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Abstract

This thesis presents an investigation of different topological phases in mercury-cadmium-telluride
(HgCdTe or MCT) based heterostructures. These solid state systems are indeed a perfect playground
to study topological states, as their band structure can be easily varied from inverted to non-inverted,
by changing internal or external parameters.

If a system has an inverted band ordering, its electronic structure has a non-trivial topology. One
cannot change its topological order without closing the band gap, which is inevitably accompanied
with the appearance of massless particles in the bulk. A system, that has an inverted band structure
and a finite gap in which the Fermi level is positioned, is called a topological insulator. These novel
materials are insulators in the bulk, but host gapless metallic states with linear dispersion relation
at boundaries, protected against disorder and backscattering on non-magnetic impurities. These
states arise at the interfaces between materials characterized by a different topological order. A 2D
topological insulator is thus characterized by a set of 1D spin-polarized channels of conductance at
the edges, while a 3D topological insulator supports spin-polarized 2D Dirac fermions on its surfaces.

The 2D and 3D massless fermions have already been demonstrated experimentally in HgCdTe-
based heterostructures. However, the topological phase transitions during which the massless par-
ticles appear remain barely explored. The HgCdTe band structure can be tuned from inverted to
non-inverted using chemical composition, pressure, temperature, or quantum confinement. These pa-
rameters therefore allow to probe the system in the vicinity of different topological phase transitions.
In this thesis, the use of temperature as continuous band gap tuning parameter allows to study the
appearance and the parameters of semi-relativistic 2D Dirac and 3D Kane fermions emerging at the
points of phase transitions.

The systems investigated were Hg;_,Cd, Te bulk systems and HgTe/CdTe quantum wells charac-
terized by an inverted and regular band order, and strained HgTe films which can be considered as
3D topological insulators with a residual quantum confinement. All these systems exhibit topological
properties, and the experimental results are interpreted according to theoretical predictions based on
the Kane model. This thesis is complemented by an overview and the preliminary results obtained
on a different compound — a InAs/GaSb broken-gap quantum well, which was also identified as a
topological insulator. The structures were studied by means of terahertz and mid-infrared magneto-
transmission spectroscopy in a specifically designed experimental system, in which temperature could

be tuned in a broad range.
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Résumé

Cette thése porte sur ’exploration de différentes phases topologiques présentes dans des hétérostruc-
tures & base de mercure, cadmium et tellure (HgCdTe). Ces systémes sont de parfaits cas d’études
des états topologiques dans la matiére condensée. En effet, leur structure de bande peut aisément étre
modifiée d’inversée & non-inversée par le biais de paramétres internes ou externes.

Lorsqu’un systéme présente une structure de bande inversée, il a une topologie non triviale. Il
est impossible de modifier cet ordre topologique sans fermer son gap, ce qui inévitablement entraine
I’apparition de particules sans masse dans son volume. Un systéme présentant une structure de
bande inversée et un gap d’énergie finie dans lequel se trouve le niveau de Fermi, est appelé isolant
topologique. Ce nouveau type de matériau est isolant dans son volume, mais abrite des états mé-
talliques sans gap sur ses bords. Ces derniers ont une relation de dispersion linéaire et sont protégés
des effets liés au désordre et de la rétrodiffusion par des impuretés non magnétiques. Ces états partic-
uliers apparaissent & l'interface de matériaux présentant des ordres topologiques différents. Ainsi, un
isolant topologique 2D se caractérise par des canaux 1D de conductance polarisés en spin a ses bords,
alors qu’un isolant topologique 3D accueille des fermions de Dirac 2D, polarisés en spin, aux surfaces.

L’existence de fermions sans masse 2D et 3D a déja été démontrée expérimentalement. Cependant,
la transition de phase topologique durant laquelle apparaissent les particules sans masse n’a que trés
peu été explorée. Il est possible de modifier la structure de bande de HgCdTe d’inversée & non inversée
par le biais de la composition chimique, la pression, la température ou le confinement quantique. Ces
paramétres permettent ainsi de sonder le systéme au voisinage de différentes transitions de phase
topologiques. Dans ce travail, I'utilisation de la température comme paramétre d’ajustement continu
du gap permet d’étudier au point de transition de phase ’apparition de fermions semi-relativistes de
Dirac (2D) et de Kane (3D) ainsi que leurs propriétés.

Les systemes étudiés au cours de ces travaux de recherche sont des cristaux massifs de Hgl-xCdxTe
et des puits quantiques HgTe/CdTe présentant des structures de bandes inversées et non inversées, ainsi
que des couches minces de HgTe contraintes pouvant étre considérées comme des isolants topologiques
3D ayant un confinement quantique résiduel. Tous ces systémes possédent des propriétés topologiques.
L’interprétation des résultats s’appuie sur les prédictions théoriques basées sur le modéle de Kane.
En annexe, une vue d’ensemble des puits quantiques composites InAs/GaSb, structures également
identifiées comme isolants topologiques, est présentée, comportant les résultats préliminaires obtenus
sur ces derniéres.

Toutes les structures ont été étudiées par magnétospectroscopie en transmission dans les domaines
de fréquence terahertz et infra-rouge moyen a ’aide d’un dispositif expérimental spécifiquement congu

pour permettre des mesures sur une large plage de températures.
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Chapter 1

Introduction

Since the dawn of science, people always wanted to encounter new frontiers and cross them,
expanding the boundaries of the universal knowledge. Even in the modern times, it is still our duty
to explore the matter around us and the laws governing it. Although throughout the XIX and XX
century, chemistry succeed in finding and classifying most of the elements — building blocks of matter,
there is still plenty of work to do in discovery and classification of the distinct states of matter, called
phases. Matter in the quantum approach can form different phases, such as crystalline solids, magnets
and superconductors.

Nowadays, the interest of a part of condensed matter physics is focused on a discovery and char-
acterization of novel phases and particles, which appear at the point of phase transitions in solid
state materials. These particles appear generally when matter undergoes a specific transition be-
tween different quantum phases. The particles often behave in the most uncanny manner — like the
Dirac fermions, which behavior mimics the behavior of relativistic particles, or the exotic Majorana
fermions, which are their own antiparticles. These kind of excitations and more can be realized in

various condensed matter systems.

1.1 Topological States of Matter

One of the most remarkable achievements of condensed matter physics in the recent times is the
classification of quantum states of matter by the principle of spontaneous symmetry breaking [1]. The
pattern of symmetry breaking led to a unique concept of order parameter, which can be understood
in terms of the famous work of Landau-Ginzburg [2], where the notion of the effective field theory is
described. The effective field theory is determined by the general properties like the dimensionality
and symmetry of the order parameter, and can be used to give a universal description of quantum
states of matter.

