growth, which will

not be described in this work. The most popular and widely used are: liquid phase epitaxy, vapor

phase epitaxy, and metalorganic chemical vapor deposition.

Nowadays, because of the possibilities given by the high quality growing methods, the applications

of HgCdTe compounds is no longer limited to the infrared detection. There has been a renewal of

interest of physical community in this topic as a HgTe/CdTe QW was demonstrated to be a 2D TI,

which was followed by the discoveries of 2D Dirac Fermions and 3D TIs. The attention of the part of

physics community is now centered at the phenomena relative to the fundamental science of narrow-

gap semiconductors and TIs. These phenomena are, including but not limited to, the variations of

e�ective mass of electrons, appearance of new quasi-particles in semiconductor systems and new exotic

phases of matter that they are related to.

The electrical and optical properties of Hg1−xCdxTe crystals are determined by its dielectric func-

tion and conductivitiy, which are closely related to the band structure. The shape of both electron and

hole bands can be described using the Kane model [75]. The band gap varies from negative to positive

monotonically and almost linearly with the cadmium content x � the crystal composition. It means

that at some point there must be a special composition, where the band gap vanishes, which, accord-

ing to [30], implies that the e�ective mass collapses as well, and quasi-relativistic particles appear.

HgCdTe bulk crystals give a special opportunity to realize and investigate a condensed matter system

with particles exhibiting relativistic Dirac-like properties in all three dimensions. Three dimensional

topological insulators also exhibit states with a relativistic dispersion relation, but their presence is

limited to the 2D surfaces of a sample.

Recent experimental [76] and theoretical [77] works on Hg1−xCdxTe crystals characterizded by a

cadmium concentration close to the critical led to a discovery of another massless Dirac-like quasi-

particles called Kane fermions [76]. These three dimensional particles are not equivalent to any other

known relativistic particles. Kane fermions show a resemblance to the pseudospin-1 Dirac-Weyl sys-

tem [77] � the band gap vanishes [78] and their energy dispersion relation forms a Dirac cone with an

additional band crossing the vertex. These conical bands may have several spectacular properties sim-

ilar to those in Dirac and Weyl semimetals (such as Klein tunnelling and suppressed backscattering)

[76].
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3.2.1 Band Structure and Temperature

The band structure and electronic dispersion relation of a Hg1−xCdxTe crystal can be varied both

intrinsically and externally. Intrinsically � by changing the chemical composition. Externally � by

varying external parameters, like temperature [79] or pressure [80].

However, the method of variation of chemical composition of band structure engineering has its

limitations. First of all, it can be done only once � during the crystal growth. Secondly, it is technolog-

ically di�cult as even small �uctuations of composition may disable the ability to perform �ne tuning

of the band gap in the vicinity of the critical value, where the band gap vanishes and a topological

semimetal-to-semiconductor phase transition takes place.

To deal with these issues, there is a need to �nd an easy-controllable external parameter, which

allows to �ne tune the band structure, and is generally available even in a simple experimental set-up.

It turns out that a temperature regulation allows to precisely control the band structure and provides

a well-set enviroment to investigate the relativistic properties of Kane fermions, which arise while

the system is tuned across the gapless state at the point of a phase transition [81]. The only major

drawback of the usage of temperature as a tuning parameter is its range. There are two general factors

limiting the range of available temperatures.

The �rst limit is related to the properties of the material itself. Mercury is a very volatile element,

which tends to di�use and alter the sample structure even at relatively low temperature in comparision

to other compounds, which reduces the quality of the structure. This limitation is the reason, why

processing of mercury-based compounds is a very challenging task. In general, it is assumed that the

highest safe temperature for a HgCdTe system should be around 80 ◦C [82].

The second limit is related to the energy range that one wants to investigate. If a desired phe-

nomenon, like an optical transition, is in energy range comparable with the thermal energy kT , it will

not be observed. Moreover, an increase of temperature usually follows an increase of disorder within

the sample, reducing the signal-to-noise ratio of measurements. This renders the available tempera-

ture range narrower than possibly anticipated. That is why, the cadmium content allows to tune the

band gap in a broad range, while the temperature acts as a �ne tuning parameter. Depending on the

phenomena that one wants to observe, it is required to choose the speci�c cadmium content, which

makes the band gap close to the desired value. In case of this work, the desired value of the band gap

was negative, preferably close to zero, which would allow the temperature to tune it from a negative

to a positive regime.

At low temperatures a Hg1−xCdxTe crystal is a regular semiconductor for cadmium content higher

than the critical value x > xc ≈ 0.17. On the other hand, if the cadmium content is lower than the

critical value x < xc, the band structure is inverted, as schematically shown in Figure 3.2, and

the structure exhibits a semimetallic behavior. The two phases are not topologically equivalent, as

characterized by the Z2 topological invariant [17].

As was mentioned before, the band structure depends on more parameters than only the cadmium

content. Considering temperature as a second parameter, the point of closing the band gap becomes

a curve on a two dimensional (x, T ) parameter space. This clari�es that the critical contentration

xc ≈ 0.17 is valid only for temperatures close to the absolute zero. However, samples with a little

lower cadmium content have the critical temperature elevated. Our team for the �rst time used the

temperature as an external parameter to induce a topological phase transition and investigate the

Kane fermions arising in the gapless state [81]. The two samples (A and B) used in that experiment

had the cadmium content of xA = 0.175 and xB = 0.155. This allowed to study the physics of Kane
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Figure 3.2: A dispersion relation of a Hg1−xCdxTe system for di�erent cadmium contents x. A blue

surface represents an electron band, while red surfaces represent light- and heavy-hole bands. The

heavy-hole band is almost dispersionless, as the e�ective mass of a heavy-hole is large in comparison

to the mass of a light-hole and an electron. On the left side a band structure in a semiconducting

phase is shown, where the band gap is positive and the conduction band is formed by a Γ6 band. On

the right side the band structure is inverted. The band gap is negative and the conduction band is

formed by a Γ8 band. For both regular and inverted band orders the bands are parabolic. For a critical

concentration xc the band gap vanishes and the system exhibits a Dirac-like dispersion relation with

additional �at band (heavy-hole). The image comes from the work of Orlita et al. [76].

fermions at higher temperatures, as the temperature of phase transition of the Sample B was around

77 K.

The temperature is an important factor considering the physical phenomena occurring in solid

state materials, especially in NGSs like HgCdTe. Temperature also in�uences the energy structure via

a lattice thermal expansion. This modi�es the Hamiltonian and the band structure in the consequence,

by elevating the hole band energy. In the case of NGSs, especially if the dependence on temperature

is signi�cant, it can lead to a gap closure, as in the case of HgCdTe. The energy gap depends on

cadmium content x and temperature T , and that dependence can be expressed (following Laurenti et

al. [83]) as:

Eg(x, T )[eV ] = −0.303(1− x) + 1.606x− 0.132x(1− x)+

+
6.3(1− x)− 3.25x− 5.92(1− x)

11(1− x) + 78.7x+ T
10−4T 2,

(3.1)

which is a function on two parameter space. If the left side of Equation 3.1 is equal to zero, it

obviously limits the space to a case of the gapless state. A dependence xc(T,Eg = 0) can be derived

from Equation 3.1, which gives a quantitative information about the band structure in a form of

a phase diagram with both samples marked is presented in Figure 3.3. Sample A is in a normal

semiconducting regime at the whole relevant temperature range. Sample B, on the other hand, at low

temperature is in an inverted band order regime, and as the temperature rises it enters the normal

regime.
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Figure 3.3: Phase diagram of a bulk Hg1−xCdxTe crystal as a function of temperature T and cadmium

content xc. The red (blue )area represents a parameter range, where the system is in a semiconducting

(semimetallic) state. The two horizontal lines mark the Cd concentration of Sample A (0.175) and

Sample B (0.155). For Sample B, which undergoes a phase transition, the critical temperature Tc is

marked as well.

The appearance of Kane fermions in not restricted only to the gapless state, where they are truly

massless. Even if a system has a gap, the behavior of (massive) carriers can be regarded as relativistic

as long as the considered energy range is small in terms of the energies of nearby bands, mainly the

spin-split Γ7 band, which lies ∆SO ≈ 1 eV [84] lower in energy. Moreover, HgCdTe systems are not

the only ones, where Kane fermions can be found. Recent studies of another extraordinary material,

namely cadmium arsenide, revealed that Kane fermions are indeed potentially present in that system

[85] as well.

Cd3As2 has been identi�ed as a 3D topological Dirac semimetal in which a topological phase is sta-

ble under ambient conditions [86]. This system brought again a considerable interest in the electronic

properties of the scienti�c community, upon which investigations started in the late sixties [87][88].

This compound was at �rst expected to contain the Dirac-like particles. ARPES measurements con-

�rmed those expectations, claiming that the electronic bands of Cd3As2 consist of a single pair of

symmetry-protected 3D Dirac nodes, located close to the Γ point of the Brillouin zone, which span

over a few hundred meV [89][90], or even eV [86]. However, a recent optical re�ectivity experiments

performed by Akrap et al. [85] shed some light on that matter. As it turns out, the electronic bands

of Cd3As2 are quite di�erent if considered in high and low energy scales. In high energy scales, in the

order of few hundreds of meV, the band structure resembles a set of two conical bands, which originate

from the Kane model applied to a narrow gap semiconductor. The bands are not symmetry protected

and they host a genuine Kane fermions. However, at low energy scales, of the order of few meV, the

band structure may be formed by two sets of twin Dirac cones, which are protected by the symmetry.

This means that the excitations of the higher energy behave accordingly to the Kane particles, while

the excitations of the lower energy, if present, are Dirac-like.
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3.2.2 The Simpli�ed Kane Model

The simpli�ed Kane model [91][75] can be used to describe an electronic structure of a HgCdTe

crystal near the Γ point of the Brillouin zone, where all the interesting physics takes place. This model

accounts for the k · p interaction between the Γ6 and Γ8 bands, while neglects the in�uence of the

remote spin-split Γ7 band. The �nal Hamiltonian (3.2), neglecting the small quadratic in momentum

terms, takes form of:

Ĥ = β̃m̃c̃2 + c̃α̃xpx + c̃α̃ypy + c̃α̃zpz, (3.2)

where c̃ is the Fermi velocity, m̃ is the e�ective mass, and pi is the momentum. This Hamiltonian

resembles the one for the true 3D Dirac fermions, presented in the Dirac equation (3.3),

ih̄
∂Ψ

∂t
=
(
βmc2 + cαxpx + cαypy + cαzpz

)
Ψ. (3.3)

However, the matrices α̃i are di�erent from αi [81]. There are multiple bulk condensed matter systems,

which can be described well by the Dirac equation 3.3. Nevertheless, the Hamiltonian 3.2 does not

reduce itself to the Dirac Hamiltonian nor to any other known Hamiltonian describing relativistic

particles. The 6×6 matrix version of Equation 3.2 is:

Ĥpx, py, pz =



m̃c̃2
√

3
2 c̃p+ − 1

2 c̃p− 0 0 −c̃pz
√

3
2 c̃p+ −m̃c̃2 0 0 0 0

− 1
2 c̃p− 0 −m̃c̃2 −c̃pz 0 0

0 0 −c̃pz m̃c̃2 −
√

3
2 c̃p−

1
2 c̃p+

0 0 0 −
√

3
2 c̃p− −m̃c̃2 0

−c̃pz 0 0 1
2 c̃p+ 0 −m̃c̃2


≡ c̃p · J, (3.4)

where p± = px ± ipy, Eg = m̃c̃2 is the energy gap, and c̃ =
√

2P 2/3~2 is the universal velocity. The

material properties are included within the model by Eg and the Kane element P . There are three

eigenvalues of Equation 3.4, representing the energetic structure of the system. Each one is doubly

degenerated due to the Kramers theorem. The eigenvalues can be presented as:

Eξ(p) = ξ2m̃c̃2 + (−1)1−θ(m̃)ξ
√
m̃2c̃4 + p2c̃2, (3.5)

where the ξ parameter takes values of ξ = −1 for the light-hole band, ξ = 0 for the heavy-hole band,

and ξ = 1 for the electron band. θ(m̃) is the Heaviside step function, equals to 1 for m̃ ≥ 0, and 0

if m̃ < 0. An eigenvalue for ξ = 0 means that the heavy-hole band is energetically completely �at

(dispersionless), which is a consequence of an assumption that the heavy-hole mass is in�nite. The

assumption is valid as long as the e�ective electron mass is signi�cantly smaller than the e�ective

heavy-hole mass of about mhh ≈ 0.5 m0 [78], which is the case for narrow gap regime [76].

3.2.3 Bulk HgCdTe at Magnetic Field

The energy structure becomes quantized in a presence of magnetic �eld. The 3D dispersion

relation takes form of a set of unequally spaced Landau levels (LLs), or more precisely, a form of

1D Landau bands which disperse with the momentum component along the �eld direction (usually z

axis). Moreover, these LLs are characterized by a distinct E ∼
√
B behavior, as is stated in Equation

3.6. The similar behavior is found for example in a gapless graphene, where the LL structure can
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be expressed by En = sgn(n)
√

2e~c̃2B|n|, where sgn(n) takes value +1 for electronic LLs, and −1

for hole-like LLs [92]. This is a direct consequence of the linear dispersion relation E(p) ∝ p, as

states the Equation 3.5. In a case of a parabolic dispersion relation E(p) ∝ p2, found in the most

semiconductors, the LL structure takes form of E = ~ωc(n+ 1/2) = ~ eBm∗ (n+ 1/2). In this case, the

energy of a LL is proportional to applied magnetic �eld, and each consecutive LL is separated from

the adjacent one by a constant factor of ~ωc.

Magnetic �eld forces modi�cation of the Hamiltonian by an inclusion of components related to a

magnetic vector potential A, through the standard Peierls substitution ~k→ ~k− eA. In the case of

a 3D material like HgCdTe, the LL spectrum of massless and massive fermions takes a more complex

form:

Eξ,n,σ(pz) = ξ2m̃c̃2 + (−1)1−θ(m̃)ξ

√
m̃2c̃4 +

1

2
e~c̃2B(4n− 2 + σ) + p2

z c̃
2, (3.6)

where n is a Landau level index, σ accounts for the Kramers degeneracy lifted by the magnetic �eld,

and can be considered as the Zeeman (spin) splitting of LLs [81]. The index n takes only integer

values, with respect to the parameter ξ. For ξ = ±1, n takes values of nonzero positive integers

n = 1, 2, ... . For ξ = 0, n takes values of zero or all positive integers except one n = 0, 2, 3, ... .

The parameters c̃, n, and pz fully determine the spin splitting. Moreover, when the e�ective mass m̃

vanishes, and at pz = 0, the spin splitting of LLs is exactly proportional to
√
B. This means that the

g-factor, de�ned in the standard way as gξ,n = (Eξ,n,↑ − Eξ,n,↓)/(µBB) diverges at B → 0. This is

an extraordinary situation in a solid state system, and in particular, it does not exist in the case of

graphene [76], as the SOC is very weak [16]. An uncommon case of
√
B spin splitting takes place in

HgCdTe because the g-factor becomes e�ectively in�nite as the band gap vanishes.

At magnetic �eld, the energy spectrum becomes quantized into a set of LLs, and the Fermi energy

separates �lled LLs from the empty ones. An example of a LL structure created following Equation

3.6 is presented in Figure 3.4. The possible transitions between LLs have to follow the basic rules

presented in Chapter 2. Moreover, the spin in a transition has to be conserved. It means that a

transition can take place between two LLs only if they are characterized by the same spin orientation.

The allowed transitions for this system, both inter- and intraband, are presented as arrows in Figure

3.4.

In the case of bulk HgCdTe the energy of the heavy-hole level does not depend on the k vector

nor magnetic �eld. According to the Equation 3.6 it has zero energy for all nonzero integer values of

n (except n = 1), and both values of σ = ±1. As a consequence, it is not formed by a single level

but contains many levels, which are 2n times degenerate in energy. This is why transitions from a

heavy-hole band into electron LLs with indices n = 1 or n = 3 are possible. However, the transitions

into an electron LL with index n = 2 are forbidden, as it would require an existence of a heavy-hole

LL with n = 1, which is not the case.

Interband transitions give a valuable information, because at zero magnetic �eld the energies of the

transitions are equal to the energy gap itself. Intraband transitions, on the other hand, tend to have

zero energy at zero magnetic �eld, as the Landau quantization disappears. It is worth to mention,

that despite the fact that a transition is allowed, it might not be possible to observe it by the means

of spectroscopy, as it was explained in Chapter 2.
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Figure 3.4: Landau level graph of a bulk HgCdTe system as a function of magnetic �eld. Colored lines

represent Landau levels, characterized by a di�erent value of ε, n, and σ, as described in indices of L

on the right side of the graph. The electron band Landau levels (with ε = 1) have a near-
√
B behavior.

The heavy-hole Landau level, plotted in purple, is fully degenerated. The vertical arrows represent a

possible transitions between Landau levels in this system. Dashed arrows are intraband transitions,

while solid arrows are interband. Energy gap was also marked on the �gure by Eg.

3.3 Experiment

3.3.1 Samples

The high-quality HgCdTe bulk samples were grown using an MBEmethod on a (013)-oriented semi-

insulating GaAs substrate in Novosibirsk by Dvoretskii and Mikhailov. The substrate was followed

by a ZnTe nucleation layer and a thick CdTe bu�er layer to decrease the defect density arising from

the lattice mismatch between the GaAs substrate and the HgCdTe layer. An actual Hg1−xCdxTe

layer was approximately 3.2 micron thick to assure three-dimensionality of an active region of the

sample, which was further con�rmed by absorption coe�cient measurements (Figure 3.7). The whole

structure was capped by a CdTe layer to prevent environmental degradation processes like oxidation.

The structure scheme of the samples is presented in Figure 3.5.

Sample characterization

To estimate the properties of the samples, like carrier concentration, the transport measurements

were performed at magnetic �eld as a function of temperature. Samples were contacted with indium

balls in a Van der Pauw con�guration and placed in perpendicular quantized magnetic �eld (the

Faraday con�guration). The carrier concentrations of the structures for temperatures in a range of

2 K � 140 K were established based on a low-�eld part of the Hall measurements. The magneto-

transport results are presented in Appendix B. The summary is presented in Figure 3.6. The electron
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Figure 3.5: Layer structure of Hg1−xCdxTe bulk samples. The cadmium content was equal to xA =

0.175 and xB = 0.155 for samples A and B, respectively. The active region of the system is composed

of an approximately 3.2 µm thick Hg1−xCdxTe layer, marked on blue on the sketch.

concentrations in both samples are comparable (one order of magnitude di�erence) and ranges from

nA ≈ 3 · 1014 cm−3 for Sample A and nB ≈ 2 · 1015 cm−3 Sample B at T = 2 K up to nA ≈ 8 · 1015

cm−3 and nB ≈ 9 · 1016 cm−3 at T = 140 K for Sample A and Sample B, respectively. Relatively low

concentration allowed to perform the transmission measurements as the absorption was moderate.

The dependence of absorption coe�cient on incident photon frequency λ(ω) in 3D systems with

a conical dispersion relation is linear, which resembles a behavior of 3D Weyl systems [77]. This

is a direct consequence of the joint density of states of electrons with the linear dispersion, being

proportional to ω2 in 3D, and ω in a 2D case, as presented in Chapter 2. An explicit formula for the

absorption coe�cient as a function of energy can we written (following Chang et al. [93]) as:

α(~ω) =
B

~ω

[
(∆ + b)

√
(∆ + b)2 − b2 +

1

8
(∆ + 2b)

√
(∆− 2b)2 − 4b2

]
, (3.7)

where ∆ = ~ω−Eg, and parameters b and B depend on cadmium content and can be determined by

�tting. The �rst term in bracket represents the absorption coe�cient involving the heavy-hole band,

while the second term represents the contribution of the light-hole band. The situation is qualitatively

di�erent from 2D Dirac systems like graphene, where the absorption coe�cient is independent on

frequency [94].

The analysis of the absorption coe�cient, presented in Figure 3.7, provided two pieces of infor-

mation. The �rst one � the dependence of the absorption coe�cient is indeed linear as a function

of photon energy (and its frequency), even up to 300 meV, which is a sign that the system is three-

dimensional. Moreover, the �ts of Equation 3.7 to the experimental data, excluding the in�uence of

phonon absorption, indicate that the samples di�er from each other, as was expected because the

cadmium content is di�erent.
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Figure 3.6: Electron concentration as a function of temperature of Sample A (orange squares) and

Sample B (purple squares).

Figure 3.7: Optical absorption of pseudo-relativistic Kane fermions in Hg1−xCdxTe at T = 4.2 K.

Zero �eld absorption coe�cients exhibit a linear behavior re�ecting the relativistic character of the 3D

carriers. The band gap values of 4 ± 2 meV and -20 ± 4 meV for Sample A and B, respectively, are

extracted from �ts (dashed lines). The inset depicts inter-band transitions that contribute to the linear

optical absorption.
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3.3.2 Results

In this section magneto-spectroscopy results of two HgCdTe bulk samples are presented and their

band structure evolution as a function of temperature is compared. One of the samples (Sample A) is

a positive-gap semiconductor, and its band gap increases monotonically with temperature. The second

sample (B) is in a semimetallic state at low temperature and undergoes a semimetal-to-semiconductor

phase transition as the temperature increases. A theoretical analysis of the results based on a simpli�ed

Kane model is presented and the implications are discussed.

In order to fully describe the Kane fermions in MCT, arising in the vicinity of a semimetal-to-

semiconductor phase transition, there is a need to carry the system through the transition and make

measurements along the way. The two investigated bulk samples provided an opportunity to directly

see the di�erence between the two di�erent phases, characterized by an inverted and non-inverted

band ordering, and the evolution of their properties as a function of temperature.

The theoretical model of the LL structure of the samples, based on Equation 3.6, allowed to

predict observable optical transitions. However, the parameters m̃ and c̃ had to be extracted directly

from the experiment by �tting. In theory, the parameter c̃, describing the carrier velocity, should

be temperature independent, as it depends only on the Kane element P and physical constants, as

described by Equation 3.4. On the other hand, the rest mass m̃, depending on both Eg and c̃, is

expected to change as the energy gap changes.

Related experimental works

This chapter presents experimental results which can be considered as a direct extension and con-

tinuation of the work done by Orlita et al. on bulk HgCdTe [76], in which bulk sample, close to the

point of a semiconductor-to-semimetal topological transition, was studied by an infrared magneto-

spectroscopy. However, this investigation was limited to a constant and low temperature only. The

authors demonstrated for the �rst time the relativistic 3D Kane fermions, as they manifest themselves

through, among other e�ects, an E ∝
√
B dependence on inter- and intra- Landau level transitions

(Figure 3.8).

Experimental details

The transmission measurements were performed using the transform Fourier spectrometer. A data

acquisition range was 10-700 cm−1 (1.25-87.5 meV) with spectral resolution of 4 cm−1. A transmission

spectrum was calculated by dividing a spectrum at given magnetic �eld by a reference spectrum, taken

at zero magnetic �eld. This allowed to detect changes in relative transmission as an e�ect of magnetic

�eld. Multiple spectra were gathered at a constant and stable magnetic �eld to increase the signal-to-

noise ratio, and after measurements the �eld was changed. A usual magnetic �eld resolution was 0.25

T, and results obtained with such a resolution are presented in this chapter. Few more measurements

at di�erent temperatures were carried out with lower magnetic �eld resolution (0.5 T - 1.0 T). Those

results are presented in the Appendix B.

The data is presented in a form of three �gures for each temperature. The �rst �gure presents a LL

structure of a sample. Each level Lξ,n,σ is described by a set of three parameters ξ, n, σ, according to

Equation 3.6. LLs with a di�erent number n were plotted with di�erent colors, without any distinction

for the spin (↑, ↓). A �at, black line represents the heavy-hole band with ξ = 0 (L0,{0,2,3...}{↑,↓}),

red curves represent electron (ξ = 1) LLs with n = 1, namely L1,1{↑,↓}. Consequently, blue curves

represent LLs with n = 2 (L1,2{↑,↓}), and green curves represent LLs with n = 3 (L1,3{↑,↓}). Moreover,
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Figure 3.8: Panel a) Landau levels in gapless MCT, Lξ,n,σ, as a function of the magnetic �eld,

calculated using the eight-band model. Arrows of di�erent colors show the optically allowed transitions

in undoped gapless MCT in the two circular polarizations σ+ and σ−. Panel b) Relative change

of absorbance AB/AB=0 plotted as a false color-map. All of the observed resonances clearly follow

a
√
B-dependence. The dashed lines are calculated positions of inter-LL resonances at kz = 0 using

parameters vF = 1.06 · 106 m/s and ∆ = 1 eV. The presence of the spin-orbit split band, expressed

by parameter ∆, does not qualitatively change the LL spectrum, but introduces a weak electron-hole

asymmetry. These images come from the work [76].

visible transitions at given temperature are marked with arrows with a unique color and an assigned

capital letter. There are two types of arrows � solid ones and dashed ones. Solid arrows indicate

interband transitions while dashed arrows indicate intraband transitions.

The second �gure is a colormap. It represents a plot of spectra in a form of a surface plot, where

blue color represent a value of 1, and reddish colors represent lower values, usually around 0.5. The

scale is adjusted to every colormap to make fainter transitions visible, while avoiding to saturate the

scale. Colormaps for Sample B are plotted with x-axis in a
√
B scale to highlight the E ∝

√
B

behavior, which should appear as a straight line in a
√
B scale. This is not the case for Sample A,

where the linear scale is preserved. The transitions are highlighted by white lines (representing the

�ts to the data) and an explicit description of the origin and �nal level of the transition. The same

pattern of style (solid, dashed) of lines is applied to distinguish the interband from the intraband

transitions, as in the LL plot.

Due to the phonon absorption, there are two regions of energy where the data acquisition was not

possible, as the samples are completely opaque. Those regions are called reststrahlen bands. Phonon

excitations can absorb up to 100% of incoming radiation, therefore the transmission is almost zero, and

the signal-to-noise ratio is high. This means that the standard method of calculating the transmission

spectra may give useless results. There are two reststrahlen bands in presented transmission results.

One originates from the phonons of GaAs substrate (between 30 and 40 meV), the other from the

phonons of HgCdTe itself (between 15 and 20 meV). This is why transmission results presented in this
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Chapter have two grey stripes, covering relevant energy ranges.

The magnetic �eld resolution on a colormap seems to be higher than 0.25 T. This is due to the

way the data is processed. In order to present data in a smooth and visibly clear way, the data was

enhanced numerically by performing a linear extrapolation between consecutive spectra. This resulted

in an arti�cial increase of magnetic �eld resolution and an appearance of unwanted artifacts in a form

of oscillations of linewidth, visible near deep transitions. This e�ect is not physical, but numerical,

and should be disregarded.

The third �gure, composed of two panels, shows the way how data was �tted to transitions (left

panels) and the raw transition spectra (right panels). The points on the left panels represent the

position of minima of a given transition, and the color of a set of points is consistent with the color

of the arrow from the LL plot. The spectra on a waterfall plot (right side) are plotted every 1 T and

each consecutive spectrum is shifted vertically by an appropriate value for clarity. A symbol is added

over every visible minimum to mark its position. The shape and color of symbols correspond to the

symbols used on the left panel of the �gure.

The curves obtained via �tting, are plotted on the colormaps as well. Each �t provided two

parameters � the e�ective rest mass of carriers m̃ and the carrier velocity c̃.

3.3.2.1 Sample A

Temperature 1.8 K

The temperature of 1.8 K is the lowest achievable in the experimental setup. The experimental

conditions are similar to the ones of work [76] (Figure 3.8), as the sample is the same and the

temperature is 1.8 K instead of 4 K. The band gap of the sample is positive and equal to 5 meV. There

are no intraband transitions visible, most likely due to the limits of a sensitivity of the experimental

set-up. The band structure is presented in Figure 3.9. Only the transitions A, B, E, and F are

observable.

The colormap (Figure 3.10) shows that the transitions follow an almost E ≈
√
B dependence.

The band structure can be compared with a band structure of Sample B at 87 K, which is above

the critical temperature. The transitions marked as A and B are the most intense ones. This is a

consequence of an enormous density of states of the heavy-hole band in comparison to the density of

states of the electron band, which is directly related to a probability of a transition and its strength.

The high-energetic transitions E and F are barely visible.

Filled and open squares shown in Figure 3.11 represent interband and intraband transitions, respec-

tively. The di�erence in intensity between interband and intraband transition is explicitly noticeable.

The e�ective rest mass obtained from the �ts, presented on Figure 3.11, turned out to be equal to

m̃ = 0.61± 0.34 · 10−3 m0. The carrier velocity was estimated to be equal to c̃ = 1.062± 0.089 · 106

m/s. The uncertainty of measurements, here and for all later �ts, is based on a standard deviation of

values obtained from all �tted transitions. At T = 2 K there were only four �ts (to each transition),

that is why the uncertainty of the e�ective mass is around 50%.
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Figure 3.9: Landau level graph of Sample A as a function of magnetic �eld at T = 1.8 K. Colored

lines represent Landau levels, characterized by di�erent values of ε, n, and σ, as described as indices

of L on the right side of the graph. The electron band Landau levels (with ε = 1) have a near-
√
B

behavior. The heavy-hole Landau level, plotted in black, is fully degenerated. The vertical arrows with

corresponding capital letters represent observed transitions between Landau levels in this system. Solid

arrows (A, B, E, and F) mark interband transitions.

Figure 3.11: Left panel: Points corresponding to the minima of the transmission of Sample A at T =

2 K with �ts showing the expected evolution of transitions as a function of magnetic �eld. Right panel:

Transmission spectra plotted at magnetic �elds in range from 0 to 13 T, with symbols corresponding

to the transitions from left panel. Symbols represent interband transitions.
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Figure 3.10: False color map of a transmission of Sample A as a function of energy and magnetic �eld

at T = 2 K. Blue color represents areas where the transmission is equal to 1, while lightblue/yellow/red

colors indicate where the absorption takes place. White curves show �ts of the energy di�erence of

Landau levels to the experimental points. White arrow points the value of the band gap.

Temperature 57 K

Temperature of 57 K slightly changed the band structure. The band gap increased to 28 meV. The

transitions to LLs with n = 3 are not detectable anymore, therefore the LLs with n = 3 are not plotted

on the LL graph presented in Figure 3.12, as they are irrelevant. At this temperature an intraband

transition C became visible, represented by a dashed teal arrow.

The presence of the transition C allows to di�erentiate the intraband and interband transitions,

which was di�cult at T = 2 K, as all of the transitions converged close to zero energy and zero

magnetic �eld. At T = 57 K the band gap is enlarged, thus there is a clear di�erence between the

points of convergence for interband and intraband transitions, as it is presented on the color map in

Figure 3.13.

The intensities of the transitions are not constant at the whole range of energies. The most

pronounced example is an intensity of the transition C, which decreases at E ≈ 40 meV, while the

intensities of the transitions A and B increase radically. As was explained in Chapter 2, this is a

consequence of the density of �lled states and a position of the chemical potential, which lies around

40 meV above the heavy-hole band. Majority of the states below the chemical potential are occupied,

so a transition from an occupied state into another occupied state is not possible. In this sense the

transition A is less probable at magnetic �eld below ≈ 1 T, as the energy of level L1,1↓ lies below the

chemical potential. On the other hand, the transition C is possible at low magnetic �eld, because the

level L1,1↓ lies below the chemical potential while the level L1,2↓ lies above it. The situation changes



3.3. EXPERIMENT 43

Figure 3.12: Landau level graph of Sample A as a function of magnetic �eld at T = 57 K. Colored

lines represent Landau levels, characterized by di�erent values of ε, n, and σ, as described as indices

of L on the right side of the graph. The electron band Landau levels (with ε = 1) have a near-
√
B

behavior. The heavy-hole Landau level, plotted in black, is fully degenerated. The vertical arrows with

corresponding capital letters represent observed transitions between Landau levels in this system. Solid

arrows (A and B) mark interband transitions, while dashed arrow (C) marks an intraband transition.

at around B = 3 T, where both levels lie above the chemical potential, thus there are no occupied

states to execute a transition.

A new feature appeared on the color map at the energy of around 10 meV. This horizontal feature is

attributed to an absorption on defects of the structure. To be more precise on the mercury vacancies,

which act as a doubly-ionized acceptor centers [95], which got thermally activated by the elevated

temperature. The �ts allowed to estimate the e�ective rest mass to be equal to m̃ = 2.82± 0.77 · 10−3

m0, and the carrier velocity to be equal to c̃ = 1.057± 0.060 · 106 m/s.
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Figure 3.13: False color map of a transmission of Sample A as a function of energy and magnetic �eld

at T = 57 K. Blue color represents areas where the transmission is equal to 1, while lightblue/yellow/red

colors indicate where the absorption takes place. White curves show �ts of the energy di�erence of

Landau levels to the experimental points. White arrow points the value of the band gap.

Figure 3.14: Left panel: Points corresponding to the minima of the transmission of Sample A at

T = 57 K with �ts showing the expected evolution of transitions as a function of magnetic �eld.

Right panel: Transmission spectra plotted at magnetic �elds in range from 0 to 13 T, with symbols

corresponding to the transitions from left panel. Open (full) symbols represent intraband (interband)

transitions.
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Temperature 77 K

At the temperature of 77 K the band gap increases further to 36 meV. The transitions A, B, and C

are still visible. A new interband transition D becomes detectable, as it is shown in Figure 3.15 as a

dashed orange arrow.

Figure 3.15: Landau level graph of Sample A as a function of magnetic �eld at T = 77 K. Colored

lines represent Landau levels, characterized by di�erent values of ε, n, and σ, as described as indices

of L on the right side of the graph. The electron band Landau levels (with ε = 1) have a near-
√
B

behavior. The heavy-hole Landau level, plotted in black, is fully degenerated. The vertical arrows with

a corresponding capital letter represent observed transitions between Landau levels in this system. Solid

arrows (A and B) are interband transitions, while dashed arrows (C and D) are intraband transitions.

The temperature is high enough to lift the chemical potential up to around 45 meV, which causes

transitions A and B to gain intensity above this energy, while transitions C and D become fainter.

The horizontal feature, related to absorption on Hg vacancies becomes more pronounced. Also, at this

temperature it is accompanied by a second feature (visible at energies around 20 meV) just above the

reststrahlen band of HgTe. This absorption is related to the energy of TO CdTe-like phonons, arising

in a magneto-absorption due to the electron-phonon interactions. The frequency of these phonon

modes is independent on temperature [96].

The �ts to experimental data allowed to estimate the e�ective rest mass to be equal to m̃ =

3.19± 0.41 · 10−3 m0, and the carrier velocity to be equal to c̃ = 1.049± 0.052 · 106 m/s.
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Figure 3.16: False color map of a transmission of Sample A as a function of energy and magnetic �eld

at T = 77 K. Blue color represents areas where the transmission is equal to 1, while lightblue/yellow/red

colors indicate where the absorption takes place. White curves show �ts of the energy di�erence of

Landau levels to the experimental points. White arrow points the value of the band gap.

Figure 3.17: Left panel: Points corresponding to the minima of the transmission of Sample A at

T = 77 K with �ts showing the expected evolution of transitions as a function of magnetic �eld.

Right panel: Transmission spectra plotted at magnetic �elds in range from 0 to 13 T, with symbols

corresponding to the transitions from left panel. Open (full) symbols represent intraband (interband)

transitions.



3.3. EXPERIMENT 47

Temperature 120 K

At T = 120 K the band gap of Sample A reaches as much as 59 meV, as it is shown in Figure 3.30.

The number of detectable transitions at that temperature is the same, as in the case of T = 77 K �

the transitions A, B, C, and D are visible.

Figure 3.18: Landau level graph of Sample A as a function of magnetic �eld at T = 120 K. Colored

lines represent Landau levels, characterized by di�erent values of ε, n, and σ, as described as indices

of L on the right side of the graph. The electron band Landau levels (with ε = 1) have a near-
√
B

behavior. The heavy-hole Landau level, plotted in black, is fully degenerated. The vertical arrows with

corresponding capital letters represent observed transitions between Landau levels in this system. Solid

arrows (A and B) are interband transitions, while dashed arrows (C and D) are intraband transitions.

Due to the position of the chemical potential, which lies more than 80 meV above the heavy-hole

band, the transitions A and B are not visible at low magnetic �eld. Moreover, the transitions C and

D vanish at high magnetic �elds, as the �lling factor changes.

The �ts to experimental points are very accurate for available data (Figure 3.32). The temperature

related features become even stronger, as the thermal energy at 120 K is slightly more than 10 meV.

The �ts allowed to estimate the e�ective rest mass to be equal to m̃ = 3.38± 0.46 · 10−3 m0, and the

carrier velocity to be equal to c̃ = 1.037± 0.027 · 106 m/s.
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Figure 3.19: False color map of transmission of Sample A as a function of energy and magnetic �eld

at T = 120 K. Blue color represents areas where transmission is equal to 1, while lightblue/yellow/red

colors indicate where absorption takes place. White curves show �ts of the energy di�erence of Landau

levels to the experimental points. White arrow points the value of the band gap.

Figure 3.20: Left panel: Points corresponding to the minima of the transmission of Sample A at

T = 120 K with �ts showing the expected evolution of transitions as a function of magnetic �eld.

Right panel: Transmission spectra plotted at magnetic �elds in range from 0 to 13 T, with symbols

corresponding to the transitions from left panel. Open (full) symbols represent intraband (interband)

transitions.
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3.3.2.2 Sample B

Temperature 1.8 K

At the temperature 1.8 K Sample B is in the inverted regime with the largest negative band gap.

The LL structure of the Sample B is presented in Figure 3.21. All of the LLs originating from both

electron and heavy-hole bands converge as the magnetic �eld goes to zero, even though the sample

has a negative energy gap. This is explained by the model via Equation 3.6. By assuming the energy

gap to have a non-positive value and putting B = 0, the whole expression equals to zero. There are

six observable transitions � four interband, marked with solid lines, and two intraband, marked with

dashed lines.

Figure 3.21: Landau level graph of Sample B as a function of magnetic �eld at T = 1.8 K. Colored

lines represent Landau levels, characterized by di�erent values of ε, n, and σ, as described as indices

of L on the right side of the graph. The electron band Landau levels (with ε = 1) have a near-
√
B

behavior. The heavy-hole Landau level, plotted in black, is fully degenerated. The vertical arrows

with corresponding capital letters represent observed transitions between Landau levels in this system.

Solid arrows (A, B, E, and F) are interband transitions, while dashed arrows (C, D) are intraband

transitions.

All of the observed transitions are presented in Figure 3.22. A green dashed line was plotted on

the �gure to give an idea about a value of the energy gap. It was drawn as an extrapolation of the

transition A at high magnetic �elds. One way to understand this is to invoke Equation 3.6. There are

two factors under the square root, �rst depends on the energy gap, and second depends on magnetic

�eld. For high magnetic �elds the �rst factor is negligible, so the whole expression formally resembles

an expression in a form of E(B) = Eg/2 +
√
αB, where α is a constant. This equation can be plotted
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as a straight line in a
√
B scale and it intercepts the y-axis exactly where E(B = 0) = Eg/2, which

gives an indication of the value of the band gap divided by two. In Figure 3.22 this value is marked

with a black arrow and equals to −12 meV, which translates to Eg = −24 meV.

Figure 3.22: False color map of the transmission of Sample B as a function of energy and magnetic

�eld at T = 2 K. Magnetic �eld is presented in a
√
B scale. Blue color represents areas where the

transmission is equal to 1, while lightblue/yellow/red colors indicate where the absorption takes place.

White curves show �ts of the energy di�erence of Landau levels to the experimental points. The green

dashed line is an extrapolation of the transition L0,0↓ → L1,1↓, which points the value of the (negative)

band gap.

The colormap (Figure 3.22) shows that the transitions follow a dependence, which is neither linear

nor
√
B-like, but resembles a mixture of these two. This is expected because the dispersion relation

is neither parabolic nor exactly Dirac-like, as there is a �nite (negative) band gap.

The �ts to experimental points and the waterfall plot of transmission spectra are presented in

Figure 3.23. On Panel a) there is an unknown transition, represented by grey points, which is visible

as well in Figure 3.22. The �ts allowed to estimate the e�ective rest mass to be equal to m̃ =

−1.91± 0.58 · 10−3 m0, and the carrier velocity to be equal to c̃ = 1.091± 0.069 · 106 m/s.
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Figure 3.23: Left panel: Points corresponding to the minima of transmission of Sample B at T

= 1.8 K with �ts showing the expected evolution of the transitions as a function of magnetic �eld.

Right panel: Transmission spectra plotted at magnetic �elds in range from 0 to 16 T, with symbols

corresponding to the transitions from left panel. Open (full) symbols represent intraband (interband)

transitions.

Temperature 37 K

Temperature of 37 K slightly changed the band structure, as shown in Figure 3.24. The negative

energy gap got smaller, down to -14 meV. The LLs still converge at zero magnetic �eld. The most

noticeable change is a disappearance of the transition F.

Transitions C, D and E are faint in general, as their probability is relatively low, as is presented

on the color map in Figure 3.25. The horizontal feature (at around 10 meV) related to absorption on

mercury vacancies, starts to be visible. The position of the Fermi level lies close to 25 meV above the

heavy hole band, as the intensity of transitions A i D switch. However, both transitions are further

separated in comparison with the situation at T = 1.8 K. This can be explained by a change of the

Fermi distribution as the temperature is increased. The �ts allowed to estimate the e�ective rest mass

to be equal to m̃ = −1.44±0.68 ·10−3 m0, and the carrier velocity to be equal to c̃ = 1.052±0.052 ·106

m/s.
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Figure 3.24: Landau level graph of Sample B as a function of magnetic �eld at T = 37 K. Colored

lines represent Landau levels, characterized by di�erent values of ε, n, and σ, as described as indices

of L on the right side of the graph. The electron band Landau levels (with ε = 1) have a near-
√
B

behavior. The heavy-hole Landau level, plotted in black, is fully degenerated. The vertical arrows

with corresponding capital letters represent observed transitions between Landau levels in this system.