The following examples can be given to better understand the concept of states of matter and
symmetry breaking: a crystalline solid breaks translation symmetry, despite the fact that the interac-
tion between its atomic cells is translationally invariant. A rotational symmetry in magnetic systems
is spontaneously broken, even though the fundamental interactions are isotropic. A superconductor
breaks the more subtle gauge symmetry, which leads to phenomena such as flux quantization and
cooper pair formation [3].

The concept of symmetry breaking and local order parameter used to describe the phase transition

is well accepted. However, it fails to explain some interesting phenomena such as the integer Quantum
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Hall Effect (QHE) [4] and many body phases of the fractional QHE [5]. The study of these effects
ultimately led to a new paradigm in the classification of condensed matter systems — the concept of

topological order [6] [7].

1.1.1 Quantum Hall Effect

An electronic band structure of a given system at high magnetic field forms a set of distinct Landau
levels. The way how levels are occupied determines whether a current can flow through the system
or not. According to the standard band theory, which successfully explains most of the electrical
properties of solids, there should be no current flowing through the sample if the chemical potential of
the system lies between Landau levels. On the other hand, if the chemical potential crosses a Landau
level, the current can flow.

Yet, a system in the quantum Hall state behaves in a different manner. Even if its bulk is insulating
(there is an energy gap between the highest occupied band and the lowest empty band), the electrical
conductivity is nonzero. The electric current is still carried along the edges of the system, forming
discrete channels of conductance. Those edge states are chiral — the direction of current propagation
depends on the direction of magnetic field. The current in the channels avoids dissipation and has a
very precise value of resistance, giving rise to QHE.

The quantum Hall state turned out to be the very first example of a quantum state being topo-
logically different from all other states of matter known before. The state in which the quantum Hall
occurs defines a specific topological phase, meaning that some particular fundamental properties are
insensitive to smooth changes in general parameters of the system. The very fundamental reason for
such a quantization is the existence of topological invariants — in the case of the QHE such an invariant
is the electrical conductance, which takes values only of integer units of e?/h, and is independent, on
the type of material investigated. Moreover, it does not change (is invariant) with smooth variations

of material parameters — it can be considered as a non-local order parameter of the system.

1.1.2 Topological Invariant

Topological invariant, also called Chern number, was connected for the first time with the quantized
value of Hall resistance by Thouless et al. [7]. The idea is related to a specific phase that is acquired
by the Bloch wave functions of bulk electrons as the wave-vector k varies over the boundary of the
Brillouin zone. This phase was named Berry phase, after Sir Berry, who described it in 1984 [8]. The
Chern number is defined as a sum of the Berry phases over all occupied bulk bands, and is strongly
related to the number of conducting edge modes defining the Hall conductivity in the quantum Hall
regime. This means that the topological properties of the edge channels are directly related to the
bulk. This relation is called the bulk-boundary correspondence and is necessary for understanding
of the topological insulators.

The topological invariant was introduced as a mathematical concept used to classify different
geometrical objects into broad classes. An example of such invariant might be a number of holes on
a geometrical surface. The most famous illustration of this geometrical analogy is a coffee mug and a
torus. Both of them are classified to the same topological class because both of them possess exactly
one hole. Moreover, one can be deformed, via a smooth transformation, into the other, and vice-versa;
a sphere can be smoothly deformed into an ellipsoid, because they share the same number of holes

(zero), etc. Topology tends to disregard the small differences of objects and focus on their general
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properties. In this context the quantized conductance of quantum Hall state, which can be found in

a variety of materials of different shape, remains unchanged — is invariant.

1.1.3 Topology in Condensed Matter

The connection between geometrical classes of objects and condensed matter physics is indirect
— topology in the solid state physics has very little to do with a shape of considered material, and
definitely the subject is much broader than just the QHE. Those two disciplines were probably first
linked for study of topological insulators by the works of Berezinski [9][10], and Kosterlitz and Thouless
[11]. Tt is worth highlighting that a Nobel Prize in Physics in the year 2016 was divided — one half was
awarded to David J. Thouless, the other half jointly to F. Duncan, M. Haldane, and J. M. Kosterlitz
for theoretical discoveries of topological phase transitions and topological phases of matter.

In topological geometry there are surfaces, holes, and smooth transformations of surfaces, which
do not require tearing the surface or making holes in it. In condensed matter Hamiltonians are used
to describe any system, providing information about its band structure and energy gaps (which may
play a role of holes in geometry). There are always ways to transform a given Hamiltonian into a
different one, by changing some parameters that the Hamiltonian depends on. If the transformation
is smooth in a sense that it does not require a closing of a gap (an equivalent of creating a hole in
geometry) an any point, then the transformation preserves the topology of the system. For example
— it is impossible to transform a sphere into a torus without tearing its surface. In the same way it is
impossible to transform a band structure of a system from a topological insulator phase into a trivial
insulator phase without closing the bulk gap.

The name and the idea of topological insulators can be traced back to the works of Kane and
Mele, where an universal concept of identifying another topological index (invariant) was described
[12]. They proposed a realization of such a system in graphene [13], where the spin-orbit coupling
(SOC) opens a band gap, rendering the bulk of the sample insulating. In a similar way magnetic
field suppresses bulk conductivity in QHE. However, SOC does not require an application of external
magnetic field. Nevertheless, at a boundary of this system a set of topologically protected edge
states should emerge, being analogous to the states of the QHE. The difference is that these states
are protected by a time-reversal symmetry, thus they are not chiral, as chirality is forbidden, but
helical (spin-polarized). That is why the effect of emergence of spin-polarized quantum Hall edge
states without magnetic field was called the quantum spin Hall effect (QSHE), and a 2D topological
insulator, in which the QSHE occurs — a quantum spin Hall (QSH) insulator.

However, the proposed realisation of the QSHE in graphene turned out to be unrealistic, because
the energy gap opened by SOC is extremaly small, of the order of 1 peV [15][16]. Finally, in 2006,
QSHE was predicted to exist by Bernevig et al. [17][18] in a HgTe/CdTe quantum well (QW) system.
One year after the theoretical proposal of Bernevig, the Molenkamp’s group at the University of
Wiirzburg fabricated devices and performed the first transport experiments showing a signature of
the QSH insulator phase [14]. Their work showed that for thin quantum wells with well width d
< 6.3 nm, the insulating regime exhibits a conventional behavior of neglectable conductance at low
temperature. However, for thicker quantum wells (d > 6.3 nm), a nominally insulating regime exhibits
a plateau of residual conductance of value close to 2¢2/h. The residual conductance was independent
on the sample dimensions, indicating that it is caused by the edge states [14].

Low temperature ballistic transport via edge states can be understood within a basic Landauer-

Biittiker [19] framework, in which the edge states are populated adequately to the chemical potential.
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Figure 1.1: Panel a) Schematic of the spin-polarized egde channels in a quantum spin Hall insulator.
Panel b). The longitudinal resistance of various normal (I) and inverted (II, III, and IV) quantum
well structures as a function of gate voltage, measured for B=0 T at T = 30 mK. The image comes
from the work of Kénig et al. [14].

As a consequence, conductance is quantized and equal to €2 /h for each set of edge states. Furthermore,
the residual conductance is destroyed by an application of small external magnetic field. A quantum
phase transition at the critical thickness, d. = 6.3 nm, was also determined independently from the
insulator-to-semimetal phase transition induced by magnetic field. After the prediction of topological
insulating phase in HgTe/CdTe quantum well, a similar phase was predicted by Liu et al. [20] in an
InAs/GaSb, and strained GaAs [18].

The initial findings of 2D topological insulators were followed by a prediction of the 3D topolog-
ical insulating phase in the Bi;_,Sb, alloys for a specific compositions z [22], and shortly after the
topologically nontrivial surface states were observed by the angle-resolved photoemission spectroscopy
(ARPES) by Hsieh et al. [23]. Similarly, the topological insulators in 3D were predicted in BisTes,
SboTes [24] and BisSes [24][21] alloys. These compounds exhibit a large bulk band gap and gapless
surface states consisting of a single Dirac cone. Xia et al. [21] and Chen et al. [25] observed a linear
dispersion relation of this states using ARPES (Figure 1.2). However, Bi-based compounds often
suffer from low mobility, caused by high unintentional doping [26], which makes the observation of
surface states difficult due to a high bulk conductivity [27].

On the other hand, a semimetallic HgTe crystal is characterized by a very high crystal quality.
Under applied strained it is predicted to belong to 3D TIs [28]. In 2011, Briine et al. proved that
strained films of HgTe indeed exhibit a TI phase [27], by performing magneto-transport and ARPES

measurements.

1.1.4 Properties of Topological States

Interesting phenomena take place at a boundary of two materials characterized by a different
topological number, such as Chern number. The best description can be found in [29], which explains
that the presence of the edge states is a fundamental aspect of many topological insulators. The
argument revolves around a direct observable manifestation of a Chern number — Hall conductance.

Given a set of two insulators (each with a different value of the Chern number) put in a close
proximity (so they have a common boundary), and the two insulators extend to infinity (away from
the boundary). The Chern number is always integer, defined separately on both sides of the interface

between the two insulators. It cannot be changed unless the bulk gap closes and reopens again with
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Figure 1.2: ARPES measurements of BixSes (111) evidencing the surface states with a linear energy

dispersion, forming a unique Dirac cone in the bulk near the I' point. The image comes from the work
of Xia et al. [21].

a different Chern number on the other side. This means that the boundary region connecting two
insulators with different values of Chern number must possess a gap-closing and gap-reopening point
somewhere on it — which forms precisely an edge mode. Otherwise, the whole space would be gapped,
which by definition means that the Chern number in the whole space would be the same, which does
not fulfill the assumptions. This kind of considerations can be applied to any boundary region between
two topologically different insulators, as long as the boundary holds the symmetry that protects the
bulk-insulating states.

These gapless states, existing at the bonduary (egde in 2D, surface in 3D) of a topological insulator,
lead to the existence of conducting states with predicted properties unlike any other electronic systems,
like a vanishing effective mass and a relativistic (linear) dispersion relation. The effective mass in
electronic band in the inverted regime is negative. This is a consequence of the shape of a band, but
can also be understood in a relativistic approach. Einstein, in his famous equation, stated that energy
is proportional to mass, thus in a system with a negative energy gap the mass should be negative.
When the bands tend to join continously with a positive gap insulator at the boundary, the energy
gap and the effective mass switches to positivie. The transition has to be smooth, therefore going
from negative to positive value at some point the system has to have a gap closure, when the effective
mass collapses as well. At this point the particles have to be described by the relativistic equation

with a linear dispersion relation [30].
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1.2 This Work

At the beginning of this section a history of studies and discoveries related to selected areas of
topological insulators will be presented, starting where the previous section finished — at the first
discoveries of 2D and 3D topological insulators. The covered areas will deal with the most promi-
nent features of topological insulators and the development of related technology and experimental
techniques.

The first paragraph will describe the experiments confirming the properties of the edge channels —
like quantized conductance, helicity, lack of dissipation, and spin polarization. The second paragraph
will focus on efforts concerning the amplification of the bulk band gap in order to lower its conductivity
and to highlight the influence of the edge channels on the total transport properties of a given system.
This is related but not limited to the strain engineering, which allows to open the bulk band gap.

Finally, a brief description of phase transitions will be given, which is directly related to the subject

of this thesis.

1.2.1 State of the Art

Edge Channels

The discovery of the QHE [4], in which the conductance is quantized, was a surprise to the physical
community. This effect occurs in layered metallic structures at high magnetic fields. As a result,
conducting one-dimensional channels develop at the edges of the sample. In each of the channels the
current flows only in one direction and its conductance is quantized, which is a sign of one-dimensional
transport [31]. Moreover, the current flowing through these edge states is resistant to scattering. The
value of the quantum Hall conductance is strictly connected to the number of edge channels in the
sample. Before the discovery of QSH insulators, the existence of a state exhibiting the quantum Hall
conductance was limited to low temperatures and high magnetic field, which was a formidable obstacle
to overcome in terms of possible applications.

In the QSH phase the conductance of the edge channels is quantized. The time reversal symmetry
requires the edge channels to be helical, which means that electrons with spin up and spin down
propagate in opposite directions along the edge of the sample with conserved helicity. As a conse-
quence, carriers on time-reversed paths around a non-magnetic impurity in the helical edge interfere
destructively, which results in a zero probability of backscattering. This property was predicted by
Murakami et al. [32], Kane and Mele [13], and Bernevig et al. [18].

A detection of the edge states is an experimentally difficult task. In an ideal QSH phase the current
is carried only via the edge states while the bulk is fully resistant. In practice however, the band gap
is small, usually a few meV (= 4 meV for InAs/GaSb QW [33][34], =~ 15 meV for HgTe QW [14]).
Because of that, assuring the low temperature of measurements is essential in order to prevent thermal
excitations of electrons. Moreover, a processing of samples is required — only gated structures have
the possibility to tune the chemical potential with enough accuracy into the band gap. Growing the
structures where the chemical potential intrinsically lies inside the band gap is a virtually impossible
task.