Solid arrows (A, B, and E) are interband transitions, while dashed arrows (C and D) are intraband

transitions.

Figure 3.26: Left panel: Points corresponding to the minima of the transmission of Sample B at

T = 37 K with �ts showing the expected evolution of transitions as a function of magnetic �eld.

Right panel: Transmission spectra plotted at magnetic �elds in range from 0 to 16 T, with symbols

corresponding to the transitions from left panel. Open (full) symbols represent intraband (interband)

transitions.
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Figure 3.25: False color map of the transmission of Sample B as a function of energy and magnetic

�eld at T = 37 K. Magnetic �eld is presented in a
√
B scale. Blue color represents areas where the

transmission is equal to 1, while lightblue/yellow/red colors indicate where the absorption takes place.

White curves show �ts of the energy di�erence of Landau levels to the experimental points. The green

dashed line is an extrapolation of transition L0,0↓ → L1,1↓, which points the value of the (negative)

band gap.

Temperature 77 K

The temperature of 77 K is the critical temperature for Sample B. This is where the band gap

vanishes completely and the dispersion relation is linear and is formed by a Dirac cone. The amount

of detectable transitions is the same as at T = 37 K, however the transition E becomes even fainter

and more di�cult to detect.

The Figure 3.27 presents that the band gap is zero and LLs follow precisely a
√
B dependence on

energy. This means that all of the LLs converge at zero magnetic �eld. As a consequence, all the

transitions follow an exact
√
B dependence on energy as well, as presented on a color map in Figure

3.28.

The temperature is high enough to lift the chemical potential up to around 50 meV, which causes

transitions A and B to gain intensity above this energy, while transitions C and D become fainter.

The transition E is barely visible. Both horizontal features related to absorption on defects become

more pronounced at this temperature.

The �ts allowed to estimate the e�ective rest mass to be equal to m̃ = −0.49 ± 0.53 · 10−3 m0,

and the carrier velocity to be equal to c̃ = 1.056± 0.001 · 106 m/s. The e�ective rest mass at T = 77

K is the lowest observed in this experiment. The value is not equal to zero as, �rstly, it resulted from
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Figure 3.27: Landau level graph of Sample B as a function of magnetic �eld at T = 77 K. Colored

lines represent Landau levels, characterized by di�erent values of ε, n, and σ, as described as indices

of L on the right side of the graph. The electron band Landau levels (with ε = 1) have a near-
√
B

behavior. The heavy-hole Landau level, plotted in black, is fully degenerated. The vertical arrows

with corresponding capital letters represent observed transitions between Landau levels in this system.

Solid arrows (A, B, and E) are interband transitions, while dashed arrows (C and D) are intraband

transitions.

an approximate theory relating energy gap with e�ective rest mass, and secondly, it was obtained by

performing �ts to the experimental data, which are always �awed by an uncertainty.



3.3. EXPERIMENT 55

Figure 3.28: False color map of the transmission of Sample B as a function of energy and magnetic

�eld at T = 77 K. Magnetic �eld is presented in a
√
B scale. Blue color represents areas where the

transmission is equal to 1, while lightblue/yellow/red colors indicate where the absorption takes place.

White curves show �ts of the energy di�erence of Landau levels to the experimental points. All of the

transitions converge at B = 0 T, when the band gap vanishes.

Figure 3.29: Left panel: Points corresponding to the minima of the transmission of Sample B at

T = 77 K with �ts showing the expected evolution of transitions as a function of magnetic �eld.

Right panel: Transmission spectra plotted at magnetic �elds in range from 0 to 16 T, with symbols

corresponding to the transitions from left panel. Open (full) symbols represent intraband (interband)

transitions.
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Temperature 120 K

Above the critical temperature of 77 K Sample B becomes semiconducting, as the band gap opens.

At T = 120 K the band gap reaches as much as 18 meV, as is shown in Figure 3.30. The number of

detectable transitions diminished, as only transitions A, C, and D are visible.

Figure 3.30: Landau level graph of Sample B as a function of magnetic �eld at T = 120 K. Colored

lines represent Landau levels, characterized by di�erent values of ε, n, and σ, as described as indices

of L on the right side of the graph. The electron band Landau levels (with ε = 1) have a near-
√
B

behavior. The heavy-hole Landau level, plotted in black, is fully degenerated. The vertical arrows with

corresponding capital letters represent observed transitions between Landau levels in this system. The

solid arrow (A) is an interband transition, while dashed arrows (C and D) are intraband transitions.

An interband transition A, for the �rst time for Sample B, does not converge at zero energy at

zero magnetic �eld. This is a direct indication that the band gap has opened. When the band gap

is positive, at zero magnetic �eld it points exactly to the value of the band gap, which is presented

in Figure 3.31. Due to the position f the chemical potential, being more than 80 meV above the

heavy-hole band, the transition A is not visible at small magnetic �eld. Because of the same reason

the transition D vanishes at high magnetic �elds. However, the �t to experimental points is very

accurate for available data (Figure 3.32).

The temperature related features become even stronger, as the thermal energy at 120 K is higher

than 10 meV. The �ts allowed to estimate the e�ective rest mass to be equal to m̃ = 2.15± 0.46 · 10−3

m0, and the carrier velocity to be equal to c̃ = 1.010± 0.007 · 106 m/s.
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Figure 3.31: False color map of the transmission of Sample B as a function of energy and magnetic

�eld at T = 120 K. Magnetic �eld is presented in a
√
B scale. Blue color represents areas where the

transmission is equal to 1, while lightblue/yellow/red colors indicate where the absorption takes place.

White curves show �ts of the energy di�erence of Landau levels to the experimental points. White

arrow points the value of the band gap.

Figure 3.32: Left panel: Points corresponding to the minima of the transmission of Sample B at

T = 120 K with �ts showing the expected evolution of transitions as a function of magnetic �eld.

Right panel: Transmission spectra plotted at magnetic �elds in range from 0 to 16 T, with symbols

corresponding to the transitions from left panel. Open (full) symbols represent intraband (interband)

transitions.
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3.3.3 Summary

The results presented in this chapter present in a direct and straightforward way the evolution of the

band structure of bulk Hg1−xCdxTe crystals characterized by a cadmium concentration close to the

critical. Results based on two samples were shown and compared to easily highlight the di�erences of

the band structure between a regular and an inverted band order systems. The temperature evolution

of the band gap and a semiconductor-to-semimetal phase transition was studied by the means of

magneto-spectroscopy.

A critical temperature was found by an investigation of LLs evolution as a function of magnetic

�eld � at the critical temperature two conditions must be met:

• All transitions between LLs have to follow an E ∝
√
B dependence at a broad scale of magnetic

�elds and energies,

• All transitions between LLs have to converge to zero energy at zero magnetic �eld, showing that

the band gap vanishes.

Those conditions were met by Sample B with cadmium concentration of x = 0.155 at the tem-

perature Tc = 77 K. Moreover, a positive band gap opening was registered at higher temperature

T > Tc, as the interband transitions converged at B = 0 T at nonzero energy. The value of the bang

gap increased as the temperature got higher. This process was expected due to the study of Sample

A, which band gap was positive at the whole range of temperatures, and its value increased with

temperature.

These results are the �rst evidence of a temperature induced phase transition investigated by

the THz magneto-spectroscopy on bulk HgCdTe structures with well-chosen chemical composition.

The genuine Kane fermions were observed at the critical temperature of 77 K. In order to describe

and analyze the data, the simpli�ed Kane model was used. It allowed to determine the pseudo-

relativistic Dirac-like Kane fermions parameters m̃ and c̃ as a function of temperature and cadmium

concentration. The nonzero rest mass obtained from �ts at the critical temperature corresponds to the

limit of precision of the experimental set-up. The results are in agreement with theoretical predictions

and are consistent with the data obtained previously by Orlita et al. [76].

The magnetic �eld evolution of the transitions is shown explicitly in Figure 3.33, where the tran-

sition L0,0↓ → L1,1↓ is shown for the broad range of temperatures between 2 K and 87 K. For T =

120 K the transition L0,0↑ → L1,1↑ was plotted instead, as the transition L0,0↓ → L1,1↓ is not visible.

The x-axis is presented in a
√
B scale for clarity. The band gap is negative for all the temperatures

below the critical, and the dispersion relation does not resemble the Dirac cone, as the transitions

do not follow a true
√
B dependence. The band gap opens above the critical temperature, as the

transitions for 87 K and 100 K do not converge to zero energy at zero magnetic �eld. Finally, at the

critical temperature, the band gap vanishes completely, and a pure
√
B dependence is observed, which

con�rms that the system exhibits a true Dirac cone.

Each transition was �tted according to the model (Equation 3.6). One �t provided a set of values

of c̃ and m̃. All of the obtained values are plotted in Figure 3.34. The top panel (a) presents the rest

mass, while the bottom panel (b) presents the velocity. Error bars in Figure 3.34 originate from the

standard deviation of the values taken for every transition at given temperature.

Interestingly, the Kane fermion velocity c̃ is nearly constant over the whole range of temperatures

for both samples with Cd contents of 0.155 and 0.175. The extracted value of c̃ = (1.07± 0.05) · 106

m/s is in a very good agreement with the theoretical value de�ned by c̃ =
√

2P 2/3~2, which equals
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Figure 3.33: Evolution of the transition L0,0↓ → L1,1↓ for di�erent temperatures (L0,0↑ → L1,1↑ for T

= 120 K). For all temperatures T < Tc the band gap is negative, thus the transition converges at E =

0 meV at B = 0 T and the shape of transition does not have a pure
√
B dependence. At T = Tc the

band gap vanishes and the transition follows precisely a
√
B (a straight line on

√
B scale). At T > Tc

the transition does not follow a
√
B dependence again. Moreover, it converges to a �nite value of the

band gap at B = 0 T, which is a sign of the (positive) band gap opening.

to 1.05 · 106 m/s for the well-accepted value of Ep = 2m0P
2/~2 ≈ 18.8 eV. Therefore, this universal

value of c̃ allows to determine the particle rest-mass for band gap values in the vicinity of a semimetal-

to-semiconductor phase transition induced by temperature, Cd content, or other external parameter

(e.g. pressure).

There are two points limiting the applicability of the simpli�ed Kane model, considering the Γ6

and Γ8 band only, for the actual HgCdTe crystals. The �rst one, already mentioned, is related with

the presence of other bands, considered as remote and not included in the model. The energy gap

between the second and the lowest conduction bands in CdTe exceeds 4 eV, while the corresponding

gap in HgTe is about 3 eV. Therefore, the cut-o� energies for conduction bands in the simpli�ed model

should be lower than 3 eV. For the valence band, the cut-o� energy is de�ned by the energy di�erence

∆ ≈ 1 eV between the split-o� Γ7 band, and the heavy-hole band. The second limitation is attributed

to the �at heavy-hole band, characterized by an in�nite e�ective mass in the model. To ignore the

parabolic terms in the electron dispersion of the heavy-hole band, one has to consider su�ciently low

energies E, such that the relativistic mass of the fermions E/c̃2 should be signi�cantly lower than the
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Figure 3.34: Parameters m̃ and c̃ obtained from �ts to the experimental data as a function of temper-

ature. Panel a): Rest mass of Kane fermions. For Sample B the mass changes sign at the Tc, while

for Sample A the mass is always positive. Panel b): Velocity of Kane fermions. Velocity is constant

at all temperatures, for both samples, which is highlighted by a dashed blue line placed at v = 1.07 · 106

m/s.

heavy-hole mass mhh. Assuming mhh ≈ 0.5 m0, where m0 is the free electron mass, a cut-o� energy

is estimated to be equal to about 3 eV for the �at band approximation, which exceeds ∆.



Chapter 4

HgTe Quantum Wells

4.1 Overview of HgTe Quantum Wells

A typical HgTe/CdTe QW is formed when a layer of HgTe is sandwiched between two layers of

CdTe (or Hg1−xCdxTe), which form barriers for the HgTe layer. Positions of energy levels, for both

electrons and holes, depend on the QW width. As the QW width varies, the relative positions of the

�rst electron-like subband (E1) and the �rst hole-like subband (H1) change. For thin quantum wells

with QW thickness d < 6.3 nm the quantum con�nement is strong and the structure exhibits a normal

semiconducting phase with a conventional subbands alignment � the level E1 lies above the H1 level.

In an opposite case, for quantum wells with d > 6.3 nm, the situation is reversed � the quantum

con�nement is weaker and the H1 level lies above the E1 level, which results in a band inversion.

Consequently, for dc = 6.3 nm the band gap vanishes and the system undergoes a topological phase

transition from a trivial insulator to a QSH insulator, and the QW hosts single-valley 2D massless

Dirac fermions [99].

The other way to understand this is to realize that the structure of a thin QW (dHgTe → 0) should

behave like CdTe and have a regular band ordering, i.e. bands with Γ6 symmetry form the conduction

subbands and the Γ8 symmetry bands form the valence subbands. On the other hand, if the dHgTe is

large (dHgTe →∞) the structure resembles the properties of HgTe, characterized by an inverted band

order. Somewhere in between, as the thickness reaches a critical value dc = 6.3 nm, the Γ6 and Γ8

subbands cross and the structure becomes inverted � the Γ6 bands become valence subbands and the

Γ8 bands become conduction subbands. The QW states derived from the heavy-hole band are named

Hn, where n = 1, 2, 3, ... denotes the states existing in the QW. Similarly, the levels originating from

the electron and light-hole bands are named En. The band structure and �rst few energy levels of a

HgTe/CdTe QW as a function of QW width are shown in Figure 4.1.

4.1.1 Band Structure of a HgTe/CdTe Quantum Well

An energy dispersion of the E1 and H1 subbands of a HgTe/CdTe QW near the critical thickness

can be calculated using the 8-band Kane model. It turns out that near the Γ point of the Brillouin

zone the dispersion depends linearly on momentum k . Using the states (after BHZ [17]) |E1,
1
2 〉,

|H1,
3
2 〉, |E1,− 1

2 〉, |H1,− 3
2 〉 as a basis, an e�ective Hamiltonian for the E1 and H1 subbands takes

61
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Figure 4.1: Panel a) The energy of the states in the quantum well as a function of the width of the

HgTe QW layer. En represent electron-like states, while Hn represent hole-like states. Panels b), c)

Schematic of a quantum well geometry and lowest subbands for thicknesses below (b) and above (c)

the critical thickness. Images come from the works of König [98] (a), and Bernevig [17] (b,c).

form of:

HBHZ(kx, ky) =

 H(k) 0

0 H∗(−k)

 ,

H = ε(k) + di(k)σi,

(4.1)

where σi are the Pauli matrices, and

d1 + id2 = A(kx − iky) ≡ Ak−,

d3 =M−B(k2
x + k2

y),

ε = C − D(k2
x + k2

y).

(4.2)

The two components of the Pauli matrices σ in Equation 4.1 denote the E1 and H1 subbands, while

the two diagonal blocks H(k) and H∗(−k) represent spin-up and spin-down states, connected to each

other by the time reversal symmetry.

In a gapples state, the relativistic massM in Equation 4.2 vanishes. By neglecting the nonlinear

terms in each spin, H(k) and H∗(−k) can be approximated by the massless Dirac Hamiltonian de-

scribing the genuine Dirac fermions. Since a HgTe QW does not have any valley degeneracy, the Dirac

fermions exist only in a single valley con�guration. A comparison of an approximate Dirac-like band

structure and the results of numerical calculations of the band structure based on the Kane model
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(solid curves) are presented in Figure 4.2. As mentioned before, the Dirac approximation (plotted as

dotted curves) is valid in the vicinity of k = 0, where higher in momentum terms can be neglected.

Figure 4.2: Comparison of band structures obtained using the 8-band Kane model (red and blue solid

curves) and the Dirac-type 2D Hamiltonian (black dotted curves) for a gapless state. Blue curve

represents an electron level E1, while red curve represents a hole level H1.

4.1.1.1 The In�uence of Magnetic Field on the Band Structure

The LL structure of a HgTe QW at applied magnetic �eld can be described in two ways. The

�rst way is based on an approximation using the Dirac Hamiltonian, which can be solved explicitly

to obtain the equations describing the energy of the LLs. The approximation based on the Dirac

Hamiltonian holds only for a limited range of parameters. The second (more accurate and versatile)

approach is based on the 8-bands Kane Hamiltonian. However, its solutions can be found only via

numerical calculations.

The Dirac-like Hamiltonian describing a HgTe QW system in magnetic �eld takes form of:

Ĥeff = HBHZ +HZeeman +HSIA +HBIA, (4.3)

where Ĥeff is the e�ective Hamiltonian from equation 4.1 with a Peierls substitution k → k + e
~A

applied, HZeeman includes Zeeman e�ects, HSIA represents the structure inversion asymmetry (SIA),

and HBIA bulk inversion asymmetry (BIA). The expressions for HZeeman, HSIA, and HBIA can be

found in Appendix C.1.
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Neglecting the SIA and BIA terms, the Landau level spectrum takes form of:

E↑α(n) = −eB⊥
~

(2Dn+ B) +
µBB⊥

4
(gE + gH)

+α

√
2nA2

eB⊥
~

+
(
M−B⊥

( e
~

(D + 2Bn)− µB
4

(gE + gH)
))2

E↓α(n) = −eB⊥
~

(2Dn− B)− µBB⊥
4

(gE + gH)

+α

√
2nA2

eB⊥
~

+
(
M−B⊥

( e
~

(−D + 2Bn) +
µB
4

(gE + gH)
))2

,

(4.4)

where n = 1, 2, ..., α = +1 for conduction band, and α = −1 for valence band. The parameter C is

usually set to zero to put the Dirac point at zero energy. For a sample in a gapless state (M = 0) the

expression 4.4 (for conduction band α = +1) at low magnetic �elds reduces to

E
↑(↓)
0 = B⊥

(
− e
~

(2Dn+ B) +
µB
4

(gE + gH)
)

+ α

√
2nA2

eB⊥
~

(4.5)

up to linear terms. This is an origin of the square-root magnetic �eld dependence that became the

signature of Dirac fermions in graphene [100], with an additional linear term describing the large g-

factor of a HgTe QW. This model holds well for low magnetic �eld regime, where the approximations

are valid. For higher magnetic �elds, the 8-band Kane model has to be used and the magnetic �eld

dependence no longer follows a pure square-root function.

Meanwhile, the states for n = 0, called zero-mode [17] LLs, can be described by equations 4.6.

It is worth to mention that these states are labeled with n = 0 only in the Dirac-like Hamiltonian

approximation. In the Kane-model approach, these states are numbered di�erently, but still are

referred to as zero-mode.

E↑0 =M− eB⊥
~

(D + B) +
µBB⊥

2
gE

E↓0 =M+
eB⊥
~

(−D + B)− µBB⊥
2

gH .

(4.6)

The spin splitting of those LLs takes form

∆Es = E↑0 − E
↓
0 = 2M− 2eB⊥

~
B +

µBB⊥
2

(gE + gH). (4.7)

The detailed LL spectrum of a HgTe/CdTe QW is derived from the 8-band Kane Hamiltonian and

requires solving a set of eight coupled di�erential equations for a given LL. In general, for LLs with

n ≤ 0, there are only 7, 4, and 1 non-trivial solutions for n = 0, -1, and -2, respectively. For LLs with

higher n indices the results consists of four pairs of spin-split levels. The single LL with n = −2 has

a pure heavy-hole character and its energy decreases linearly with magnetic �eld. This level, along

with one of the levels labeled as n = 0, form a set of zero-mode LLs, already described in Dirac-like

Hamiltonian approximation.

Zero-mode Landau levels

A very particular property of zero-mode LLs manifests itself with a variation of an applied magnetic

�eld. For magnetic �elds below a critical value Bc, the lower zero-mode LL has an electron-like

character and arises from the valence band, while the higher zero-mode LL has a heavy-hole-like

character and arises from the conduction band. The edge channels are present as the structure is in

inverted band order phase. However, they are no longer protected by the time-reversal symmetry, as

the magnetic �eld is applied.

With increasing magnetic �eld the zero-mode LLs merge and eventually cross themselves, reversing

the order of the bands, and turning the system into the QHE phase. This critical magnetic �eld, where
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Figure 4.3: Landau level structure obtained using the 8-band Kane model for an inverted state. Thick

red (n = 0) and grey (n = -2) curves represent zero-mode LLs, which exhibit a crossing at Bc ≈ 5

T, marked with a vertical dashed line. The crossing point separates an inverted band ordering phase

(B < Bc) from a regular band ordering phase (B > Bc). Transitions originating from zero-mode LLs

are represented with arrows marked as α and α′.

the crossing occurs, can be derived from Equation 4.7. By substituting ∆Es = 0 and neglecting small

g-factor terms, the expression for the critical magnetic �eld takes form of Bc⊥ = ~M
eB . In the inverted

regime M/B > 0, the crossing takes place at a positive magnetic �eld value, while in the normal

regimeM/B < 0, the crossing extrapolates to a negative value of magnetic �eld. For a gapless QW,

the crossing occurs at zero magnetic �eld. Therefore, the position of the crossing is a well-de�ned

indication of the phase of the system. The zero-mode LLs (thick red and grey curves) and their

crossing point (marked with a vertical dashed line), separating the inverted phase from the QHE

phase, is presented in Figure 4.3.

In the case of a HgTe/CdTe QW in a gapped state, the o�-diagonal terms of the massless Dirac

Hamiltonian have to be completed by the diagonal massive terms. In any case, the zero-mode LLs still

appear due to the o�-diagonal, linear in k terms. Moreover, in a gapped state, the zero-mode LLs are

split in energy due to the existence of the mass term, and their position changes monotonically as a

function of the temperature or the width of the QW. The magnetic �eld evolution of the zero-mode LLs

in HgTe QWs, and their crossing at Bc can be considered as a �eld-driven insulator-metal-insulator

phase transition. The transport data [14] gave an indication that those LLs simply cross themselves,

but also a possibility of a weak anticrossing was considered [98].

Indeed, several magneto-spectroscopy studies [101][102] proved that those levels may exhibit an

anticrossing in the vicinity of the calculatedBc. This e�ect can be observed in magneto-spectroscopy as

an evolution of two transitions, which are shown as arrows in Figure 4.3. The �rst of those transitions

is a regular transition from LL n = 0 to LL n = 1, designated as transition α, following the notation of

Schultz et al. [103]. However, the second transition, designated as α′, is a transition from LL n = −2

to LL n = 1. This transition does not satisfy the selection rules ∆n = ±1 in the Faraday con�guration,

and is forbidden in the electric dipole approximation, as was explained earlier. The appearance of

this transition is related to a coupling between the LLs n = 0 and n = −2, resulting from BIA. The
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band structure calculations of HgTe QWs often neglect BIA, which is inherently present in zinc-blend

crystals. A consequence of BIA is a mixing of the states of the zero-mode LLs in the vicinity of Bc.

This mixing activates the transition α′, rendering it detectable in magneto-optical studies.

4.1.1.2 The In�uence of Temperature on the Band Structure

Apart from the variation of a QW thickness, which is inherently an internal parameter of the

structure � once set (at growth) cannot be changed, external paramteres like hydrostatic pressure [80]

and temperature [62] (as in the case of HgCdTe bulk systems presented in Chapter 3) can be used

to induce a phase transition in HgTe QW systems. This is a consequence of a strong temperature

dependence of energy of the E1 level. The temperature dependence of the energy gap and a band

order evolution is presented in Figure 4.4 for two systems � a 6 nm HgTe QW with a regular band

order at all temperatures (Panel a)), and an 8 nm HgTe QW with an inverted band order at low

temperature (Panel b)). The second system undergoes a temperature-induced phase transition at a

critical temperature Tc, and turns into a regular semiconductor at higher temperatures. The energy

of H1 (and H2) bands does not change with temperature at all, while there is a clear dependence of

energy on temperature of the E1 band.

Figure 4.4: Temperature dependence of the electron-like E1 (blue curve) and hole-like H1, H2 (red

curves) subbands at k = 0, calculated for Panel (a) a 6 nm HgTe/CdTe quantum well, and Panel

(b) an 8 nm HgTe/CdTe quantum well. At T = Tc the 8 nm quantum well undergoes a phase transition

characterized by a band inversion.

The calculations of the band structure and the band nonparabolicity are based on the 8-band Kane

model which takes into account the temperature dependence of all relevant parameters, including but

not limited to the lattice and elastic constants of Hg1−xCdxTe. The model takes into account also

the interactions between Γ6, Γ8, and Γ7 bands. Despite the fact that the electronic states of HgTe

QWs can be described qualitatively by the 6-band model, only the inclusion of the Γ7 band in the

calculations allows to obtain the quantitative values of hydrostatic pressure or temperature of the

phase transition [80]. For other HgCdTe-based materials, like bulk systems, this is not the case � the

in�uence of the Γ7 band can be neglected in the calculations [77].

The calculations of the band structure of the 8 nm thick QW revealed that at high temperatures

the band order is regular and the energy gap between E1 and H1 bands considerably decreases with

decreasing temperature, which is presented in Panel (c) of Figure 4.5. At the critical temperature

Tc = 90 K the band gap vanishes giving rise to massless Dirac fermions (Panel (b)). Further decrease

of temperature induces a phase transition and renders the band structure inverted with an indirect
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Figure 4.5: Dispersion relation of an 8 nm HgTe/CdTe quantum well in Panel (a) the topological

insulator phase T < Tc, Panel (b) the gapless state T = Tc, and Panel (c) the semiconductor phase

T > Tc. The electron-like E1 (hole-like H1) subband is represented as a blue surface (red surface). In

the inverted phase the indirect band gap is formed by the presence of side maxima of the E1 subband.

band gap, which arises due to the presence of the side maxima of the valence band (Panel (a)).

4.1.2 Experiment

4.1.2.1 Samples

The high-quality HgTe QW samples were grown in Novosibirsk by Dvoretskii and Mikhailov [104]

using an MBE technique on a (013)-oriented semi-insulating GaAs substrate followed by a relaxed

CdTe bu�er layer. An active part of a QW consists of a (6 nm for Sample A, 8 nm for Sample B) HgTe

layer sandwiched between 40 nm thick CdxHg1−xTe barriers. A cap layer of CdTe was deposited on

top of the structures to prevent oxidation. Sample A remained undoped, while the barriers of Sample

B were doped on each side with a 15 nm layer of indium with the doping concentration of 6.5 · 1016

cm−3. This resulted in a formation of a 2D electron gas in the QW of Sample B. The QW width d

and cadmium concentration in barriers x of investigated structures is given in Table 4.1.2.1.

Table 4.1: The properties of investigated HgTe/CdTe quantum wells � quantum well thickness, Cd

concentration in the barrier, and type (p for holes, n for electrons) and concentration of dominant

carriers.

Sample name QW thickness Barrier Cd rate x Type, carrier concentration (2 K)

Sample A 6 nm 0.62 p = 3 · 1010 cm−2

Sample B 8 nm 0.80 n = 3 · 1011 cm−2

The critical thickness corresponding to a phase transition at di�erent temperatures for HgTe/Hg1−xCdxTe

samples with x = 0.62 (the same as Sample A) and x = 0.80 (the same as Sample B) is presented

in Figure 4.6. The 6 nm Sample A (represented by a black curve) is in a semiconducting state at

the whole temperature range. The 8 nm Sample B (red curve) at low temperature is a topological

insulator and is expected to exhibit a phase transition at T = 90 K followed by an opening of the

band gap.
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Figure 4.6: The critical thickness at di�erent temperatures for HgTe/Hg1−xCdxTe samples with x =

0.62 (black curve) and x = 0.80 (red curve).

4.1.2.2 Results

Related experimental works

The �rst results, concerning the particular behavior of zero-mode LLs were reported in works of König

et al. [14] and Zhang et al. [24]. It was shown that the magnetic �eld evolution of the zero-mode

LLs in HgTe QWs is an origin of a magnetic �eld-driven insulator-metal-insulator phase transition,

which is characteristic for these systems. It is worth to stress that this is not a topological insulator-

metal-insulator transition but a topological insulator-metal-insulator transition, as the magnetic �eld

breaks the time-reversal symmetry and, as a consequence, the topological protection. A crossing of

these levels at the critical �eld was con�rmed in [14] by magneto-transport data.

Orlita et al. [101] demonstrated for the �rst time by magneto-spectroscopy measurements on two

8 nm wide HgTe QWs an evolution and an anticrossing of transitions originating from the zero-mode

LLs. These �ndings were con�rmed by the work of Zholudev et al. [105], in which the anticrossing

was observed via magneto-spectroscopy as well, and its presence was attributed to BIA. Moreover, it

was speculated that some other processes can cause the levels to avoid crossing, e.g. electron-electron

interactions [101].

The �rst systematic magneto-spectroscopy study of HgTe QWs systems with di�erent QW widths

close to the critical was performed by Zholudev [102]. In his experiment a set of four samples was used

� two of them being in an inverted regime of thickness, while the other two being in a non-inverted

regime. This allowed to directly observe the di�erence between the two separate topological phases

and the band structure that they originate from. An anticrossing of zero-mode LLs was also observed.

The �rst temperature dependent study of phase transition in HgTe QWs were done by Ikonnikov

[106]. The study was conducted in pulsed magnetic �elds up to 45 T using monochromatic radiation

sources. It revealed a temperature-induced merging of the absorption lines, corresponding to the

transitions from the zero-mode LLs. The results are presented in Figure 4.7.

All the magnetospectroscopy studies of Dirac fermions in HgTe mentioned above were conducted

either at low temperatures and/or using monochromatic THz sources. In 2015, a magneto-transport

study conducted by Wiedmann et al. [62] showed �ngerprints of a temperature-induced transition

from the topological insulator at 4.2 K to the semiconductor phase at 300 K. However, the critical
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Figure 4.7: Magneto-resistance and magneto-absorption spectra obtained at di�erent temperatures on

an 8 nm HgTe QW. Panel a) Solid lines 4.2 K, dotted lines 20 K, dashed lines 30 K, using a 14.8-µm

QCL. Panel b) Solid lines 80 K, dotted lines 102 K, dashed lines 174 K, using a CO2 laser emitting

at 10.6 µm. Images come from the work of Ikonnikov [106].

temperature for the samples, where the phase transition occurs and the massless Dirac fermions arise,

was too high to be determined by this technique. This is caused by a signi�cant degradation of

resolution between LLs observed in magneto-transport at high temperatures.

Experimental details

In this work a set of two samples was investigated in order to determine if a temperature induced

topological phase transition takes place in HgTe/CdTe QW. Similarly to the bulk systems, the �rst QW

sample exhibits a semiconducting behavior at the whole range of temperatures, while the second one

has an inverted band structure at low temperatures, then undergoes a phase transition at the critical

temperature, and �nally turns into a regular semiconductor at high temperatures. In contrary to bulk

systems, a two-dimensional HgTe/CdTe QW in inverted state is not a semimetal but a topological

insulator (if no magnetic �eld is applied).

Magneto-spectroscopy measurements were performed at magnetic �elds up to 16 T and in energy

range 80 - 800 cm−1 (≈ 10 - 100 meV) with a 4 cm−1 resolution. The relevant temperature range was

between 2 K and 130 K. The infrared transmittance spectra were measured by a Fourier spectrometer

with a Globar lamp as a source of radiation. The system was coupled to a liquid helium cryostat.

The transmission spectra were obtained by dividing the spectra taken at given magnetic �eld by the

spectra obtained at zero magnetic �eld.

In order to interpret the experimental results, a set of temperature-dependent band structure and

LL structure calculations based on the 8-band Kane Hamiltonian were performed. The calculations

took into account a tensile strain in the layers resulting from the mismatch of lattice constants of

CdTe bu�er, CdxHg1−xTe barriers, and HgTe QW. The energies of LLs were obtained using an axial

approximation, while the calculations of dispersion relations held also non-axial terms.

On each spectra there is a completely opaque region due to the presence of reststrahlen bands, exist-

ing between 16 and 21 meV and 30 and 37 meV corresponding to a phonon absorption of HgTe/HgCdTe

layers and a GaAs substrate, respectively. Because of that, the energy regions corresponding to these

bands were covered by grey areas on the spectra.
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4.1.2.3 Sample A

Temperature 2 K

The results of the LL calculations for T = 2 K for Sample A are presented in Figure 4.8. Only two

bands (E1 and H1) are present. In the Faraday con�guration, optical transitions between LLs are

required to follow a ∆n = ±1 selection rules, provided by the electric dipole approximation (Chapter

2). By taking into account the previous optical studies of HgTe QWs [103][101][102][106][107][105], the

transmission spectra are expected to be dominated by the transitions between LLs with low indices.

Those transitions are marked in Figure 4.8 by small Greek letters (α1, α2, β) and solid arrows, as

all visible transitions are interband transitions, which is a consequence of the low concentration of

holes as dominant carriers in Sample A. According to a convention applied in HgCdTe bulk systems

in Chapter 3, dashed arrows are reserved for intraband transitions.

Figure 4.8: Landau level graph of Sample A as a function of magnetic �eld at T = 2 K. Colored lines

represent Landau levels, characterized by a di�erent value of n, as described as indices of L on the

right side of the graph. The Landau levels with n = −2 and n = 0 are zero-mode Landau levels. The

energy of those levels at zero magnetic �eld is an indication of the band gap. The vertical arrows with

corresponding Greek letters represent observed transitions between Landau levels in this system. Solid

arrows α1, α2, and β indicate interband transitions.

The band gap is equal to 2.7 meV. The electrons from both of the zero-mode LLs, denoted as n = −2

and n = 0, take part in optical transitions, which allowed to con�rm that these LLs do not cross (for

a positive value of magnetic �eld). This is an indication that the sample is in a semiconducting phase.

The expected dependence of energy of transitions on magnetic �eld can be derived from the

di�erence of the calculated LLs. In the Panel a) of Figure 4.9 these expected transitions are presented

along with experimental points corresponding to the minima of transmission of given spectra. There

is a strong agreement between the experimental data and the theoretical calculations. The strongest

transitions are α1 and β, which is shown on a waterfall plot in Panel b) of Figure 4.9. The spectra

are plotted every 1 T and shifted vertically for clarity.



4.1. OVERVIEW OF HGTE QUANTUM WELLS 71

Figure 4.9: Left Panel: Points corresponding to the minima of the transmission of Sample A at

T = 2 K with theoretical predictions of transitions as a function of magnetic �eld. Right panel:

Transmission spectra plotted for magnetic �elds in range from 1 to 16 T every 1 T, with symbols

corresponding to the transitions from left panel.
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Temperature 30 K

At T = 30 K the band structure of Sample A slightly changed. The energy di�erence of zero-mode

LLs at zero magnetic �eld got higher � the band gap is equal to 10.2 meV. The LL structure is

presented in Figure 4.10.

Figure 4.10: Landau level graph of Sample A as a function of magnetic �eld at T = 30 K. Colored

lines represent Landau levels, characterized by a di�erent value of n, as described as indices of L on

the right side of the graph. The Landau levels with n = −2 and n = 0 are zero-mode Landau levels.

The energy of those levels at zero magnetic �eld is an indication of the band gap. The vertical arrows

with corresponding Greek letters represent observed transitions between Landau levels in this system.

Solid arrows α1, α2, and β indicate interband transitions.

Figure 4.11: Left Panel: Points corresponding to the minima of the transmission of Sample A at

T = 30 K with theoretical predictions of transitions as a function of magnetic �eld. Right panel:

Transmission spectra plotted for magnetic �elds in range from 1 to 16 T every 1 T, with symbols

corresponding to the transitions from left panel.
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Temperature 70 K

At T = 70 K the band structure of Sample A changed even more. The energy di�erence of zero-mode

LLs at zero magnetic �eld got a higher � the band gap is equal to 23.2 meV. The LL structure is

presented in Figure 4.12.

Figure 4.12: Landau level graph of Sample A as a function of magnetic �eld at T = 70 K. Colored

lines represent Landau levels, characterized by a di�erent value of n, as described as indices of L on

the right side of the graph. The Landau levels with n = −2 and n = 0 are zero-mode Landau levels.

The energy of those levels at zero magnetic �eld is an indication of the band gap. The vertical arrows

with corresponding Greek letters represent observed transitions between Landau levels in this system.

Solid arrows α1, α2, and β indicate interband transitions.

Figure 4.13: Left Panel: Points corresponding to the minima of the transmission of Sample A at

T = 70 K with theoretical predictions of transitions as a function of magnetic �eld. Right panel:

Transmission spectra plotted for magnetic �elds in range from 1 to 16 T every 1 T, with symbols

corresponding to the transitions from left panel.
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4.1.2.4 Sample B

Temperature 2 K

At T = 2 K Sample B is in a topological insulator phase. The LL structure is presented in Figure

4.14. The value of the direct band gap is estimated to be Eg ≈ 26 meV. It is important to note that

at this temperature the H1 band is energetically higher that the E1 band, thus the band gap should

be considered as negative.

Figure 4.14: Landau level graph of Sample B as a function of magnetic �eld at T = 2 K. Colored

lines represent Landau levels, characterized by a di�erent value of n, as described as indices of L on

the right side of the graph. The Landau levels with n = −2 and n = 0 are zero-mode Landau levels.

The energy of those levels at zero magnetic �eld is an indication of the band gap. Their crossing

indicates the point of �eld induced semiconductor-metal-semiconductor phase transition, and indicates

that the sample is in the inverted band order phase. The vertical arrows with corresponding Greek

letters represent observed transitions between Landau levels in this system. The solid arrows indicates

interband transitions α and α′, while dashed arrows indicate intraband transitions β, γ, and δ.

The most interesting feature of the LL structure presented in Figure 4.14 is the crossing of the

lower level of the conduction band (with hole-like symmetry) with n = −2, and the upper level of the

valence band (with electron-like symmetry) with index n = 0, which takes place at the magnetic �eld

value of Bc ≈ 5 T. An application of magnetic �eld breaks the time-reversal symmetry making the

boundary states no longer protected, nevertheless the inverted band order is preserved. The situation

changes at B > Bc � the zero mode LLs swap and the structure becomes a conventional quantum

Hall insulator.

There are �ve visible transitions in the spectra, all of them were marked by arrows in Figure 4.14.

An anticrossing of transitions α and α' was already observed and reported [101][102][105]. Here, the

anticrossing is visible at magnetic �elds close to the calculated Bc ≈ 5 T, as presented in Figure

4.15. However, the anticrossing is visible for magnetic �elds from around 4.5 T up to around 8 T.

This evident lack of symmetry in regard to Bc is caused by the position of chemical potential in the

sample. Below 4.5 T there are no empty states at LL n = 1 so the probability of both α and α'
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Figure 4.15: False color map of the transmission of Sample B as a function of energy and magnetic �eld

at T = 2 K. Blue color represents areas where the transmission is equal to 1, while lightblue/yellow/red

colors indicate where the absorption takes place. An anticrossing of transitions originating from the

zero-mode Landau levels is visible close to Bc ≈ 5 T.

transitions is equal to zero. For the same reason the β transition starts to be visible from energies

higher than 50 meV, which takes place at magnetic �eld of around 8 T.

Besides the α' transition there are four other ones. The one with the largest intensity at high

magnetic �eld is denoted as α. It represents an optical transition between LLs n = 0 and n = 1. This

is also the only interband transition visible at 2 K. Its extrapolation to zero magnetic �eld gives an

idea about the value of energy gap in the system. The intraband transition β, occurring between LLs

with n = -2 and n = -1 is energetically close to the transition α, and that relative energy di�erence

will change as the temperature increases. Two remaining transitions are γ and δ. The γ transition

occurs between n = -1 and n = 0. The δ transition, related to the cyclotron resonance, occurs between

n = 0 and n = 1.

The expected dependence of transition on magnetic �eld can be derived from the di�erence of the

calculated LLs. In the left panel of Figure 4.16 these expected transitions are presented along with

experimental points taken from the spectra. Open squares, as well as dashed arrows on LL plot in

Figure 4.14, represent intraband transitions, while full points (and solid arrows) represent interband

transitions. There are visible discrepancies between experimental data and the theoretical predictions,

which will be discussed in the summary of experimental results.

The right panel of Figure 4.16 shows the spectra plotted every 1 T, shifted vertically for clarity.

Every minimum was marked with a colored symbol corresponding to the scheme presented on the left

panel of the �gure. The intensity of α and β transition dominate the spectra for the high values of
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Figure 4.16: Left Panel: Points corresponding to the minima of the transmission of Sample B at T

= 2 K with theoretical predictions of transitions as a function of magnetic �eld. Full symbols represent

interband transitions, while open symbols represent intraband transitions. Right panel: Transmission

spectra plotted for magnetic �elds in range from 1 to 16 T every 1 T, with symbols corresponding to

the transitions from left panel.

magnetic �eld, while γ dominates the low �eld region.

At low magnetic �eld the energy f the cyclotron resonance line depends linearly on magnetic �eld,

which is visible in Figure 4.15 below the �rst reststrahlen band (E < 17 meV). At higher magnetic

�eld the cyclotron resonance line evolves into δ transition [101], not visible due to the particular LL

�lling factor. The e�ective mass of electrons, obtained from the linear �tting of cyclotron resonance

(δ) line, is equal to m∗ = eB/ωc = 0.025± 0.011 m0.

Temperature 50 K

At temperature 50 K the band structure, presented in Figure 4.17, is visibly di�erent in comparison

to the band structure at 2 K. The band gap is smaller and the crossing of LLs with indices n = −2 and

n = 0 takes place at a smaller magnetic �eld value Bc ≈ 3 T. This is a reason why the anticrossing is

not visible � the chemical potential lies above the LL n = 1, thus excitations to this level are forbidden.

However, T = 2 K is not the only temperature at which the anticrossing is visible. This is the case

for higher temperatures as well. Even at T = 30 K, a faint sign of an anticrossing can be traced on

spectra. This is presented in Appendix C.

There are four transitions visible on the spectra � one interband α and three intraband β, γ, and

δ. The energy gap, pointed by the α transition at zero magnetic �eld, is still negative and equal to

13 meV, which is considerably smaller than the energy gap at T = 2 K.