Konig et al. [14] observed for the first time quantized conductance in a HgTe QW in a nontrivial
regime, which was the first indication of the existence of the edge channels. Later, in 2009, helicity
and dissipationless of the channels was confirmed by studies of a nonlocal transport on multiterminal

devices carried out by Roth et al. [35] and Biittiker et al. [36] (focus paper). However, a direct
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evidence of the spin polarization of helical states was still missing.

The existence of the spin polarization of the edge states was confirmed for the first time by Briine
et al. [37]. By using specially-designed "H-shaped" HgTe QW-based structures, it was possible to
detect the spin polarization of the QSH edge states via the inverse spin Hall effect [38][39]. The
investigated structures were in a two-gate configuration, and could be tuned locally from a metallic
state into a QSH state, as the carrier concentration in two legs could be adjusted separately. This
configuration allowed the metallic state to act as a source of spin-polarized carriers and the QSH state
as a detector, and vice-versa.

In the case of InAs/GaSb QWs the situation is more complicated. Except of the quantized chan-
nel conductance, there are evidences of a residual bulk conductivity, even at very low (20 mK) tem-
peratures. Knez et al., having studied a set of InAs/GaSb samples with various dimensions and
length /width ratios, was able to identify a contribution of the edge channel transport, characterized
by a conductance comparable with the expected value. However, the the highest observed resistance
was 2-3 times smaller than h/2e?, which can be attributed to the conductivity of the bulk of the
order of 10e?/h [40]. Theoretical investigations of Naveh and Laikhthman [41] concluded, that even
a finite-level broadening due to the carrier scattering could result in non-zero conductivity, even at
T=0.

Later, in 2011, Knez et al. remarked that edge modes persist alongside the conductive bulk and
show only a weak magnetic field dependence. This decoupling of the edge from the bulk is a direct
result of the gap opening, which takes place away from a center of the Brillouin zone and, as a
consequence, there is a large disparity in Fermi vectors between bulk and edge states. This leads to
a qualitatively different QSHI phase than in the case of a HgTe/CdTe QW, in which the gap opens
at the center of the zone [42]. By performing magnetotransport measurements, Knez concluded that
despite the fact that conductive bulk allows edge electrons to tunnel from one side to another, the
probability of this effect to occur is reduced by a large Fermi wave vector mismatch. The probability
of scattering of electrons between the edges is increased if a weak disorder or scattering interactions
are taken into account. In a theoretical work Zhou et al. [43] found that the edge states on the
two sides can couple together to produce a gap in the spectrum. As a result, the single electron
elastic backscattering of the edge states is no longer forbidden, and the edge states are not protected
completely by the time-reversal symmetry.

Up to that moment, because of the strong bulk influence in electron transport, all the evidences
of the quantized edge channels were indirect and unclear. A proposed solution to this problem was
to change the transport properties of the bulk, while preserving the conductance of the edge states.
There have been several methods applied so far. Suzuki et al.[44] performed a systematic study on a
set of specially designed six-terminal small Hall devices with a doping layer of beryllium in the QW
barrier. The doping allowed to lower the carrier concentration and place the Fermi level closer to the
energy gap. As a result, it was possible to tailor the structure to exhibit conducting edge channels
while maintaining the gap in the bulk region. Du et al. [45] implemented a Si doping directly in
the QW, at the interface of InAs and GaSb layer. Silicon acts as a donor in InAs and acceptor in
GaSb, inducing a disorder in the structure. Generally, a disorder reduces transport properties of a
structure. However, the edge states are topologically protected in nature, therefore the disorder has
a small impact on their existence and transport properties. As a result, the carrier mobility in the
bulk is greatly reduced. This idea was followed by Knez et al. [46], who studied InAs/GaSb QWs
in a disordered regime. A similar concept to suppress the bulk conductivity was implemented by

Charpentier et al. [47]. However, his idea was to use a gallium source with impurities, which has a
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direct influence on the transport properties of a structure. He compared two sources of gallium and
obtained drastically different results in terms of mobility. The sample grown using "low mobility"
gallium had more than one order of magnitude lower mobility that the sample grown using "high
mobility" gallium.

A remarkable evidence of the edge channels was provided in 2013 at Stanford by a use of a
micrometer SQUID (Superconducting Quantum Interference Device) loop [48] to directly image the
current density in a HgTe QW [49] and in 2014 InAs/GaSb BGQW [50]. It was shown that the
current in the sample flows via the edge states only if the structure is in an inverted regime, which is
presented in Figure 1.3 for the case of an InAs/GaSb system. The edge conductivity persisted despite
the fact that the sample was much bigger than the ballistic limit (around 2 pm [42]), even at higher
temperatures (up to 30 K).
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Figure 1.3: Flux and current maps in a four-terminal device made from a Si-doped InAs/GaSb quantum
well. Panel (a): Schematic of the device. Si doping (shown in orange) suppresses the residual bulk
conductance in the gap. Panel (b): Schematic of the measurement. Alternating current (orange
arrows) flows from the left to the right on the positive part of the cycle. A woltage (V,) applied to
the front gate (yellow box) tunes the Fermi level. The SQUID’s pickup loop (red circle) scans across
the sample surface, with a lock-in detection of the flux through the pickup loop from the out of plane
magnetic field produced by the applied current. Panel (c): Four-terminal resistance Ri4 23 = Vag/I14
as a function of V,, showing both the upwards (black) and downwards (gray) gate sweeps. R4 23 is
mazimized when the chemical potential is tuned into the gap. Pamnel (¢, d): Flux images for the
sample tuned into (d) the bulk gap, V, = —2.35 V, and (e) the n-type regime, Vy; = 0 V. The image
comes from the work of Spanton et al. [50].
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Strain Engineering

Despite the numerous efforts in increasing of the bulk resistivity, the residual conductivity persists
even at low temperatures. This limits a possibility to observe the special properties of the edge
channels only to cryogenic temperatures for both HgTe/CdTe and InAs/GaSb QW systems. The
energy gap in the case of HgTe/CdTe is around three times larger than in InAs/GaSb, which puts it
in a privileged position, as the influence of the bulk on the sample conductance can be neglected at
low temperatures [14].