The transitions α and β are relatively close to each other, which makes them di�cult to distinguish

at some point, as presented on the right panel in Figure 4.18. It can be assumed that transition α

starts to be detectable around B = 5 T, while transition β around B = 9 T. Both of them are visible

up to at least 16 T. The two lower in energy transitions, namely γ and δ, are visible in intermediate

�elds and low �elds, respectively.

The e�ective mass of electrons, obtained from the linear �tting of δ line, is equal to m∗ = eB/ωc =

0.021± 0.003 m0.
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Figure 4.17: Landau level graph of Sample B as a function of magnetic �eld at T = 50 K. Colored

lines represent Landau levels, characterized by a di�erent value of n, as described as indices of L on

the right side of the graph. The Landau levels with n = −2 and n = 0 are zero-mode Landau levels.

The energy of those levels at zero magnetic �eld is an indication of the band gap. Their crossing

indicates the point of �eld induced semiconductor-metal-semiconductor phase transition, and indicates

that the sample is in the inverted band order phase. The vertical arrows with corresponding Greek

letters represent observed transitions between Landau levels in this system. A solid arrow indicates an

interband transition α, while dashed arrows indicate intraband transitions β, γ, and δ.

Figure 4.18: Left Panel: Points corresponding to the minima of the transmission of Sample B at T =

50 K with theoretical predictions of transitions as a function of magnetic �eld. Full symbols represent

interband transitions, while open symbols represent intraband transitions. Right panel: Transmission

spectra plotted for magnetic �elds in range from 1 to 16 T every 1 T, with symbols corresponding to

the transitions from left panel.
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Temperature 90 K

The temperature 90 K is critical for Sample B. The band gap vanishes as the HH1 band merges with

the E1 band at B = 0 T, as presented in Figure 4.19. It can be thought as the anticrossing of LL

n = 0 and LL n = 1 takes place at Bc = 0 T. Both transitions α and β converge at zero energy at zero

magnetic �eld. At the critical temperature the LL n = −2 is formed by a mixture of both H1 and E1

bands, thus it is impossible to declare whether transitions α and β are interband or intraband. This

was marked in the Figure 4.19 by dotted arrows.

Figure 4.19: Landau level graph of Sample B as a function of magnetic �eld at T = 90 K. Colored

lines represent Landau levels, characterized by a di�erent value of n, as described as indices of L on

the right side of the graph. The Landau levels with n = −2 and n = 0 are zero-mode Landau levels.

Their crossing takes place at zero magnetic �eld, which means that the sample is gapless. The vertical

arrows with corresponding Greek letters represent observed transitions between Landau levels in this

system. It is not possible to determine whether α and β are inter- or intraband transitions, therefore

they were marked with a dotted line. Dashed arrows indicate intraband transitions γ and δ.

The transitions α and β are further separated than at T = 50 K, and their intensity is comparable,

as presented on right panel of Figure 4.20.

The transition α starts to be visible at around B = 8 T, while the transition β as low as B = 4

T. T = 90 K is the �rst temperature where the transition β starts to be visible at lower magnetic

�eld than the transition α. Also, at this temperature, β has higher energy than α. The transition γ

is visible at intermediate �elds, and the transition δ at low. The e�ective mass of electrons, obtained

from the linear �tting of δ line, is equal to m∗ = eB/ωc = 0.023± 0.012 m0.



4.1. OVERVIEW OF HGTE QUANTUM WELLS 79

Figure 4.20: Left Panel: Points corresponding to the minima of the transmission of Sample B at T =

90 K with theoretical predictions of transitions as a function of magnetic �eld. Full symbols represent

interband transitions, while open symbols represent intraband transitions. Right panel: Transmission

spectra plotted for magnetic �elds in range from 1 to 16 T every 1 T, with symbols corresponding to

the transitions from left panel.

Temperature 110 K

At temperature 110 K the band order of Sample B is regular and the system is in a semiconductor

state. The LL n = −2 is the highest energetic level of the H1 level, while the LL n = −0 is the lowest

energetic level of the E1 level. The LL structure is presented in Figure 4.21. There are four transitions

visible � one interband β, and three intraband α, γ, and δ. The zero-mode LLs crossing is not present

anymore, which indicates that a phase transition took place and the system is in the regular band

order. Because of that, the transition β is interband, while the transition α is intraband, which was

not the case in the inverted regime. The band gap is positive and equal to 6 meV.

The transitions α and β are further apart than at lower temperatures. They start to be visible at

around 6 T and their intensity is the highest at high magnetic �eld. The transition γ dominates in

the intermediate values of magnetic �eld, while the transition δ is visible only at low B. The e�ective

mass of electrons, obtained from the linear �tting of δ line, is equal to m∗ = eB/ωc = 0.022 ± 0.010

m0.
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Figure 4.21: Landau level graph of Sample B as a function of magnetic �eld at T = 110 K. Colored

lines represent Landau levels, characterized by a di�erent value of n, as described as indices of L

on the right side of the graph. The Landau levels with n = −2 and n = 0 are zero-mode Landau

levels. The energy of those levels at zero magnetic �eld is an indication of the band gap. The vertical

arrows with corresponding Greek letters represent observed transitions between Landau levels in this

system. A solid arrow indicates an interband transition β, while dashed arrows indicate the intraband

transitions α, γ, and δ.

Figure 4.22: Left Panel: Points corresponding to the minima of the transmission of Sample B at T =

110 K with theoretical predictions of transitions as a function of magnetic �eld. Full symbols represent

interband transitions, while open symbols represent intraband transitions. Right panel: Transmission

spectra plotted for magnetic �elds in range from 1 to 16 T every 1 T, with symbols corresponding to

the transitions from left panel.
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Temperature 130 K

At temperature 130 K Sample B is in a semiconductor state. The LL structure is presented in Figure

4.21. Similar to T = 110 K, there are four transitions visible � one interband β, and three intraband

α, γ, and δ. The band gap is positive and equal to 12 meV.

Figure 4.23: Landau level graph of Sample B as a function of magnetic �eld at T = 130 K. Colored

lines represent Landau levels, characterized by a di�erent value of n, as described as indices of L

on the right side of the graph. The Landau levels with n = −2 and n = 0 are zero-mode Landau

levels. The energy of those levels at zero magnetic �eld is an indication of the band gap. The vertical

arrows with corresponding Greek letters represent observed transitions between Landau levels in this

system. A solid arrow indicates an interband transition β, while dashed arrows indicate the intraband

transitions α, γ, and δ.

Figure 4.24: Left Panel: Points corresponding to the minima of the transmission of Sample B at

T = 130 K with theoretical predictions of transitions as a function of magnetic �eld. Solid symbols

represent interband transitions, while open symbols represent intraband transitions. Right panel:

Transmission spectra plotted for magnetic �elds in range from 1 to 16 T every 1 T, with symbols

corresponding to the transitions from left panel.



82 CHAPTER 4. HGTE QUANTUM WELLS

The transitions α and β continue to further separate. They start to be visible at around 5 T and

their intensity is the highest at high magnetic �eld. The transition γ dominates in the intermediate

values of magnetic �eld, while the transition δ is visible only at low B. The e�ective mass of electrons,

obtained from the linear �tting of δ line, is equal to m∗ = eB/ωc = 0.021± 0.008 m0.

4.1.3 Summary

The FIR magneto-optical results presented in this chapter prove that temperature can be used as an

adjustable external parameter to control a band structure of HgTe/CdTe QW and, as a consequence, to

induce a topological TI-metal-semiconductor phase transition. A set of two samples was investigated

� one sample (A) is in semiconducting state at the whole temperature range, while the other (B) is a

TI at low temperature and undergoes a phase transition at Tc = 90 K, characterized by a band gap

closure and a lack of crossing of zero-mode LLs.

The energy gap of Sample A is positive at all temperatures and its value increases with increasing

temperature. This behavior is presented in Figure 4.25. The Figure 4.25 presents the energy values

of minima of the transmission as a function of magnetic �eld for Sample A (open symbols), and the

results of numerical calculations based on the 8-band Kane model for di�erent temperatures. The

Figure 4.25: Energy of α1 (green curve), α2 (purple curve), and β (orange curve) transitions as a

function of magnetic �eld for Sample A at T = 2 K, 15 K, 30 K, 50 K and 70 K. The experimental

data corresponding to minima of the transmission is represented by open symbols. The value of band

gap is indicated with a blue arrow. The reststrahlen bands are covered by grey areas.

blue arrow points to the value of a band gap at given temperature. The experimental results and

theoretical predictions are in a good agreement. Sample A is almost gapless at T = 2 K, and its band

gap value increases up to Eg = 23.2 meV at T = 70 K.

The evolution of energy gap and inter- and intra-LL transitions for Sample B is presented in

Figure 4.26. At T < Tc = 90 K the sample has an inverted band structure and negative energy gap,

characterized by the relative position of zero-mode LLs.
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Figure 4.26: Energy of α (orange curve), α′ (red curve), β (blue curve), γ (grey curve), and δ (green

curve) transitions as a function of magnetic �eld of Sample B at T = 2 K, 50 K, 90 K, 110 K and

130 K. The experimental data corresponding to minima of the transmission is represented by open

symbols. The value of negative (positive) band gap is indicated with a red (blue) arrow. The gappless

state corresponding to the gap closure (black arrow) takes place at Tc = 90 K. The reststrahlen bands

are covered by grey areas.

At T = 2 K (and T = 30 K, as presented in Appendix C) an additional transition α′ appears in

the spectra in a small magnetic �eld range, which corresponds to the avoided crossing of zero-mode

LLs. This anticrossing is a direct indication of an inverted phase. The α′ transition is forbidden by

the selection rules. However, because BIA causes a mixing of zero-mode LLs and an activation of the

transition α′, its appearance is possible and was previously reported in [101][102][105].

At T > Tc = 90 K the Sample B is in a semiconducting phase. The band gap is positive, which is

represented by a blue arrow in Figure 4.26, and reaches up to 12 meV at T = 130 K.

At the critical value T = Tc the band gap vanishes (black arrow) and the system hosts massless

Dirac fermions. The appearance of massless particle is characterized by a square-root dependence of

energy of inter- and intra-LL transitions on magnetic �eld. However, in the case of HgTe QWs, this is

valid only in the range of quasimomenta, where the band structure can be approximated by the Dirac

Hamiltonian. This reduces the characteristic E ∝
√
B dependence to the electrons in the vicinity of

the Γ point of the Brillouin zone, where k ≈ 0. The terms proportional to k2 in the Hamiltonian

become relevant at higher values of k . As a consequence, at high magnetic �eld the dependence of

the energy of the transitions on B becomes linear functions.

Figure 4.27 shows a comparison of the evolution of transitions α, β, and γ as a function of
√
B

in the gapless case in the presence of the Dirac cone in the vicinity of the Γ point. The transitions

were calculated using an approximate Dirac approach and the numerical 8-band Kane model. The

calculated LLs transitions, based on the Kane model (solid curves), β and γ do not follow a square-

root magnetic �eld dependence over the whole magnetic �eld range, which is not the case for the

LLs transitions based on Dirac model (dotted curves). On the other hand the transition α (solid red
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curve in Figure 4.27) has a square-root-like dependence (which means that the position of solid curve

coincides with the position of dotted curve). However, this behavior is not related to the conical band

dispersion, but is a consequence of the mutual compensation of the high order k terms in the 8-band

Kane model.

Figure 4.27: Energy evolution of transitions α, β, and γ as a function of
√
B at T = 90 K approximated

by Dirac Hamiltonian (dotted curves) and calculated using 8-band Kane Hamiltonian (solid curves).

A characteristic property of NGS with a non-parabolic dispersion is a sub-linear dependence of

cyclotron resonance on magnetic �eld. At low �elds, the dependence is linear and allows to extract the

e�ective (cyclotron) mass of electrons. However, at higher �elds the linear cyclotron resonance line

evolves into a transition denoted as δ [101]. The value obtained from the average of �ts of δ transition

at low magnetic �elds, is equal to m∗ = eB/ωc = 0.022 ± 0.004 m0, which exactly matches previous

results from works [101][102].

The experimental results for Sample A are in a fair agreement with the theoretical calculations.

However, there are unquestionable discrepancies between the theory and experimental results of Sam-

ple B, reaching around 10%. The origin of these discrepancies is not totally clear, as there are many

factors that could possibly be omitted in considerations. One of these factors is an electron-electron

interaction, which can be relevant in the case of Sample B, as there is one order of magnitude dif-

ference in carrier concentration, and can perturb the result. In addition, Sample B was doped on

both sides in the barriers, and this donor states can in�uence the results as well. Moreover, as was

already highlighted in [102] mercury-based heterostructures, can degrade with time via mercury dif-

fusion. This process is especially critical to structures with sharp interfaces, like QWs, because the

QW parameters like the shape of the well, the cadmium content in the barriers can change with time.

This has a profound in�uence on the obtained results as the investigated structure is di�erent than

expected (at the time of growth).
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4.2 Strained HgTe Films

The systems, in which a HgTe layer sandwiched between CdTe, is wide enough to neglect the

interface interactions but not wide enough to cause a merging of the levels into bands, are called

�lms or slabs. These systems can be considered to be in an intermediate state between 2D and 3D.

However, these systems are semimetallic, as the quantum con�nement is low � a di�erent mechanism

is necessary to open an energy gap to render the bulk insulating. The solution to this problem is to

apply a strain to the material [55]. If a HgTe �lm is compressively strained, the bulk becomes fully

gapped in a response to a lowered symmetry [27]. This can be achieved by growing a layer of HgTe

on a substrate with a di�erent lattice constant, which opens an energy gap. If the chemical potential

lies inside the band gap, the only conducting states left are topological surface states.

The existence of Dirac-like surface states in bulk HgTe has been known since the eighties [108][109],

however their topological nature has never been investigated in detail. These systems can potentially

allow to study already predicted novel properties of 3D TIs, such as topological magneto-electric e�ect

[110], superconducting proximity e�ects and Majorana fermions [111][112].

4.2.1 Band Structure

In thin HgTe QWs the band gap is formed by a quantum con�nement which originates from an

interaction between states at interfaces with barriers, and exists as long as the wave functions of these

interface states overlap. For the case of wider QWs this interaction is smaller, as well as the resulting

energy gap. As the thickness increases, the quantum con�nement is still present but becomes too small

to open an energy gap, therefore the system becomes semimetallic. If a QW thickness is increased

even more, the relative distances between consecutive levels within the well shrink. If the process

continues up to a point where the level broadening (for example due to temperature) is higher than

the distance between the levels, the levels merge and form a band, and the system is considered as

bulk.

4.2.1.1 Strain

The lattice constant of HgTe grown on CdTe is 0.3 % larger than that one of bulk HgTe, which

leads to an apperance of a strain. As long as a HgTe layer is not thicker than around 150 nm (150 nm

[56], 200 nm [27]), the layer adopts the lattice constant of a substrate and it is strained homogenously.

However, in thicker layers the strain starts to be partially relaxed via the formation of dislocations.

In a fully strained system a band gap can be increased to approximately 20 meV [27][56]. Using a

di�erent substrate, like Cd0.96Zn0.04Te [58], it is possible to apply a stronger strain which increases

the value of the band gap. However, the stronger strain makes the structure more prone to relax via

exhibiting dislocations, reducing the maximal possible width.

4.2.1.2 Surface States

One of the most prominent features of narrow HgTe QWs (with thickness close to the critical) is

existence of one-dimensional channels of conductance on the edge, as presented in Chapter 1 in Figure

1.1. These states are available for electrons taking part in carrier transport, but do not take active

part in the light absorption. It has to be stressed that their presence is not related to an existence of

the interfaces between HgTe QW and CdTe barriers, but a one-dimensional interface between HgTe

QW and the surrounding vacuum (or air). From the point of view of the egde states, the sole role of
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CdTe barriers is to provide the quantum con�nement, which opens the bulk gap and suppresses the

bulk conduction.

It is often neglected that the 2D interfaces between a HgTe QW and CdTe barriers are still present

in the system. The QW and barriers are characterized by a di�erent topology, therefore a set of states

with linear dispersion relation should appear at the interface as well. This states are interesting from

the point of view of magneto-optics, because only electrons on the surfaces perpendicular to the beam

of light can absorb photons. The Figure 4.28 shows the results of the ARPES measurements, which

allowed to resolve topological-like features connecting heavy- and light-holes, which proved that the

boundary states are still present in the system but they are buried deep in the heavy-hole band.

Figure 4.28: High resolution ARPES spectra for a maximally strained [100] HgTe/vacuum interface

in the vicinity of the Γ-point measured at room temperature. Panel (a): Energy-momentum intensity

spectrum after a background subtraction. Panel (b): The second derivative of the intensity data to

enhance the contrast. Panel (c): Intensity spectrum at di�erent energies. Raw data on the left and

its second derivative on the right. The cone structure has a circular section up to ≈ 0.4 eV. Images

come from the work of Brüne et al. [27].

The edge states on the interface between HgTe and vacuum can be considered one dimensional as

long as the thickness of HgTe layer is small. If the thickness is increased, the 1D edge transforms into

a 2D surface, and an appearance of interface surface states should occur.

Origin of surface states

The band structure of a bulk HgTe is presented in Figure 3.1 in the introduction to HgCdTe-based

structures in Chapter 3. In the presence of strain an insulating energy gap opens between the heavy-

hole (HH) and light-hole (LH) bands by pushing the HH band downward in energy. To understand

better the processes occurring here, it is useful to ignore the HH band and consider the LH and E

bands only. According to the Kane model, the coupling of the LH and E bands, which takes place

in the vicinity of the Γ point, can be represented by a 3D anisotropic massive Dirac Hamiltonian.

The Dirac Hamiltonian conserves the parity symmetry, therefore the bands can be labeled by parity

eigenvalues. The coupling is linear, thus there must be one even and one odd band. If the odd parity

band lies energetically below the even parity band, there will be a nontrivial Z2 topological invariant,

which indicates an odd number of pairs of surface states that cross at invariant points [55][28]. The
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presence of the HH band changes only the features of the dispersion, it does not change the presence

of the surface states, nor their protected crossing, as long as the strain-induced gap is opened, and

the chemical potential lies in the gap.

Figure 4.29: Band structure of a 70 nm thick 0.3% strained HgTe slab. The Dirac-like states in the

gap are plotted in blue. The dashed red line schematically shows the dispersion of the Dirac surface

states at the two opposite surfaces before their hybridization with the Γ8 heavy-hole band. The image

comes from the work of Brüne et al. [27].

The energy structure of a 70 nm thick strained HgTe �lm is presented in Figure 4.29. The surface

states are represented in blue. In an absence of the HH band, their dispersion would be linear. A

qualitatively similar situation takes place in bulk PbSnTe, where the Dirac-like surface states are near

the L point of the Brillouin zone, connecting L±6 bands 4.30. However, in HgTe the HH band mutually

interacts with electron band and surface states, e�ectively changes the dispersion relation of the whole

system, as presented in Figure 4.29.

It is worth to mention that the names LH |Γ8,±1/2〉 and E |Γ6,±1/2〉 are used to describe energy

bands in bulk system, along with HH |Γ8,±3/2〉. In the language of QWs, the energy levels are named

with a letter (E for electron-like band, and H for hole-like band) and an appropriate number. What

does it really mean is that both the electron-like and hole-like bands contain a mixture of E and LH

bands of the bulk:
En = αn(x, L) |Γ6,±1/2〉+ βn(x, L) |Γ8,±1/2〉 ,

Hn = α̃n(x, L) |Γ6,±1/2〉+ β̃n(x, L) |Γ8,±1/2〉 ,
(4.8)

where αn, βn, α̃n, β̃n are constants, which values depend on Cd content x, and �lm thickness L. For

su�ciently large L, the constants βn and α̃n become small, and the QW levels E and H resemble the

bulk bands E and LH, respectively. This superposition of |Γ6,±1/2〉 and |Γ8,±1/2〉 allows to smoothly
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switch from the bulk band to the QW band description. Due to the mixing of bands, only at k = 0

it is possible to classify which band a given energy level belongs to.

Figure 4.30: Topological phase transition and the Brillouin zone of Pb1−xSnxSe and Pb1−xSnxTe.

Panel (a): Sketch of a topological phase transition that occurs at a critital point xc as a function of

composition in a system having a conduction and valence band of opposite parity (di�erent color). The

bulk band gap closes at xc. Topological surface states emerge in the topological regime x > xc (shaded

blue region). In IV-VI topological crystalline insulators, this occurs at a critical Sn concentration xc.

Panel (b): Bulk Brillouin zone of [111] IV-VI semiconductors, showing the longitudinal (black), and

oblique (red) valleys. The topological surface band structure above the bulk Brillouin zone shows the Γ̄

(blue) and the M̄ (yellow) Dirac cones. The image comes from the work of Assaf et al. [60].

Surface states in inverted and non-inverted systems

The band structure and the dispersion of surface states changes with the cadmium content and the

thickness of the �lm (and other parameters, which are out of the scope of this thesis, like temperature,

pressure, etc.). As the cadmium content increases, it shrinks both the strain gap (because of reduced

lattice mismatch) and a band gap (the di�erence between Γ6 and Γ8 bands). If this process continues,

at some point it reaches a critical value, where the band structure becomes regular, exactly as in the

case of relaxed HgCdTe for x > xc. This process is presented in Figure 4.31 for a strained structure

of thickness L = 80 nm. The QW approach is used to describe the energy levels, therefore levels

En are composed of the mixture of electron and light-hole bands, and levels Hn are composed of the

heavy-hole band (Equations 4.8). The surface states are always composed of a mixture of E1 and H1

subbands, and because of that it is only possible to classify which subband is dominant at k = 0.