In order to decrease the bulk conductivity (by enlarging the band gap) an implementation of a
strain engineering was proposed. A band gap in InAs/GaSb originates from a hybridization of electron
and hole levels. However, a strength of this effect strongly depends on an overlapping of electron and
hole wave functions. Electrons and holes exist in separate layers, thus a spatial separation reduces the
overlapping and the hybridization gap as a consequence. The overlapping can be improved by making
the layers thinner, however it can be done only up to a point where the structure has an inverted
band ordering. Further decrease of thickness of the layers results in a normal band ordering.

One of the possible solutions to this issue was proposed [51] by Smith and Maihiot in 1987. They
studied inverted InAs/GaSb superlattices for infrared detectors. They implemented a strain in the
structure by alloying GaSb with InSb (which has lattice constant around 6.4 A). The strain in a
growth plane shifts an energy of the conduction band in InAs downwards, while an energy of the
valence band in InGaSb splits into a heavy hole level and a light hole level. The energy of heavy
hole level is higher than the original top of the valence band in pure GaSb. As a consequence, the
InAs/InGaSb structures can be grown thinner to achieve the stronger overlapping of the bands, while
maintaining the same (inverted) energy structure.

This idea was implemented and further developed by Du et al. [52]. An investigation of samples
based on InAs/In,Ga;_,Sb with 2 = 0.25 allowed to induce an enchanced interacton of wave functions
of electrons and holes, which resulted in an increase of the hybridization gap from around 4 meV up to
even 12 meV. The crystalline stucture remained coherent across the heterostructure interfaces despite
the 1.2 % in-plane strain. As a consequence, transport measurements revealed for the first time an
existence of a truly insulating hybridization gap at low temperature [52]. A similar investigation was
carried out by Akiho et al. [53], who used structure with z = 0.25 indium content as well but different
thicknesses of the layers, and obtained a similar increase of a hybridization gap, estimated to be equal
to 10.8 meV. Akiho also presented calculations for different indium contents, and claimed that it is
possible to increase the hybridization gap even more, up to 25 meV, for 2 = 0.25 [53], by inducing a
2.45 % strain.

Strained HgCdTe layers
The studies conducted in 1985 by Volkov and Pankratov [54] on strained HgTe/CdTe quantum wells
revealed an increase of energy gap and an emergence of the interface states which lie within the gap.
Bernevig, Hughes, and Zhang [17], as well as Fu and Kane [28] identified the strained HgTe films as
a 3D topological insulators. Shortly after, Dai et al. [55] published results of numerical calculations
supporting the existence of boundary states in a strained HgTe film. These findings were followed by
ARPES measurements [37] [56], reporting an observation of the surface states and an opening of the
gap between the light-hole and the heavy-hole bands.
A standard approach to the strain engineering of HgTe involves a use of MBE grown substrates
based on pure CdTe and Cdg.gsZng.osTe. Both of those materials have the lattice constants larger

than HgTe, which results in a tensile strain in the epilayers. Under such conditions, the largest gap
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achieved are F; = 17 meV and 25 meV for QWs grown on CdTe and Cdg.gsZng.04Te, respectively
[57]. In order to obtain a larger gap, a stronger strain is required. However, highly strained structures

often suffer from a low crystal quality.

The idea to deal with this problem, implemented by Leubner [58] et al., was to use strained-layer
superlattices based on CdTe-Cdg 57Zng 5Te. These superlattices, grown on GaAs substrate, provided
a straigthforward control of the strain in the following HgTe layers. This allowed to apply a tensile
or compressive strain at will. Out of three samples studied by Leubner, two had almost the same
thickness (= 15 nm, which is well within the inverted regime), but due to the strain their properties
differ significantly. The third one was grown thinner (= 7.5 nm) and with a different composition of
barriers. The comparison of the samples characterized by a similar thickness revealed that the strain
in the layers primarily affects a shape of the valence band. The tensile strain induced an overlap of
the valence band and the conduction band, which resulted in a phase transition from a topological
insulator to a topological semimetal. At the same time the sample with compressive strain remained
a topological insulator with an enlarged band gap up to 17 meV. The band gap in the third sample,
characterized by even stronger compressive strain, was enlarged up to 55 meV, which is well above

the thermal energy at the room temperature (=~ 26 meV at 300 K) [58].

Topological phase transitions

Phase transitions give a special possibility to study the topological states of matter, as they grant
a direct access to the physics occurring in both phases and give a clear evidence of the differences
between them. The study of phase transitions in topological insulators began with a theoretical work
of Bernevig [17] et al., as he proposed that HgTe/CdTe QW can be tuned via a topological transition
from a nontrivial phase to a trivial one, just by varying the QW width. The idea is presented in Figure
1.4. The edge channels with well defined conductivity appear only if the system is in an inverted band
gap regime, which takes place for a specific range of QW widths. At the critical thickness the phase
transition occurs, and the system changes its phase to a semiconducting with a positive band gap.

This transition causes the edge channels to vanish.

However, long before that, in the early sixties, there were many works devoted to studies of an
inverted band structure of bulk HgCdTe systems and its properties. Even back then it was realized
that by varying the chemical composition of the structure, mainly the cadmium content, it is possible
to change the band order of the system from semimetallic (for low Cd content) to semiconducting
(for high Cd content). This subject will be broader discussed in Chapter 3. There are more systems,
which can exhibit a phase transition driven by a variation of a chemical composition, like topological
crystalline insulators Pb;_,Sn,Te or (Pb;_,Sn,Se), which were studied by ARPES measurements by
Xu et al. [59], and by magnetooptics by Assaf et al. [60] and Phuphachong et al. [61] from Guldner’s

group.

Phase transitions can be induced not only by a strain and a change of a layer thickness and/or
chemical composition. There are far more factors like electric and magnetic field, temperature, pres-
sure, etc. Some of them will be described in this thesis. Recently, there have been multiple ideas to
induce and investigate topological phase transitions. One of the most important is to use tempera-
ture as an external parameter driving the HgTe/CdTe QW from a topological insulator phase to a

semiconductor phase by studying electrical properties in both phases [62].
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Figure 1.4: Panel A) Experimental setup of a siz-terminal Hall bar showing pairs of edge states, with
spin-up states in green and spin-down states in purple. Panel B) A two-terminal measurement on
a Hall bar would give Gpr close to 2¢?/h contact conductance on the QSH side of the transition and
zero on the insulating side. In a siz-terminal measurement, the longitudinal voltage drops us — pu1 and
s — p3 vanishes on the QSH side with a power law as the zero temperature limit is approached. The
spin Hall conductance has a plateau with the value close to 2¢?/h. The image comes from the work of
Bernevig, Hughes, and Zhang [17].