As the cadmium content varies along the relative position of the bands, the either E1 or H1 part

dominates.

For Cd content x lower than xc = 0.14 (Panel (a)), the structure is more HgTe-like � the band

order is inverted, and can be qualitatively compared with the one presented in Figure 4.1 for high

dQW . The subbands E2,3,... are more LH-like, and lie above the HH subbands H2, while the subband

E1 lies buried deep in Hn subbands (not shown in the Figure). In this situation the surface states

(dotted line) are composed of a mixture of En (LH-like) and Hn states (HH-like), and at k = 0 the

HH part dominates. The Dirac point lies inside the HH band (its position as well as the shape of

surface states in the absence of the HH band is plotted in green).

For the critical Cd content x = xc (Panel (b)) the band structure has similar properties to the
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band structure of bulk HgCdTe at x = xc (Chapter 3, Figure3.2). The easily visibly di�erences are:

the bands are split into subbands due to the quantum con�nement, and the shape of the HH band is

changed due to the strain and interactions between bands. The dispersion of surface states is linear.

This is the exact Cd concentration where band inversion occurs. Because of that the En bands are

more electron-like than LH-like, therefore the surface states at k = 0 are composed dominantly of E1

band. The Dirac point lies close to the top of HH band.

For Cd content x higher than xc (Panel (c)), the structure is more CdTe-like. The system is a

3D band insulator. The En subbands are composed of the electron-like states. In this situation the

surface states are trivial and are composed of a mixture of En (electron-like) and Hn subbands, at

k = 0 are formed predominantly by the E1 subband. The Dirac point lies inside the Hn subbands.

Figure 4.31: Band structure of an 80 nm thick strained Hg1−xCdxTe �lm calculated for [13-1] and

[100] crystallographic directions. The band description is according to a QW approach. En subbands

(blue) represent electron-like states, while Hn subbands (red) represent hole-like states. The dispersion

of the surface states is plotted as dashed curves. Panel (a): Cadmium content x = 0.12, the system

is a topological insulator. The surface states at k = 0 are composed predominantly of H1 subband.

Panel (b): Cadmium content x = 0.14, the system is at a topological insulator-to-band insulator

phase transition. The surface states at k = 0 are composed predominantly of E1 subband. Panel (c):

Cadmium content x = 0.16, the system is a band insulator. The surface states are trivial, and at

k = 0 are composed predominantly of E1 subband.

Figure 4.32 explains in detail what does it mean that the surface states are composed of a mixture

of En and Hn subbands, and what is a dominant component. The black curve shows the squared

sum of modules of the wave functions (probability) as a function of z coordinate. It is clear that the

surface states are localized close to both surfaces, and they exponentially decay in the bulk. Moreover,

as the Cd content is zero, the dominant component of the surface states should origin from the H1

subband (Panel (a) of Figure 4.31), which is formed by HH states |ΨΓ8,±3/2〉. Indeed, as is presented
in Figure 4.32 the |ΨΓ8,±3/2〉 wave functions (purple and magenta curves) dominate over E and LH

wave functions.

The second parameter which can modify the band structure is a thickness of the �lm, which changes

the e�ective quantum con�nement and the relative position of LH and E bands. The dispersion of

surface states can be related to a mutual interaction between them. This interaction gets stronger

as the overlapping of the wave functions of the bottom and the top surfaces increases. A typical

penetration length is approximately equal to δ ≈ 20 nm, as is presented in Figure 4.32, taken from the

work of Dantscher et al. [113]. It shows the result of six-band k · p calculations for a (013)-oriented

80 nm thick structure. The states, shown as curves representing the probability density functions of

electrons belonging to di�erent bands, are localized at the �lm interfaces, and predominantly formed
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by the HH states |ΨΓ8,±3/2〉.

Figure 4.32: Wave functions of surface states in a (013)-grown 80 nm strained HgTe �lm. Calculations

are carried out for the electron energy E = 11 meV, the wave vector components kx > 0 and ky = 0,

and the built-in electric �eld Ez = 2 kV/cm. The image comes from the work of Dantscher et al.

[113].

The results of the calculations of band structure based on the Kane model for 50, 25, and 15 nm

thick strained HgTe �lms are presented in Figure 4.33. The LH and HH bands are represented as

blue and red curves, respectively. The bands are split due to the residual quantum con�nement. The

surface states are represented as black solid curves. If SIA is present in the structure, the degeneracy

of states on the bottom and top surfaces is lifted, which leads to a splitting of dispersion of surface

states, not shown in the Figure. Black dotted curves represent the dispersion of the surface states in

the absence of the HH band.

Figure 4.33: Band structure calculations of strained HgTe �lms with thicknesses Panel (a): 50 nm,

Panel (b): 25 nm, and Panel (c): 15 nm. The dispersion relations of the surface states are plotted

as solid black curves. Dotted black curves represent the dispersion relations of the surface states in

an absence of the HH band. The HH and the LH subbands are plotted as red curves and blue curves,

respectively. The system is in an inverted band order, therefore the surface states at k = 0 are

dominantly formed by the H1 level.

For �lms thicker than L > 2δ ≈ 40 nm (Panel (a)), the wave functions are well separated � their
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interaction is negligible and the band structure does not qualitatively change as the thickness increases

[114]. The Dirac points of the surface states lies deep in the HH band, which leads to a level mixing

and a deviation of the dispersion relation from the linear [113]. Because of this, the energy of surface

states at the Γ point is similar to the energy of the top of the HH band. The dispersion of surfaces

states is gapless, therefore they are massless. This situation is conserved even for thicker structures.

However, the interaction of the surface states in �lms with thickness smaller than 2δ leads to a

hybridization and opens an energy gap as a consequence [114], which is visible in Figure 4.33 on Panel

(b). The appearance of the energy gap changes the character of the surface states from massless to

massive. With decreasing thickness the strength of the quantum con�nement increases, which further

separates the subbands (Panel (c)). If the process continues and the thickness reaches dc = 6.3 nm,

a phase transition occurs and the structure becomes semiconducting (as stated in Chapter 4.1).

4.2.1.3 Magnetic Field

In the presence of magnetic �eld the energy of surface states becomes quantized. Magnetotransport

measurements performed at mK temperatures [27] on a 70 nm HgTe strained �lm revealed distinct

features characteristic for a 2D system � the plateaux of Hall resistance Rxy occur when the longi-

tudinal resistance Rxx is in its minimum, and the Rxy takes expected values. A particular sequence

of Hall plateaux for odd �lling factors at low magnetic �eld indicates the presence of zero mode LLs,

characteristic for systems with linear dispersion of Dirac fermions, which has been already found in

graphene [100] and in thin HgTe QWs close to the critical thickness [102]. These results suggest that

the current is carried mostly by bottom and top surface states, which can be populated di�erently if

the SIA is present (for example in gated structures as the top surface e�ectively screens the gate po-

tential, or if the structure is doped asymmetrically). There are indications that there is some residual

conductivity which can originate from the conductivity of side edge channels, which remain metallic

[115].

Figure 4.34: Landau level plot of a strained 50 nm HgTe �lm. Curves designated as E (H) form the

conduction (valence) subbands. The surface states are plotted as thick solid lines.
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The LL spectrum of a 50 nm �lm is presented in Figure 4.34. There are multiple subbands present,

resulting from double quantization � the LL quantization and the one originating from the quantum

con�nement. The LH band is split into three subbands (E1 - E3), while the HH band is split into six

subbands (H1 - H6). The surface states, highlighted by thick curves, are formed by the H1 subband.

4.2.2 Experiment

The magneto-spectroscopy study of strained HgTe �lms could potentially provide an insight into

the energy structure of the surface states, and how does it change with the parameters of the system.

The study can also reveal what those states are in detail, which is important to understand the origin

and their relation with the bulk states.

The main experimental part of this Chapter is related to a study of a strained 50 nm-thick HgTe

�lm (Sample A), as it allowed to observe the surface states. The magneto-transmission measurements

were performed on Sample B and C as well, but the interpretation of the results is still missing. All the

spectra were taken at T = 2 K with a bolometer placed directly under an investigated sample. In order

to obtain a �nal transmission spectra, an additional reference spectra without the sample was recorded

and Equation 2.38 was used. All measurements were performed at magnetic �elds up to 16 T and in

energy range 80 - 800 cm−1 (≈ 10 - 100 meV) with a 4 cm−1 resolution. The infrared transmittance

spectra were measured by a Fourier spectrometer with a Globar lamp as a source of radiation. The

system was coupled to a liquid helium cryostat. The transmission spectra were obtained by dividing

the spectra taken at given magnetic �eld by the spectra obtained at zero magnetic �eld.

On each spectra there is a completely opaque region due to the presence of reststrahlen bands,

existing between 16 and 24 meV corresponding to a phonon absorption of HgTe/HgCdTe layers.

Because of that, the energy regions corresponding to these bands were covered by grey areas on the

spectra.

4.2.2.1 Samples

The investigated samples were grown using the MBE method (by Philippe Ballet) in CEA-LETI

(Grenoble, France). The growth process and samples characterization is thoroughly presented in a

Ph.D. thesis of Candice Thomas [116]. They consist of a 0.7 mm (100) CdTe substrate followed by

a 200 nm CdTe bu�er layer. The active part of the structure is formed by a HgTe layer (of various

thicknesses) enclosed within two 30 nm Hg0.3Cd0.7Te barriers. The layer structure of the samples is

presented in Figure 4.35. Three samples were investigated, characterized by thicknesses of d = 15, 25,

and 50 nm. Table 4.2.2.1 presents the main characteristics of the samples, like the nominal thickness,

the measured thickness, and the carrier concentration. The latter was used to estimate the position

of the chemical potential, under assumptions that the measured concentration at T = 55 mK is the

same as at T = 2 K, and that the sample processing does not in�uence the concentration.
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Figure 4.35: Layer structure of investigates �lms. The active region of the system is composed of

a strained HgTe layer with thicknesses d = 50 nm, 25 nm, and 15 nm for Sample A, B, and C,

respectively.

Table 4.2: The properties of investigated strained HgTe �lms � measured thickness, concentration of

electrons. Thickness measurements were based on high resolution x-ray di�raction. Data come from

the Ph.D. of Candice Thomas [116].

Sample name Nominal thickness Measured thickness Carrier concentration (55 mK)

Sample A 50 nm 58 nm 2 · 1011 cm−2

Sample B 25 nm 26 nm 1 · 1011 cm−2

Sample C 15 nm 15.5 nm 2.3 · 1011 cm−2

4.2.2.2 Results

Related experimental works

One of the �rst THz magneto-optical studies of strained and unstrained HgTe �lms were focused on

investigations of the THz magneto-optical Faraday e�ect conducted by Shuvaev et al. [117][118], and

Hancock et al. [119]. Soon after Shuvaev et al. [120] published a work in which the CR line in HgTe

was observed.

Recently, a very interesting study has been published by Datscher et al. [113]. It presents results

of investigations of strained HgTe �lms by the means of magneto-transport and magneto-optics, which

were focused on cyclotron-resonance-induced photocurrents by the THz radiation. Because of the fact

that the surface electrons are expected to be spin-locked, an absorption of a polarized light results in

a macroscopic surface spin polarization. This e�ect was investigated for various temperatures and the

di�erences were attributed to the change of carrier concentration.
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Sample A

The results of the LL calculations for Sample A are presented in Figure 4.36. The E band is split

into three subbands (E1 - E3), while the HH band is split into six subbands (H1 - H6), and the surface

states are formed by the H1 subband. The visible transitions are marked in Figure 4.36 by small Greek

letters and arrows. Solid arrows represent interband transitions α4
2, β2, and γ3, while dashed arrow

represents an intraband transition α1, α2, and β1. The transitions α1, α2, β1, β1, β1, α
(4)
2 involve the

surface states.

Figure 4.36: Landau level plot of a strained 50 nm HgTe �lm. There are three LH subbands (E1 - E3)

and six HH subbands (H1 - H6), and the surface states are formed by the H1 subband. The surface

states are plotted as thick solid lines. Observed transitions are marked with Greek letters and arrows,

solid arrows represent interband transitions, while dashed arrows represent intraband transitions. The

position of the Fermi energy was plotted as a dotted line.

The transitions α1 and α2 have the same energy, therefore most likely both of them are visible

in the transmission spectra (marked as α1). The experimental points corresponding to the minima

of transmission for di�erent magnetic �elds are presented in Figure 4.37. There are four transitions

visible, which have not been yet identi�ed, marked with orange, brown, magenta, and dark yellow

points.
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Figure 4.37: Points corresponding to the minima of the transmission of Sample A at T = 2 K with

theoretical predictions of identi�ed transitions as a function of magnetic �eld.

Figure 4.38: Transmission spectra of Sample A measured at T = 2 K, plotted every 1 T for magnetic

�elds in range from 1 to 16 T.
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Sample B

Figure 4.39: Points corresponding to the minima of the transmission of Sample B at T = 2 K.

Figure 4.40: Transmission spectra of Sample B measured at T = 2 K, plotted for magnetic �elds in

range from 1 to 16 T every 1 T.
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Sample C

Figure 4.41: Points corresponding to the minima of the transmission of Sample C at T = 2 K.

Figure 4.42: Transmission spectra of Sample C measured at T = 2 K, plotted for magnetic �elds in

range from 1 to 16 T every 1 T.
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4.2.3 Summary

In this section an overview of strained HgTe �lms was presented. It was explained that strain

opens an energy gap in an otherwise semimetallic HgTe, transforming it into a 3D TI. Numerical

calculations of the band structure were presented, along its dependence on the �lm thickness and Cd

content. It was shown that topological phase transitions can be induced by those two parameters:

• by the Cd content � in a similar manner as in the bulk HgCdTe. The system remains a TI,

characterized by an inverted band order, as long as the Cd content is low. Increasing Cd

concentration renders the structure more CdTe-like, up to a point of critical concentration,

when a phase transition occurs,

• by the �lm thickness � the quantum con�nement and the mutual interaction of the surface states

can change the band structure as well, especially the energy di�erences between the subbands.

For thick �lms the quantum con�nement is low and the interaction (governed by the overlapping

of the wave functions) between the surface states is negligible. With decreasing thickness the

subbands start to separate and change positions. At small thickness the structure resembles a

thin QW, and �nally at the critical thickness, a topological phase transition occurs, accompanied

by a band inversion.

It was also stated that those parameters in�uence also the composition of the surface states, which

are always formed by a mixture of E1 and H1 bands, and only at k = 0 it is possible to determine

which one is dominant. This information is necessary to grasp the idea about the origin of the surface

states, and understand that they are not separated, but indeed form an integral part of the whole

system.

The preliminary experimental results of a Fourier magneto-spectroscopy were shown as well as

its interpretation for the 50 nm thick sample (Sample A). This thickness was su�ciently high to

avoid a mutual interaction of the surface states. At the same time, the thickness was su�ciently

low to avoid strain relaxation via the creation of dislocations, and provide a non-negligible quantum

con�nement. In this sample the surface states are not supposed to be massive, as the wave functions

of the surface states are well-separated, therefore the sample is gapless. The obtained transmission

spectra are extraordinarily reach in transitions, re�ecting the complicated nature of the LL structure

of the system, formed by many subbands originating from the E, HH, and LH bands. Multiple inter-

and intraband absorption lines were observed, involving the transitions from and to the surface states.

The surface states in the 50 nm sample were labeled as H1, as they are composed predominantly of

the HH-like states.

Two more samples were investigated but the LL structure calculations and the interpretation of

the obtained results are still missing. The results gathered on di�erent samples vary, which proves

that the band structure indeed depends on the thickness of the �lm. The study of a dependence of

the band structure on the �lm thickness in the regime above the critical QW width is particularly

interesting, because it might allow to understand the transition between 2D and 3D TI states. The

surface states in 3D TIs become massive by decreasing the thickness. On the other hand the edge

states (at the HgTe/vacuum interface) of 2D TI become surface states by increasing the QW width. It

is clear that despite the fact that a strained HgTe �lm was identi�ed as a topological insulator in three

dimensions, the in�uence of the quantum con�nement on the band structure cannot be neglected. In

this sense, the two-dimensional approach (as in the case of QWs) can be successfully used to describe

energy levels of a HgTe-based 3D TI.



Chapter 5

Conclusions and Outlook

Selected topological properties of various mercury-cadmium-telluride structures were investigated

in this thesis. A particular attention was paid to 3D Kane semimetal systems, as well as to 2D and

3D TIs based on Hg1−xCdxTe heterostructures and thick �lms. These systems are characterized by a

small (positive or negative) energy gap, which gave a possibility to study phase transitions between

a regular and an inverted band order phase. The experimental part of this thesis was divided into

three main parts, according to the investigated systems. All the magneto-spectroscopy experiments

were performed using a Fourier spectrometer in a custom-designed experimental set-up, described in

Chapter 2. The calculations of the band structure were performed based on the Kane model, which

is successfully being used for decades to model HgCdTe-based compounds.

The �rst experimental part deals with a study of two bulk Hg1−xCdxTe samples. The study of

bulk systems was motivated by a renewal of interest in this compounds of the physical community, as

HgCdTe bulk was studied thoroughly in sixties and seventies of the XX century. However, most of

those studies were aimed at a development of tunable infrared detectors. Nowadays, as the progress of

crystal manufacturing techniques allowed to grow structures of the highest quality, and the discovery

of topological phases of matter and their strong relation to narrow (and negative) gap semiconductors

took place, it was quickly realized that HgCdTe structures are perfect candidates to investigate the

fundamental quantum and relativistic physics.

Two HgCdTe bulk structures were investigated, both characterized by the cadmium content close

to the critical, meaning that the band gap was designed to be close to zero at low temperature.

One sample had a positive energy gap and exhibited semiconducting behavior, while the other had a

negative gap and exhibited semimetallic behavior. As the temperature increased, the band gap of the

second sample got smaller and �nally experienced a gap closing and reopening with a positive value,

rendering the system semiconducting. The experimental results proved that this behavior is related

to the change of topology of the system � a topological phase transition.

The simpli�ed Kane model, which was used to calculate the band structure of these bulk samples,

required only two parameters � an e�ective rest mass of carriers and their velocity. It turned out

that the rest mass indeed changes sign at the point of the phase transition, but the carrier velocity is

constant for the whole temperature range as well as for cadmium content. This behavior is predicted

by the model, as the velocity depends on the Kane matrix parameter, which is constant for all HgCdTe

compounds, and is temperature independent.

99
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The second part of this thesis, presented in Chapter 4.1, deals with HgTe/CdTe QW system. This

system was the �rst in which the QSH insulating phase was observed experimentally. Since then it

has been intensively studied by numerous groups all over the world. The observation of the QSHE

is a great advance in the ability to segregate electronic currents characterized by an opposite spin.

This e�ect paves the way to new applications, especially for spintronics and quantum computation.

Moreover, 2D Dirac fermions arise at the point of a topological phase transition in this system.

So far, topological phase transitions in HgTe/CdTe QW have been widely studied as a function of

the HgTe layer thickness. In this thesis a di�erent approach was taken � the temperature was used to

tune the band structure of investigated samples. Similarly as in the case of HgCdTe bulk samples, two

samples were investigated. The �rst sample was characterized by a regular band order at the whole

available temperature range. Moreover, the �rst sample was p-type, which allowed to observe three

interband transitions, which provided information about the band gap evolution as the temperature

increased.

The second sample was characterized by an inverted band structure at low temperature, and

underwent a phase transition at the critical temperature Tc = 90 K accompanied by a change of band

order to regular and an arise of Dirac fermions. In the case of the second sample, both intra- and

interband transitions were observed originating from the zero-mode LLs. An anticrossing of those

zero-mode LLs was observed at two temperatures (2 K and 30 K), which is a direct indication of an

inverted band order. This anticrossing was attributed to the existence of BIA in the system. However,

it can be also caused by electron-electron interactions.

A discussion was presented treating about the possibility to approximate the band structure using

the Dirac Hamiltonian, which gives the analytical solutions of the band structure of a HgTe/CdTe

QW. It was stated that the Dirac Hamiltonian is valid and can be used only in the vicinity of k =

0 and for low magnetic �eld, as its results are comparable with the numerical calculations using the

8-band Kane Hamiltonian, which was used to make the calculations for both samples. In the case of

the Sample A, the agreement of the data with the calculations is excellent. However, for the case of the

Sample B, there are visible discrepancies. It was speculated that they can be attributed to electron-

electron interactions or the change of the structure of the sample due to cadmium di�usion into the

barriers. The future experimental plans regarding HgTe QWs deal with studying phase transitions as

a function of pressure.