1.2.2 Scope of this Thesis

The principle idea behind this thesis is to demonstrate the possibility to investigate the topological
insulators and other narrow-gap semiconductors/semimetals by the means of THz spectroscopy. The
systems under the scope of this work are composed of three kinds of mercury-cadmium-telluride
heterostructures, which were chosen accordingly to expose some of the topological properties described
before.

Chapter 2 is divided into two parts. The first part introduces the actual methods of investigation.
It starts with an overview of the interactions of matter with light through the absorption coefficient. It
is explained that the Fermi Golden Rule and optical joint density of states are crucial for understanding
of the mechanism of absorption. The density of states for systems with parabolic and linear dispersion
relation is calculated, as well as the its dependence on magnetic field. The second part is where the
experimental set-up is described and the general principles of the Fourier spectroscopy are briefly
explained with an insight how to read and interpret the results.

Chapter 3 presents the first investigated system — a set of two genuine HgCdTe bulk samples
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with thickness of few microns. One of the samples is a positive gap, thus is a regular semiconductor.
The other is semimetallic at low temperatures and undergoes a temperature induced semimetal-to-
semiconductor phase transition. In this chapter an evolution of the band structures of the both
samples is presented, and a special attention is put on the point of phase transition, in which the
quasi-relativistic Kane fermions arise.

Chapter 4 is divided into two parts. The first part (4.1) gives the details about the second investi-
gated systems — a set of two HgTe/CdTe QWs with thickness close to the critical, and are referred to as
narrow QWs (or simply QWs). These QWs were grown having a well-chosen set of parameters in order
to investigate the possibility to observe a temperature induced topological insulator-to-semiconductor
phase transition. Again one of the samples is used as a reference and has a positive band gap at
the whole temperature range, while the other undergoes a topological phase transition at the critical
temperature, characterized by an appearance of the Dirac fermions.

The second part (4.2) overviews the third of investigated systems — a set of three HgTe thick QWs
(or films) with different thicknesses above the critical. The films were grown with a strain, which
opened the bulk band gap. In this way a semimetallic structure becomes a topological insulator. The
thicknesses of the samples are between 15 nm and 50 nm, which means that these systems are in the
intermediate state between QW and bulk — are referred to as 3D systems by the literature, however
a quantum confinement is still present. These systems give a special opportunity to investigate the
physics of HgTe/CdTe interface states, and their possible coupling with bulk states.

At the end, a brief summary with a conclusion and some perspectives and ideas for future work
are presented. Some of which are related to another solid state system, which was identified as a 2D
topological insulator — an InAs/GaSb QW. An overview and the first experimental results obtained

on this system are presented in Appendix A.



Chapter 2

Optical Properties of Matter

In this chapter the principal properties of matter, related to optical phenomena, are presented.
From the point of view of spectroscopy, an interaction between light and solid state systems is crucial.
This chapter explains the mechanism of an absorption of light inside a solid state system via optical
transitions, which is based on two pieces. The first piece depends on a probability of transition, while
the second is based on an optical joint density of states, and its dependence on external conditions
like temperature and magnetic field.

The chapter starts with an introduction of an absorption coefficient via the electromagnetic wave
equation. Later, a probability (also called rate or strength) of an optical transition is explained
via a perturbation Hamiltonian. This probability, related to the Fermi Golden rule, is based on an
interaction of quantum states taking part in transitions.

Further, the density of states for all-dimensional systems is presented for linear and parabolic
electronic dispersion relations, and is explained how does it change while magnetic field is applied. All
the concepts in this chapter are presented in a rather qualitative way, under two assumptions. The
first assumption is that all the transitions are direct — they take place at & = 0, which is valid since
the momentum of a photon is negligible in comparison to the momentum of an electron. The second
assumption is that the fields of an electromagnetic wave are small, therefore the calculations require
only terms linear with E and B. This assumption is valid, because the only sources of light intense
enough to be considered in terms of the nonlinear optics are the strongest lasers, usually working in

a pulse mode, which are not in the scope of this work.

2.1 Review of Fundamental Relations for Optical Phenomena

The absorption spectroscopy allows to investigate an energy band structure, impurity levels, lattice
vibrations, excitons, localized defects and many more. The studies are based on measuring certain
quantities, which manifest themselves via an interaction of light with matter. The most important
quantities are the dielectric function e(w) and the optical conductivity o(w), which are directly related

to the energy structure of solids.

2.1.1 The Dielectric Function and Optical Conductivity

The wave equation for electromagnetic waves can be derived from the basic equations of electro-

magnetism — the Maxwell’s equations. The equations are characterized by two very basic constants,

13
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representing electrical permittivity ¢ and magnetic permeability p. The wave equation for electric

field resembles: . -
L epd’E  Anop OF
e o2 cz ot’

where o represents the electrical conductivity of space.

(2.1)

In the vacuum, where y = 1, ¢ = 1, and o = 0, the electromagnetic wave propagates freely and
infinitely. However, if the electrical conductivity of the medium is finite, the behavior of the wave is

governed by the coefficient of refraction in form:

4mio N .
N = Jue, = | pe <1 + > ) = n(w) + ik(w), (2.2)
where 7 and k are real and imaginary parts of the coefficient of refraction. The coefficient k is
responsible for an exponential decay of an amplitude of the wave, thus it is often called the extinction

coefficient. It can be related with the absorption coefficient via a relation

a(w) = 2?“12(60). (2.3)

The absorption coefficient depends on a frequency of the light. It is responsible for energy dissipation
of the wave inside a solid. The rate of decay is strongly related to the properties of medium gy, ¢, and
o, which is reflected in the band structure, carrier density, etc.

The absorption coefficient takes different values for different optical processes. The full description
of dispersion of absorption coefficient in solids can be found in the book of Dresselhaus [63]. The
dominant processes described in this thesis are direct optical transitions. In this case the absorption

coefficient can be written as

() hw x numer of transitions/unit volume/unit time (2.4)
o(w) = . .
incident electromagnetic flux

The denominator in Equation 2.4 (incident electromagnetic flux) can be calculated from the Poyunting
vector and is proportional to w?. The numerator of the Equation is related with the probability
of transition, which is governed by the quantum-mechanical transition rate and the joint density of

states. This means that the effective absorption coefficient for optical transitions can be expressed as:
1

a(w) x — x DOS(w), (2.5)
w

where DOS is the density of states.