The third part of this thesis, presented in Chapter 4.2, deals with strained HgTe �lms which

were predicted to be 3D TIs. An application of strain to a HgTe �lm opens up an energy gap as

a consequence of a lowered symmetry. The most widely studied 3D TIs are bismuth-based crystals,

notably Bi2Se3 and Bi2Te3. However, they are characterized by a low crystal quality and a usually

high electron concentration, which is re�ected on transport properties. On the contrary, strained

HgTe �lms are characterized by a high crystal quality, which assures a high carrier mobility and

a negligible parallel bulk conductance. To preserve the crystal quality and the homogeneity of the

strain the thickness of the �lms have to be of the order of few tens of nm. This means that they can

be considered to be in an intermediate state between a QW and a bulk system. On one hand they

resemble a 2D system because of the residual quantum con�nement, which splits energy bands into

subbands. On the other hand they resemble a 3D system because of the fact, that the wave functions

of the surface states are well separated (for samples of thickness higher than 50 nm). Because of this,

there are two valid descriptions of the band structure of these systems � one originates from the QW

approach, the other from the bulk approach.
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Strained HgTe �lms provide a special opportunity to study an evolution of the surface states as

a function of the parameters of the �lm like the thickness and the cadmium content, and external

parameters like temperature and potentially pressure. The study of the surface states might help

to understand their origin and unique properties � spin polarization, robustness against disorder,

e�ective mass of carriers, etc. These systems hold a great potential for the studies of fundamental

science, including but not limited to superconducting proximity e�ects and the long sought Majorana

fermions, which discovery and understanding might be a prominent step in a direction of spintronics

and quantum computing.

Three strained HgTe �lms characterized by di�erent thicknesses (50 nm, 25 nm, and 15 nm) were

investigated. Various thicknesses allow to study how the band structure is in�uenced by the residual

quantum con�nement and how it changes with respect to the interaction of the surface states. So far,

only the results obtained on the 50 nm sample were interpreted, because the remaining LLs calculations

are still in progress. As the band structure is split into subbands due to the quantum con�nement,

and each of the subbands split into separate LLs, the band structure is very complicated. Because of

this, the transmission spectra are very rich in absorption lines. Interestingly, some transitions were

identifed as intraband transitions between the surface states and interband transitions between the

surface states and the bulk states. We could therefore clearly observe the surface states of HgTe-based

3D TIs by magneto-transmission spectroscopy.

The future experimental plans regarding HgTe �lms deal with studying the evolution of the surface

states and phase transitions as a function of cadmium content and/or temperature. This will allow

to understand thoroughly the properties and the origin of those surface states.

Soon after the realization of a topological insulating phase in HgTe/CdTe QW, a similar phase was

proposed and observed in a di�erent system � a InAs/GaSb QW. In this system, the inverted phase

does not appear due to the spin-orbit coupling, but is created in a di�erent way � by a particular band

alignment, where the valence band of GaSb lies higher in energy than the conduction band of InAs.

This e�ect act as a band inversion mechanism. The bulk band gap is assured by the hybridization gap

created by the electron and hole level in the QW. Up to the very recently the only studied InAs/GaSb

systems were two-layered heterostructures. This has some drawback � the presence of SIA, or the

position of Dirac point at k 6= 0.

Our recent proposal was to restore the symmetry in the system by using three-layered structures.

Moreover, in three-layered systems levels of the same energy lie in two QW, the hybridization e�ect

is stronger, which increases an energy gap. If an additional strain is applied, the energy gap might

become even higher than the thermal energy at the room temperature. A short overview and the

preliminary experimental results are presented in Appendix A. These compounds hold vast possibilities

for realization of physics of topological phases, and their manufacturing is easier from technological

point of view than in the case of HgCdTe systems.
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Appendix A

InAs/GaSb Quantum Wells

The �rst system, in which QSH phase was experimentally observed, is HgTe/CdTe QW. It allows

to investigate and understand the physics of topological insulators and phase transitions and is still

a subject of great interest of scientists. However, despite the remarkable progress of development of

the MCT growth method, there still are plenty of technological challenges, preventing from the wide

use of HgTe/CdTe QW in device and industry applications. The �rst most important problem is

the di�culty of processing of mercury-based compounds. Because Hg is highly volatile and quickly

di�uses in temperatures above 80 ◦C [82], it excludes the use of standard processing technologies. The

second important problem is the general use of Hg and Cd elements, which are highly toxic.

An InAs/GaSb QW is a system based on III-V semiconductor groups, which can be used as an

alternative to HgCdTe-based systems. The growth and processing of III-V semiconductors is well

known as well and their toxicity is relatively low compared to HgCdTe. InAs/GaSb QW also exhibit a

band inversion and QSH phase, however, the mechanism behind it di�ers from the one, responsible for

band inversion in HgTe/CdTe QW. Topological insulator state has been already predicted theoretically

[20] and observed experimentally [42] in InAs/GaSb. This chapter contains a short review of the

properties of InAs/GaSb systems with preliminary experimental results obtained by our team. Broader

review can be found for example in the work of Kroemer [125].

A.1 General Properties

There is a group of well lattice matched materials, so called 6.1 Å family, which consists of com-

pounds such as InAs, GaSb, and AlSb. The name origins from a common lattice constant value, which

is similar for all compounds and equals approximately 6.1 Å at the room temperature. InAs, GaSb,

and AlSb crystallize in the zincblende structure. The similarity of the lattice constant allows growing

lattice-matched heterostructures, without strain or other lattice-mismatch defects, like dislocations

etc. The exact values of the lattice constants are 6.0584 Å for InAs, 6.0959 Å for GaSb, and 6.1355

Å for AlSb at 300 K [121].

Both InAs and GaSb are direct-gap semiconductor, with the exact value of energy gap measured at

the Γ point is EInAsg = 415− 0.276T 2/(T − 83) for InAs [122], and EGaSbg = 813− 0.108T 2/(T − 10.3)

for GaSb [123]. AlSb has an indirect gap � the gap measured at the X point equals to EAlSbg =

1696−0.390T 2/(T+140) [124]. The values of energy gaps at 300 K are equal to 350 meV for InAs, 727

meV for GaSb, and 1616 meV for AlSb. This wide range of gaps allows to create high energy electron

con�nement in quantum wells due to the high energy gap in AlSb barriers, which translates to deep
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quantum well with barriers as high as 1350 meV. The values of energy gap and lattice constants of

6.1 Å family are presented on Figure A.1.

Figure A.1: Band lineups in the 6.1 Å family of semiconductors. The colored areas represent the

energy gaps. All energies are in eV.

A.1.1 Carrier Concentration

Because of an extraordinary depth of quantum well, there are multiple sources of electrons, which

can in�uence the carrier density in the quantum well. Consequently, even not-intentionally doped

structures have relatively high carrier concentration, of the order of magnitude of 1 · 1012 cm−2 [126].

This particularly high concentration is mainly caused by three sources � conventional shallow bulk

donors, surface states, and deep donors at or near the interfaces.

• Conventional shallow donors and modulation doping

Because of high barriers a modulation doping technique can be applied in those systems. It

means that the donors are placed in the barrier instead of in the quantum well, and supplied

electrons tunnel into the well leaving the ionized impurities away from the active part of the

quantum well, and consequently reducing scattering and hence enhancing carrier mobility in

comparison with bulk-doped quantum well. This method is widely used in structures, where

both high concentration and mobility matters [125].

• Surface states
The states on the surface also take part in populating the quantum well. Electrons in the

layers, placed outside barriers, can tunnel inside the well. The e�ect exists as a consequence

of the extreme depth of the quantum well itself and strongly depends on the energetic location

of the surface states and the chemical nature of the surface coverage [125]. The top surface

is usually made of either GaSb or InAs cap layers, which prevent against the oxidation of the
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structure. The cap layer can exhibit very high density of states (of the order of 1012 cm−2), at

the energies 0.85 eV below the conduction band edge of the AlSb barrier [127]. As a consequence

the electrons will �ow into the well until the electric �eld in the barrier pulls the surface states

down to the same energy as the Fermi level inside the well. The barrier thickness strongly

in�uences the tunneling, hence can suppress this e�ect.

• Interface donors and defects

Another source of electrons, responsible for such a high concentration, even in low temperature

limit, might be connected with interface donors and/or defects. A study of temperature depen-

dence of the electron concentration suggested that there exist a donor level less than 50 meV

above the bottom of the bulk conduction band of InAs, which implies a level below the bottom

of the quantum well, and below the Fermi level in the well at the observed electron concentra-

tions. But in this case only a small fraction of the donors will be ionized, calling for a donor

a concentration much higher than the observed electron concentrations, on the order of about

3 · 1012 donors cm−2 per well [125]. The nature of these donors is not clear. Kroemer proposed

that they are not ordinary point defects, but are Tamm states at the InAs�AlSb interface [128],

inherent to the band structure of that interface. Alternatively, Shen et al. [129] proposed that

the donors are very deep bulk donor states associated with AlSb antisite defects, that is, Al

atoms on Sb sites.

A.1.2 Carrier Mobility

One of the most interesting properties of InAs is the second highest electron mobility of all semi-

conductors (the �rst being InSb). This is a result of one of the smallest electron e�ective mass, only

0.023 of the free electron mass. This property makes this material very interesting, especially from

a device perspective � high mobility allows to create faster electronics (eg. HEMTs). Also, high mo-

bility improves transport properties � allows to observe quantum e�ects such as Shubnikov-de Haas

oscillations or QHE.

There are multiple factors in�uencing the mobility of carriers in an InAs/GaSb quantum well. The

is a strong dependence on the well width and on the electron sheet concentration, as well as on the

quality of growth. Especially at low temperatures, where mobility is limited by impurity and interface

scattering, the growth quality plays a very important role [130].

• Quantum well width

Both room-temperature and low-temperature mobilities are signi�cantly reduced in narrow

wells due to the dominance of interface roughness scattering. The mobility peaks for well widths

around 125 Å, and then decays again, most probably due to the onset of scattering by mis�t

dislocations nucleated as the quantum well width exceeds the critical layer thickness imposed

by the 1.3% lattice mismatch between InAs and AlSb [131]. As a result, the majority of studies

have used a 15 nm InAs quantum well for transport studies of this systems [132].

• Layers' interfaces
There is an evidence, that the mobility can depend on the interfaces between separate layers

themselves. Tuttle et al. [133] found that because both anion and cation change across an InAs-

AlSb interface, it is possible to grow such wells with two di�erent types of interfaces, one with an

InSb-like bond con�guration, the other AlAs-like. The electron mobility and concentration were

found to depend very strongly on the manner in which the quantum wells' interfaces were grown,
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indicating that high mobilities are seen only if the bottom interface is InSb-like. The AlAs type

of interfaces can introduce a sheet of donor defects, which increase the scattering, hence lower

the mobility [133]. Jenichen et al. examined the interfaces in InAs/AlSb superlattices via X-ray

scattering, and claims that strong interface roughness and intermixing is de�nitely present at

those sites [134].

• Bu�er type
There were studies showing that not only the active part of QW in�uences the mobility and

transport properties. Li et al. [132] showed by magneto-transport, Atomic Force Microscopy and

X-Ray Di�raction that the electron mobility of AlSb/InAs/AlSb quantum well with GaSb bu�er

is higher than that with AlSb bu�er though the surface and crystal qualities of AlSb bu�er are

better than GaSb bu�er. The crystal quality can be increased by improving the growth process.

Because of InAs relaxation on AlSb bu�er, mismatch dislocations will appear in the InAs layer

and the interfaces of InAs QW will get rough, which is suggested as the reason leading to the

lower mobility of InAs quantum well grown on AlSb bu�er than on GaSb bu�er [132].

Thomas et al. [135] investigated this matter as well, and found that GaSb bu�ers provide

atomically �at interfaces on the scale of the electron Fermi wavelength for the quantum wells.

In contrast, AlSb bu�ers generate a very rough interface on the same scale. The low temperature

mobility of their samples with GaSb bu�er (µ = 240000 cm2/Vs) was seven times greater than

of the samples with the AlSb bu�er (µ = 35000 cm2/Vs), for concentration n = 5.5 · 1011 cm−2.

For the concentration of n = 1.3 · 1012 cm−2 the di�erence was a bit smaller, but the mobilities

were enormous µ = 944000 cm2/Vs and µ = 244000 cm2/Vs for GaSb and AlSb, respectively

[130][135][136].

• Electron population

There are generally two ways to change the electron concentration of the sample � with and

without altering the sample structure. The �rst method is doping, which was already mentioned.

Doping with donors, provides additional carriers into the structure, which tunnel into the QW

and increase its carrier density. On the other hand it introduces scattering centers, which

gradually lower the concentration, even with a modulation doping technique [136].

The latter is based on gating technique or photoexcitation e�ects like persistent photoconduc-

tivity e�ect, which will be discussed later. Structure with a gate allow to continuously tune the

carrier concentration in a relatively broad rage. However there is a strong relation between elec-

tron concentration and mobility. Nguyen et al. investigated this dependence in gated InAs/AlSb

quantum wells and found that the dependence is not monotonic � mobility increases as the �rst

subband gets populated, then peaks, and has a minimum when the second subband is populated,

then increases again [130].

A.2 Band Structure

The title of the most bizarre lineup of the 6.1 Å family belongs to the InAs/GaSb heterojunctions.

It was found already back in 1977 by Sasaki et al. [137], that they exhibit a broken gap band ordering

� at the interface, the bottom of the condunction band of InAs has lower energy states than the valence

band states of GaSb, with a break gap of 150 meV. This discovery most likely attracted that much

attention and interest in the entire 6.1 Å family. This particular band ordering was also predicted
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theoretically � in the same year Frensley and Kroemer [138] claimed that there was a possibility

of such a lineup to exist. Also, Harrison using LCAO theory [139] suggested a similar prediction.

Quantum wells of InAs/GaSb sandwiched between layers of AlSb were named broken-gap quantum

wells (BGQW) or composite quantum wells (CQW). The band structure of InAs/GaSb CQW is

presented on Panel (a) of Figure A.2. The valence band of AlSb lies about 0.4 eV lower than the

valence band of GaSb, while the conduction band of AlSb lies approximately 0.4 eV higher than the

conduction band of InAs. As a consequence, AlSb can be used as a quantum well barrier in CQW

systems.

Figure A.2: Panel (a): The structure and energy spectrum of an inverted CQW with E1 < H1.

Panel (b): The energy dispersion of uncoupled E1 and H1 bands (dashed) and coupled (full line). At

the anticrossing point, where n ∝ p, a hybridization gap ∆ opens. The image comes from the Ph.D.

of Knez [140].

The quantum well width governs two fundamentally di�erent regimes of the system. Similarly to

HgCdTe QW the energy position of levels in a QW depends strongly on QW width. However, in the

case of InAs/GaSb CQW, where none of the compounds used has an inverted structure by itself, the

relative position of E1 in InAs well and H1 in GaSb well decides whether the CQW is in an inverted

regime or not. For thin layers E1 lies higher in energy than H1 and the structure is in the normal

state. On the other hand, for su�ciently thick layers the band order is reversed. In the past, the

inverted regime was considered as a semimetallic [141].

Since the transition between an inverted regime and a normal regime has to be smooth and

continuous, there must be a point, where the E1 = H1, so the momentum and carrier energy in the

two wells are close to be equal. In this state the system is strongly coupled, and both the electron states

and the hole states are mixed. This mixing leads to hybridization of the bands or, simply speaking, to

lifting of degeneracy of the levels. As a consequence, in analogy to bonding and antibonding states, a

relativly small (of the order of a few of meV) hybridization gap appears. Thus, the semimetallic band

dispersion relation presented on Panel (b) of Figure A.2 (dashed) becomes nonmonotonic (full line),

with a mini-gap ∆. Because of this, a InAs/GaSb CQW in an inverted regime is not a semimetal,

but has a gap [33]. The presence of the gap means that the bulk of the sample is resisitive, as long as

the Fermi energy lies within the gap, which is the case in a theoretical intrinsic case. The existence

of the gap was discovered experimentally by Yang et al. [34] and Lakrimi et al. [142]. The presence

of the hybridization gap makes this system di�erent from HgTe/CdTe QW. This is a consequence

of inversion asymmetry present in InAs/GaSb CQW � the QW is not symmetrical in the growth
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direction, which is not the case for HgTe/CdTe systems.

A.2.1 Magnetic Field Tunability

Magnetic �eld can be used to induce a electron and hole recombination in GaSb/InAs QW in

inverted regime. There is a set of LLs, which behavior is similar to the zero-mode LLs of HgTe/CdTe

QW. Energies of these levels increase for electrons and decrease for holes as the magnetic �eld gets

stronger. Works of Lo [143] and Smith [144] show that it is possible, by applying external magnetic

�eld, to bring the hole Landau level and the electron Landau level to the same value of energy, thus

e�ectively crossing them and force electrons to recombine with holes, which leads to semiconductor-

to-semimetal phase transition.

A.2.2 Electric Field Tunability

The relative position of the bands can be altered also with electric �eld. Naveh et al. found that

by applying small electric �elds in a growth direction of an AlSb/InAs/GaSb/AlSb QW, any value can

be achieved for such parameters as the energy gaps, e�ective masses, and carrier types and densities

in the material, which is a consequence of a strong electron-hole coupling in this system [145].

The electron and hole levels in this system, when subjected to an external electrical �eld usually

by a metallic gate on the top (and/or the bottom) of the structure, shift in opposite directions,

approaching each other and eventually crossing. In the intrinsic case, thus when nH = nE , Fermi

energy lies somewhere between the �rst electron level (E1) and the �rst hole level (H1), and with

increasing electric �eld H1 crosses it �rst, removing the holes from the system. The E1 follows it at

higher voltages applied between the gate and the channel, depleting completely the region of carriers.

It gives a possibility to control the concentrations of carriers by relatively small electric �eld and

to induce a semimetal-to-semiconductor phase transition [146]. This process is explained in Figure

A.3, which presents self-consistent e�ective bond-orbital results for the band structure under various

applied �elds. For large negative �elds Ev−Ec < 0, the two bands do not overlap (a), and the regular

electron and hole dispersion are obtained. The energy gap in this case is entirely determined by the

magnitude of the electric �eld [145]. If the value of the �eld is increased (towards positive values), the

regime of the positive overlap is reached, and the bands start to interact (b). If the �eld is further

increased, due to the overlapping of the bands, the band structure takes form as previously described

(c,d).

However, to control both the band structure and the Fermi level position, there is a need to use

a two gate con�guration. A top gate and a back gate are used to tune the concentration of electrons

and holes. The two gate con�guration is required because of the screening of top gate induced electric

�eld by electrons in InAs layer. Also, a very important issue is resolved in this way � electron and

hole densities can be tuned almost indepentently, with respect to the total charge in the system. This

idea was used by Cooper et al. [147] to study a coupling of electrons and holes in InAs/GaSb/AlSb

systems as a function of temperature and concentration. The two gate con�guration was used as a

concept in a theoretical work of Liu et al., in which the idea of a topological insulator based on a

InAs/GaSb/AlSb QW was introduced [20].



A.3. TRILAYER QUANTUM WELL 109

Figure A.3: The in-plane band structure of the AlSb/InAs/GaSb/AlSb heterostructure under various

external electric �elds E. Panel (a): Regular band structure. Panel (b): Bands start to interact.

Panels (c,d): Inverted band structure. The image comes from the work of Naveh et al. [145].

A.3 Trilayer Quantum Well

Since the prediction of QSH e�ect in InAs/GaSb CQW most of the investigation considered only

two layered (InAs layer and GaSb) systems. This introduced an inversion asymmetry into the struc-

tures, which does not exist in the case of HgTe/CdTe QW (which is symmetrical). As a consequence,

the crossing of E1 and H1 subbands did not occur at the Γ point of the Brillouin zone [149] (A.2),

which had further implications on the shape of Landau levels.

In order to eliminate the problem of asymmetry in a growth direction, Krishtopenko [148] proposed

to attach an additional layer of InAs or GaSb to the structure, which restores the inversion symmetry

in the system and brings the crossing of the E1 and H1 subbands at the Γ point, as in the case of

HgTe/CdTe QW. The layer order and the band structure for InAs-designed (with an additional InAs

layer) and GaSb-designed (with an additional GaSb layer) quantum wells are presented on Figure A.4.

This new class of structures, based on InAs/GaSb, which di�er from the broken-gap QWs by

the band-gap inversion at the Γ point. As hybridization between electron-like and heavy-hole-like

subbands vanishes at k = 0, the crossing of E1 and H1 subbands at the Γ point results in the gapless

state with 2D massless Dirac Fermionss. The dispersion relation is presented in Figure A.5.

These materials have zincblende lattice structure and direct energy gaps in the vicinity of Γ point,

thus the system can be well described by 8-band Kane model [75], like in the case of a BGQW [20].
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Figure A.4: The energy structure of InAs/GaSb-based systems, with values of energy gaps correspond-

ing to each layer. The conduction band is plotted as a solid blue line, while the valence band is plotted

as a dotted red line. Panel (a): InAs-designed system, Panel (b): GaSb-designed system.

However, trilayer structure can be considered as a double QW with a middle barrier. In the case of

InAs-designed QW, a GaSb layer in the middle plays a role of a tunnel barrier separating two QW for

electrons. On the other hand, GaSb-designed QW has a barrier of InAs in the middle, separating two

QW for holes, being a single QW for electron itself at the same time. The energy levels in the wells

are sensitive to the QW width, like in the case of QW mentioned before. Since the relative position

of E1 and H1 subbands decide whether the whole structure is inverted or not, it means that there is

a possibility to drive the system from inverted regime to normal, simply by changing the QW width.

The bans structure calculations are still ongoing work during the writing of this thesis.

Figure A.5: Dispersion relation of an InAs/GaSb/InAs QW. Due to preserved symmetry, the band

crossing takes place at k = 0. The E1 and E2 bands are plotted in blue, while the H1 band is plotted

in red.
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A.4 Experiment

A.4.1 Samples

The InAs/GaSb/InAs QWs were grown using the MBE technique by Eric Tournié's group in

Institute d'Electronique et des Systèmes in Montpellier. They consist of two main parts, highlighted

in Figure A.6 by dashed rectangles.

• The top region represents an active part of the QW � InAs/GaSb/InAs layers sandwiched

between AlSb barriers. The thickness of each layer was carefully chosen to obtain desired band

structure, considering an e�ect of strain caused by a metamorphic bu�er underneath.

• The bottom region is the metamorphic bu�er [150] which consists of one layer of GaSb on top of

a layer of AlSb, repeated 10 times. This structure allowed to accommodate the growth of InAs,

GaSb, and InAs layers on GaAs substrates.

The whole structure was designed to exhibit high carrier concentration, according to the charac-

teristics given in the overview � the interfaces are InSb-like, the QW width was chosen to preserve

the desired band structure, while minimizing the scattering e�ects. Moreover, a thick bu�er layer is

embedded into the structure, which preserves the high mobility as well. The carrier concentration was

kept as low as possible, which optimizes the mobility and is critical for the purposes of spectroscopy.

Figure A.6: Layer scheme of three investigated InAs/GaSb/InAs quantum wells. The active region

of quantum well was marked by dashed rectangle. Below the quantum well a metamorphic bu�er was

placed, consisting of 2.5 nm layers of GaSb and AlSb (repeated 10 times), which allowed to control the

strain in the structure. The layers thicknesses, corresponding to Samples A, B, and C, are presented

on the right.
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A.4.2 Experimental Details

The magneto-spectroscopy study of InAs/GaSb provides information about the energy structure

of this system, especially related to the hybridization and strain-induced band gap. All experiments

were performed at T = 2 K, in magnetic �elds from 0 T to 16 T. The radiation source was a globar

lamp coupled to a Fourier spectrometer. The spectral range was from around 10 meV to around

100 meV, with 0.5 meV resolution. The infrared transmittance spectra were measured by a Fourier

spectrometer with a Globar lamp as a source of radiation. The system was coupled to a liquid helium

cryostat. The transmission spectra were obtained by dividing the spectra taken at given magnetic

�eld by the spectra obtained at zero magnetic �eld. On each spectra there is a completely opaque

region due to the presence of reststrahlen bands, existing between 32 and 38 meV corresponding to a

phonon absorption of a GaAs substrate. Because of that, the energy regions corresponding to these

bands were covered by grey areas on the spectra.

A.4.3 Results

Sample A

The results of LL calculations for Sample A are presented in Figure A.7. The sample is gapless.

Three bands (E1, E2, and H1) are present. Two intraband transitions are visible, marked in Figure

A.7 by small Greek letters (α1, β1) and solid arrows.

The experimental points and the results of calculated transitions are presented in Figure A.8.

Figure A.7: Landau level graph of Sample A as a function of magnetic �eld at T = 2 K. Vertical

arrows with a corresponding Greek letter represent observed transitions between Landau levels in this

system. Solid arrows (α and β) are interband transitions.
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Figure A.8: Points corresponding to the minima of transmission for Sample A at T = 2 K with curves

showing the calculated transitions as a function of magnetic �eld.

Figure A.9: Points corresponding to the minima of transmission for Sample A at T = 2 K with curves

showing the calculated transitions as a function of magnetic �eld.
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Sample B

The results of LL calculations for Sample B are presented in Figure A.10. The sample is gapless as

well. Three bands (E1, E2, and H1) are present. Three intraband transitions are visible and possibly

one interband, marked in Figure A.7 by small Greek letters (α1, β1, α2, and β2) and solid arrows.

The experimental points and the results of calculated transitions are presented in Figure A.11. There

are only three points corresponding to the interband transition (β2), as it appears at B ≈ 15 T, as is

presented in the inset of Figure A.11. Moreover, the transition α2 is very faint � it is almost invisible

in the waterfall plot in Figure A.12, however, it can be traced on the colormap presented in the inset

of Figure A.11.

Figure A.10: Landau level graph of Sample B as a function of magnetic �eld at T = 2 K. Vertical

arrows with a corresponding Greek letter represent observed transitions between Landau levels in this

system. Solid arrows (α and β) are interband transitions.
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Figure A.11: Points corresponding to the minima of transmission for Sample B at T = 2 K with

curves showing the calculated transitions as a function of magnetic �eld. Inset contains the part of

colormap with marked experimental points, presenting the end of transition α1 (red points) and the

beginning of transition β2 (orange points).

Figure A.12: Points corresponding to the minima of transmission for Sample A at T = 2 K with

curves showing the calculated transitions as a function of magnetic �eld.
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A.5 Summary

This Chapter presented an overview of a di�erent system, after HgTe/CdTe QW, which is a

2D topological insulator. The di�erences between those systems were explained, most notably the

di�erent origin of an inverted band ordering, which does not result from SOC as in the case of

HgCdTe, but from an extraordinary band line-up present in InAs/GaSb systems. Widely known two-

layered systems InAs/GaSb were described as well as the new tri-layered systems InAs/GaSb/InAs

(GaSb/InAs/GaSb) were introduced.

The preliminary experimental magneto-spectroscopy results were shown, which indicate the �n-

gerprint of the massless Dirac Fermions being present in a InAs/GaSb/InAs system. However, more

experiments have to be performed to draw any de�nitive conclusions, preferably with samples with

a broader range parameters (thicknesses of layers, strain, etc) and at higher magnetic �elds. The

new samples will be grown shortly and hopefully they will allow us to understand the physics of TIs

and phase transitions. Moreover, the preliminary calculations show a very weak dependence of the

band structure of InAs/GaSb systems on temperature, which may allow to preserve the relativistic

graphene-like band structure up to higher temperatures.



Appendix B

HgCdTe Bulk

This appendix contains the remaining results of magneto-transport and magneto-spectroscopy

measurements on bulk HgCdTe samples, not shown in Chapter 3.

B.1 Magneto-transport Measurements

To estimate the properties of the samples, like carrier concentration, the transport measurements

were performed at magnetic �eld as a function of temperature. Samples were contacted with indium

balls in a Van der Pauw con�guration and placed in perpendicular quantized magnetic �eld (the

Faraday con�guration).

B.1.1 Sample A

Figure B.1: Longitudinal resistance Rxx of Sample A as a function of magnetic �eld at di�erent

temperatures.
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Figure B.2: Hall resistance RH of Sample A as a function of magnetic �eld at di�erent temperatures.

The values of the carrier concentration were extracted from low �eld measurements.

B.1.2 Sample B

Figure B.3: Longitudinal resistance Rxx of Sample B as a function of magnetic �eld at di�erent

temperatures.
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Figure B.4: Hall resistance RH of Sample B as a function of magnetic �eld at di�erent temperatures.

The values of the carrier concentration were extracted from low �eld measurements.

B.2 Magneto-spectroscopy Measurements

Magneto-spectroscopy measurements were performed at magnetic �elds up to 16 T and in energy

range 80 - 800 cm−1 (≈ 10 - 100 meV) with a 4 cm−1 resolution. The infrared transmittance spectra

were measured by a Fourier spectrometer with a Globar lamp as a source of radiation. The system was

coupled to a liquid helium cryostat. The transmission spectra were obtained by dividing the spectra

taken at given magnetic �eld by the spectra obtained at zero magnetic �eld.

In order to interpret the experimental results, a set of temperature-dependent band structure and

LL structure calculations based on the 8-band Kane Hamiltonian were performed.

On each spectra there is a completely opaque region due to the presence of reststrahlen bands,

existing between 16 and 21 meV and 30 and 37 meV corresponding to a phonon absorption of HgCdTe

layers and a GaAs substrate, respectively. Because of that, the energy regions corresponding to these

bands were covered by grey areas on the spectra.
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B.2.1 Sample A

Temperature 20 K

Figure B.5: Landau level graph of Sample A as a function of magnetic �eld at T = 20 K. Colored

lines represent Landau levels, characterized by a di�erent value of ε, n, and σ, as described in indices

of L on the right side of the graph. The electron band Landau levels (with ε = 1) have a near-
√
B

behavior. The heavy-hole Landau level, plotted in black, is fully degenerated. The vertical arrows

with a corresponding capital letter represent observed transitions between Landau levels in this system.

Solid arrows (A and B) are interband transitions.

Figure B.6: Left panel: Points corresponding to the minima of the transmission of Sample A at T =

1.8 K with �ts showing the expected transition evolution as a function of magnetic �eld. Right panel:

Transmission spectra plotted at magnetic �elds in range from 0 to 13 T, with symbols corresponding

to the transitions from left panel. Symbols represent interband transitions.
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Temperature 100 K

Figure B.7: Landau level graph of Sample A as a function of magnetic �eld at T = 100 K. Colored

lines represent Landau levels, characterized by a di�erent value of ε, n, and σ, as described in indices

of L on the right side of the graph. The electron band Landau levels (with ε = 1) have a near-
√
B

behavior. The heavy-hole Landau level, plotted in black, is fully degenerated. The vertical arrows with

a corresponding capital letter represent observed transitions between Landau levels in this system. Solid

arrows (A and B) are interband transitions, while dashed arrows (C and D) are intraband transitions.

Figure B.8: Left panel: Points corresponding to the minima of transmission of Sample A at T = 100

K with �ts showing the expected transition evolution as a function of magnetic �eld. Right panel:

Transmission spectra plotted at magnetic �elds in range from 0 to 13 T, with symbols corresponding

to the transitions from left panel. Symbols represent interband transitions.



122 APPENDIX B. HGCDTE BULK

B.2.2 Sample B

Temperature 20 K

Figure B.9: Landau level graph of Sample B as a function of magnetic �eld at T = 20 K. Colored

lines represent Landau levels, characterized by a di�erent value of ε, n, and σ, as described in indices

of L on the right side of the graph. The electron band Landau levels (with ε = 1) have a near-
√
B

behavior. The heavy-hole Landau level, plotted in black, is fully degenerated. The vertical arrows with

a corresponding capital letter represent observed transitions between Landau levels in this system. Solid

arrows (A, B, and E) are interband transitions, while dashed arrow (C) is an intraband transition.

Figure B.10: Left panel: Points corresponding to the minima of the transmission of Sample B at T =

20 K with �ts showing the expected transition evolution as a function of magnetic �eld. Right panel:

Transmission spectra plotted at magnetic �elds in range from 0 to 10 T, with symbols corresponding

to the transitions from left panel. Open (full) symbols represent intraband (interband) transitions.
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Temperature 57 K

Figure B.11: Landau level graph of Sample B as a function of magnetic �eld at T = 57 K. Colored

lines represent Landau levels, characterized by a di�erent value of ε, n, and σ, as described in indices

of L on the right side of the graph. The electron band Landau levels (with ε = 1) have a near-
√
B

behavior. The heavy-hole Landau level, plotted in black, is fully degenerated. The vertical arrows with

a corresponding capital letter represent observed transitions between Landau levels in this system. Solid

arrows (A, B, and E) are interband transitions, while a dashed arrow (C) is an intraband transition.

Figure B.12: Left panel: Points corresponding to the minima of the transmission for Sample B at T =

57 K with �ts showing the expected transition evolution as a function of magnetic �eld. Right panel:

Transmission spectra plotted at magnetic �elds in range from 0 to 10 T, with symbols corresponding

to the transitions from left panel. Open (full) symbols represent intraband (interband) transitions.
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Temperature 87 K

Figure B.13: Landau level graph of Sample B as a function of magnetic �eld at T = 87 K. Colored

lines represent Landau levels, characterized by a di�erent value of ε, n, and σ, as described in indices

of L on the right side of the graph. The electron band Landau levels (with ε = 1) have a near-
√
B

behavior. The heavy-hole Landau level, plotted in black, is fully degenerated. The vertical arrows

with a corresponding capital letter represent observed transitions between Landau levels in this system.

Solid arrows (A, B, and E) are interband transitions, while dashed arrows (C and D) are intraband

transition.

Figure B.14: Left panel: Points corresponding to the minima of the transmission of Sample B at T =

87 K with �ts showing the expected transition evolution as a function of magnetic �eld. Right panel:

Transmission spectra plotted at magnetic �elds in range from 0 to 10 T, with symbols corresponding

to the transitions from left panel. Open (full) symbols represent intraband (interband) transitions.
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HgTe Quantum Wells

C.1 Hamiltonians

The complete e�ective Hamiltonian describing HgTe QW near the critical thickness in magnetic

�eld, as described by Bernevig, Hughes, and Zhang [17], is determined by four states |E1,
1
2 〉, |H1,

3
2 〉,

|E1,− 1
2 〉, |H1,− 3

2 〉. With these states acting as a basis, the Hamiltonian of the system in applied

magnetic �eld B⊥ in z-direction takes form:

Ĥ = Heff +HZeeman +HSIA +HBIA, (C.1)

where Heff is given in Equation 4.1 in Chapter 4.1, and the Zeeman Hamiltonian HZeeman can be

written as:

HZeeman =
µBB⊥

2



gE 0 0 0

0 gH 0 0

0 0 −gE 0

0 0 0 −gH


, (C.2)

where µB = e~
2m0

and gE (gH) is the e�ective g-factor for E1 (H1) bands.

In HgTe QWs the inversion symmetry is broken, therefore SIA and BIA terms have to be considered

HSIA =



0 0 iξek− −iχk2
−

0 0 iχk2
− −iξhk3

−

−iξek+ iχk2
+ 0 0

−iχk2
+ −iξhk3

+ 0 0


, (C.3)

Since the zinc-blende crystal structure of HgTe does not preserve the inversion symmetry, an

usually neglected in calculations BIA term has to be included. Moreover, an inclusion of BIA allows

to explain an anticrossing of zero-mode Landau levels. The Hamiltonian of BIA takes form of:

HBIA =



0 0 0 −∆0

0 0 ∆0 0

0 ∆0 0 0

−∆0 0 0 0


, (C.4)
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C.2 Experimental Results

This Appendix presents results of magneto-spectroscopy performed on HgTe/CdTe QWs charac-

terized by thicknesses close to the critical. Those results supplementary to those in the Chapter 4.1.

Magneto-spectroscopy measurements were performed at magnetic �elds up to 16 T and in energy

range 80 - 800 cm−1 (≈ 10 - 100 meV) with a 4 cm−1 resolution. The infrared transmittance spectra

were measured by a Fourier spectrometer with a Globar lamp as a source of radiation. The system was

coupled to a liquid helium cryostat. The transmission spectra were obtained by dividing the spectra

taken at given magnetic �eld by the spectra obtained at zero magnetic �eld.

In order to interpret the experimental results, a set of temperature-dependent band structure and

LL structure calculations based on the 8-band Kane Hamiltonian were performed. The calculations

took into account a tensile strain in the layers resulting from the mismatch of lattice constants of

CdTe bu�er, CdxHg1−xTe barriers, and HgTe QW. The energies of LLs were obtained using an axial

approximation, while the calculations of dispersion relations held also non-axial terms.

On each spectra there is a completely opaque region due to the presence of reststrahlen bands, exist-

ing between 16 and 21 meV and 30 and 37 meV corresponding to a phonon absorption of HgTe/HgCdTe

layers and a GaAs substrate, respectively. Because of that, the energy regions corresponding to these

bands were covered by grey areas on the spectra.

C.2.1 Sample A

Temperature 15 K

Figure C.1: Landau level graph of Sample A as a function of magnetic �eld at T = 15 K. Colored

lines represent Landau levels, characterized by a di�erent value of n, as described as indices of L on

the right side of the graph. The Landau levels with n = −2 and n = 0 are zero-mode Landau levels.

The energy of those levels at zero magnetic �eld is an indication of the band gap. The vertical arrows

with corresponding Greek letters represent observed transitions between Landau levels in this system.

Solid arrows α1, α2, and β indicate interband transitions.



C.2. EXPERIMENTAL RESULTS 127

Figure C.2: Points corresponding to the minima of the transmission of Sample A at T = 2 K with

theoretical predictions of transitions as a function of magnetic �eld.

Temperature 50 K

Figure C.3: Landau level graph of Sample A as a function of magnetic �eld at T = 50 K. Colored

lines represent Landau levels, characterized by a di�erent value of n, as described as indices of L on

the right side of the graph. The Landau levels with n = −2 and n = 0 are zero-mode Landau levels.

The energy of those levels at zero magnetic �eld is an indication of the band gap. The vertical arrows

with corresponding Greek letters represent observed transitions between Landau levels in this system.

Solid arrows α1, α2, and β indicate interband transitions.
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Figure C.4: Points corresponding to the minima of the transmission of Sample A at T = 50 K with

theoretical predictions of transitions as a function of magnetic �eld.

C.2.2 Sample B

Temperature 30 K

Figure C.5: Landau level graph of Sample B as a function of magnetic �eld at T = 30 K. Colored

lines represent Landau levels, characterized by a di�erent value of n, as described as indices of L on

the right side of the graph. The Landau levels with n = -2 and n = 0 are zero-mode Landau levels.

The energy of those levels at zero magnetic �eld is an indication of the band gap. Their crossing

indicates the point of �eld induced semiconductor-metal-semiconductor phase transition, and assures

that the sample is in the inverted band order phase. The vertical arrows with corresponding Greek

letters represent observed transitions between Landau levels in this system. The solid arrows indicates

interband transitions α and α′, while dashed arrows indicate intraband transitions β, γ, and δ.



C.2. EXPERIMENTAL RESULTS 129

Figure C.6: False color map of transmission of Sample B as a function of energy and magnetic �eld

at T = 30 K. Blue color represents areas where transmission is equal to 1, while lightblue/yellow/red

colors indicate where absorption takes place. An anticrossing of transitions originating from the zero-

mode Landau levels is visible close to Bc = 5 T.

Figure C.7: Points corresponding to the minima of the transmission of Sample B at T = 30 K with

theoretical predictions of transitions as a function of magnetic �eld. Full symbols represent interband

transitions, while open symbols represent intraband transitions.
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Temperature 70 K

Figure C.8: Landau level graph of Sample B as a function of magnetic �eld at T = 70 K. Colored

lines represent Landau levels, characterized by a di�erent value of n, as described as indices of L on

the right side of the graph. The Landau levels with n = -2 and n = 0 are zero-mode Landau levels.

The energy of those levels at zero magnetic �eld is an indication of the band gap. Their crossing

indicates the point of �eld induced semiconductor-metal-semiconductor phase transition, and assures

that the sample is in the inverted band order phase. The vertical arrows with corresponding Greek

letters represent observed transitions between Landau levels in this system. A solid arrow indicates an

interband transition α, while dashed arrows indicate intraband transitions β, γ, and δ.

Figure C.9: Points corresponding to the minima of the transmission of Sample B at T = 70 K

with theoretical predictions of transitions as a function of magnetic �eld. Full symbols represent

interband transitions, while open symbols represent intraband transitions. Magenta symbols represent

experimental data where the transitions α and β are indistinguishable.
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Temperature 80 K

Figure C.10: Landau level graph of Sample B as a function of magnetic �eld at T = 80 K. Colored

lines represent Landau levels, characterized by a di�erent value of n, as described as indices of L on

the right side of the graph. The Landau levels with n = -2 and n = 0 are zero-mode Landau levels.

The energy of those levels at zero magnetic �eld is an indication of the band gap. Their crossing

indicates the point of �eld induced semiconductor-metal-semiconductor phase transition, and assures

that the sample is in the inverted band order phase. The vertical arrows with corresponding Greek

letters represent observed transitions between Landau levels in this system. A solid arrow indicates an

interband transition α, while dashed arrows indicate intraband transitions β, γ, and δ.

Figure C.11: Points corresponding to the minima of the transmission of Sample B at T = 80 K with

theoretical predictions of transitions as a function of magnetic �eld. Full symbols represent interband

transitions, while open symbols represent intraband transitions.
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Temperature 100 K

Figure C.12: Landau level graph of Sample B as a function of magnetic �eld at T = 100 K. Colored

lines represent Landau levels, characterized by a di�erent value of n, as described as indices of L on

the right side of the graph. The Landau levels with n = -2 and n = 0 are zero-mode Landau levels.

The energy of those levels at zero magnetic �eld is an indication of the band gap. Their crossing

indicates the point of �eld induced semiconductor-metal-semiconductor phase transition, and assures

that the sample is in the inverted band order phase. The vertical arrows with corresponding Greek

letters represent observed transitions between Landau levels in this system. A solid arrow indicates an

interband transition β, while dashed arrows indicate intraband transitions α, γ, and δ.

Figure C.13: Points corresponding to the minima of the transmission of Sample B at T = 100 K with

theoretical predictions of transitions as a function of magnetic �eld. Full symbols represent interband

transitions, while open symbols represent intraband transitions.
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