2.1.2 Probability of Absorption

The absorption of light in a semiconductor can be described classically in the terms of the Beer-
Lambert’s law. It states that if a beam of light of given intensity Iy penetrates a surface of a solid,

then an intensity of the light decreases with the penetration depth z as
I(z) = Iye~ @)=, (2.6)

where « is an absorption coefficient of a solid. The absorption coefficient is closely related to a
quantum-mechanical transition rate W;s given by the Fermi Golden Rule. The Fermi Golden Rule
expresses the probability per unit time that a photon of energy Aw excites an electron from an initial
state (1| to a final state |¢f):

2
Wig = S| (sl Hig o) P p(hs). (2.7)
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In this expression, the matrix element 7,  corresponds to an external optical perturbation, and p(Aw)
expresses the joint density of states (DOS) function describing a density of states associated with an
energy of the excitation photon (E = hw).

The derivation of perturbation Hamiltonian # ¢ starts with a standard one-electron Hamiltonian

without magnetic field, which takes form of:
Ho= — +V 2.
0 (m7 ( 8)

where V(7) is a scalar periodic potential. The momentum is replaced by a term zﬁ, and in the effective
mass approximation the periodic potential is replaced by the effective mass m*.
The single electron Hamiltonian in the presence of magnetic field changes via a substitution g —

7— (e/c)A, thus the full form of Hamiltonian is the following

1 e -2 p2 e - e2 A2
T - - £ I 2.
Hp 2m (p CA) V() 2m V() ch P 2mc?’ (2.9)
Ho perturbation

where the first part resembles the Hamiltonian H from Equation 2.8, and the second is a perturbation.
The optical fields are usually very weak in comparison with fields inside a crystal, thus in a good
approximation only the term linear with A remains. The expression for the perturbation Hamiltonian

is
B 242 R
H=—"A g+ 2 ~_ Ay (2.10)

me 2mc? me

The matrix element, ()¢| 1’ [1);) expressing the coupling of the initial and final states through the
optical fields, determines the strength of optical transitions, which depends on the electromagnetic
field perturbation #H’.

2.2 Density of States and Optical Transitions

The standard density of states can be quickly derived assuming Born-Karman’s periodic bound-
ary conditions for the Bloch functions describing electronic states of a finite periodic crystal lattice.
Assuming that the states in the reciprocal space are evenly distributed, and considering the electron

spin degeneracy, the k-space density of states takes form of

pap (k) = o) = =, (2.11)

pan(k) = (2m)2’ 27

(2m)3’

for three, two, and one dimensions, respectively. This function describes the momentum-depended
density of states per volume (surface) unit of the reciprocal space of a finite crystal. Knowing that the
DOS function is related to the amount of energy states per unit of energy p(E) = dN/dE, a relation

to the reciprocal space can be found by

AN _dN dk

p(E) = 4E ~ dr dE’ (2.12)

where dN = pp(k)dVj. The DOS function pp(k) and an element of volume in k-space dVj have
to take forms of a proper dimension. Now only a dispersion relation E(k) is needed to calculate
the energy-depended DOS function. Two cases of an energy dispersion relation will be described —

parabolic and linear.
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2.2.1 Density of States in Parabolic Bands

In the case of parabolic bands and in the effective mass approximation the dispersion relation takes

form of:
h2 k2
E(k) = pyeeed (2.13)
thus
dk m* 1
[ . 2.14
dE h? k ( )

If the element of volume dV}, is equal to the difference of volumes of two balls (in 3D) or two discs (in

2D) with radii k£ + dk and k, then the amount of states in the element of volume can be expressed as:

dNSD = pgp(k)dvk = (27r)3 . 47Tk2dk,
2
2
leD = plD(k)de = % - dk.

Substituting Equations 2.14 and 2.15 into Equation 2.13 gives the DOS function per unit energy for

parabolic bands for 3, 2, and 1 dimensions:

psp(E) = 5 (2;’3 ) E}, (2.16)
pon(B) = T SS6(E - £ (2.17)
po(e) =+ (' ) Z a— (218)

where O(F — E;) is the Heaviside function, equals 1if E > E;, and the summation is over the electronic

energy states ¢. The plot of DOS as a function of energy is shown in Figure 2.1.
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Figure 2.1: Density of states function of 3D (blue curve), 2D (black curve), and 1D (red curve)

Energy

systems.
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2.2.2 Density of States in Linear Bands

In the case of linear band the dispersion relation takes form of:

E(k) = hwyk, (2.19)
thus " .
_— = . 2.2
dE — huy (220)

The dispersion relation does not influence the element of volume dVj, therefore the DOS function per

unit energy for linear bands for 3, 2, and 1 dimensions:

E2
p3p(E) = W, (2.21)
E
= 2.22
p2p(E) Rutn (2.22)
(B) = & (223)
P1D = g .

Optical Joint Density of States

Not all states take part in an optical transition. The conservation of energy requires that a difference
of energies of available states has to be equal to the energy of an exciting photon fw. This requires a
modification of the calculated DOS functions 2.16 by substituting F by a term fiw — AE, where AE
is a difference of energy between the final and the initial states. Because of that, the function p;(FE)

was named optical joint density of states, and for the case of the 3D parabolic band it takes form of:

«\ (3/2)
1 2m 1

The only energy range, where the physical solutions of Equation 2.24 exist, requires that hw > AFE.

2.2.3 Optical Transitions

The process called interband optical transition is based on an absorption of a photon by an electron,
which results in an excitation of an electron into a different energy band. There are also intraband
transitions, which take place between levels of a single band. This however requires splitting of
the band into subbands, which can be stimulated, for example, by magnetic field or a quantum
confinement.

There are few rules, which optical transitions have to obey:

e There is a threshold energy, related to the difference of energies of the initial and final states.
Obviously, photons carrying lower energies than this threshold are not absorbed as there are
no final states available for the electrons to be excited to. The photons carrying higher energy
may or may not be absorbed, depending on the internal band structure and allowed relaxation

processes in the system.

e The transitions are either direct or indirect. The conservation of momentum yields that k::, =
k_;:i:k;w. The momentum of a photon k;w is few orders of magnitude smaller than the dimensions
of the Brillouin zone, thus kr:w can be neglected, rendering k_; = k_; However, the transition
can still be indirect if a phonon is involved. Nevertheless this is a three-body process thus its

probability is much lower than the probability of a direct transition.
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e A transition occurs of course from an occupied initial state into an empty final state. If the final
state is occupied, due to the Pauli Exclusion Principle, the process cannot take place. Similarly,
if the initial state is empty, there is no electron to absorb a photon and the transition does not

occur.

2.2.4 Density of States in Magnetic Field

The presence of magnetic field causes changes in the movement of electrons in a solid, forcing the
energy bands to split into a set of levels. Without the magnetic field all the states in k-space are
distributed evenly. If the magnetic field is applied in the z-direction, only the states in the x,y plane
are affected, as they lie in a perpendicular plane to B. An application of magnetic field acts as a form
of quantum confinement, creating an additional quantization of energy and momentum states. This
limits the available states in k-space to concentric rings (in 2D) or tubes (in 3D) with & = 0 in the
center.

To calculate the available energy states for electrons with a parabolic dispersion in magnetic field

the two-dimensional Hamiltonian can be used:

152
= —. 2.25
H=o (2.25)
The canonical momentum P is 5
P=-V+SA. (2.26)
1 c

The magnetic potential is, assuming the Landau gauge, expressed as A = (0, Bz, 0). The Schrédinger

equation takes form:

2 e 2
HY() = ;—m ~V2+ va - B:c) »(7) = E(r). (2.27)

he

The choice of gauge grants that the Hamiltonian is independent of y, thus z, y wave functions can be

separated:
d(a,y) = e™o(). (2.28)

Moreover, by separating the wave functions, the result is a one-dimensional Schrodinger equation
Hoo(x) = Ep(x), with the effective Hamiltonian:
h2

Ho =5 (V2 + (z — ax)?] . (2.29)

This Hamiltonian expresses a one-dimensional harmonic oscillator centered at zj = %k, where I =
1/% is the magnetic length. Its solution is a set of equidistant energy levels, called Landau Levels
(LLs), which energy can be described by:

1
E, = hw, <n + 2) , (2.30)

where w, = jff is the cyclotron frequency, and n = 0, 1, 2... is an integer quantum number corre-

sponding to different LLs. The Equation 2.30 is valid for a 2D system. In a 3D case the energy of
LLs takes form E, . = E, + E(z) = hw. (n + 1) + E(z).
The amount of independent states in a system of dimensions L, x L, can be estimated using

boundary conditions for the function 1 (Equation 2.28) in the y-direction:

k= "m,, (2.31)
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for any integer m,. This means that the allowed values of x), are separated by Az = I%Ak = 27l%/L,,.
If L, > Ilp, which is not the case only for 1D systems, then Ax < Ip so the energy separation of
successive states is much smaller than their width. The total number of states is equal to (L, L,)/27l%
and each LL has 1/(27l%) states per unit area. It is convenient to introduce a quantity, which is related
to the way how electrons occupy the LLs, called filling factor v. The filling factor takes only integer
values and describes the amount of occupied LLs. It is closely related with conductivity in plateau of

the QHE o0,, = ve?/h, and can be expressed as

y(B) = el (2.32)

where n, is the electron concentration. The filling factor expresses the amount of occupied LLs at

given magnetic field.

Selection Rules

If the magnetic field is applied to a sample, optical transitions have to follow a selection rules,
described separately for the Faraday and the Voigt configurations. In the Faraday configuration
the magnetic field vector is parallel to the direction of incident light, which is usually along growth
direction and the z-axis. In the Voigt configuration the magnetic field vector is perpendicular to the
direction of incident light. Only the Faraday configuration is relevant concerning this work, therefore
in all calculations and descriptions involving magnetic field it can be assumed that magnetic field is

applied along the z direction.

In the Faraday configuration, in case of an unpolarized light, the optical transitions can be ex-
ecuted only between adjacent (An = 1) LLs, characterized by the same spin orientation. This is
a consequence of the law of angular momentum conservation. The photons are characterized by +

angular momentum, which becomes transferred to electrons, as the absorption occurs.

Density of States in Magnetic Field
Magnetic field influences the 3D allowed states only in a plane perpendicular (g, k) to the applied
magnetic field direction (z). This results in a collapse of DOS function of k-space into a set of

concentric tubes parallel to B. It transforms the DOS as presented in Figure 2.2.

In 2D case the quantization in z-direction is provided by the quantum well, therefore the allowed
energy states are fully quantized. This results in an appearance of a distinct LL ladder of states in
form of delta functions. However, in real-life systems those levels are broaden due to the scattering
effects. In systems with parabolic dispersion relation the LLs are equidistant in energy, as states
Equation 2.30. In systems with linear dispersion of bands, the energy difference of LLs has a v/B-like
dependence. Figure 2.3 presents the DOS(E) function for a case of graphene at B = 5 T. The LLs in

forms of broadened delta functions are visible, and the levels are not equidistant.
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Figure 2.2: Panel (a) Electron energy bands for a 8D solid as a function of the z-direction wave vector
for different Landau levels (n = 0, 1, 2...). Panel (b) density of states function for the Landau levels

compared with the free electron gas for the case B = 0. The image comes from the work of Martinez

et al. [64].
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Figure 2.3: Sequence of Landau levels in graphene is unique; the energy spacing depends on the
magnetic field as AELL \/E, instead of AEL < B as in conventional 2D systems and there exists

a LL at E = 0, shared equally by electrons and holes. The image comes from the work of Belluci and
Onorato [65].
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2.2.5 Fermi Level

From the point of view of the optical properties of a solid, the Fermi Golden Rule (Equation 2.7)
describes only the strength (or probability) of transitions between two states. However, if a transition
is to be executed, the initial state has to be occupied by an electron, which can be excited by a photon.
Moreover, the final state has to be unoccupied, as the Pauli exclusion principle forbids two electron
to occupy the same quantum state.

The total concentration of electron in a solid has to be distributed on available states. This
distribution is governed by two factors — the DOS function (Equation 2.12) and, as the electrons are

fermions, the Fermi-Dirac distribution:
1

f<E):1+ewp<fB#),

(2.33)

where g is the chemical potential, and kp is Boltzmann’s constant. The chemical potential is equal

to the Fermi energy at 7' = 0 K.

2.2.5.1 Temperature Effects

As stated in Equation 2.33, the Fermi distribution depends on temperature. For T' = 0 K it
resembles a step function — all states below the Fermi level are occupied with probability 1, and all
states above are completely empty, as presented in Figure 2.4 (black curve). As the temperature
increases, the Fermi distribution gets smoother — the population of electron states of energy above E
increases at the expense of electron states of energy below Ey. This effect has a profound consequences

concerning the optical properties of a solid, as they vary with a change of temperature.
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Figure 2.4: Fermi distribution for various temperatures in range 0K < T < 300K. The Fermi level
E; = 0 meV. The horizontal grey dashed line marks the probability 0.5.

At the beginning of this section (2.2.5) a concept of Fermi level and electron distribution was given.
The way how the electrons are distributed on the bands is crucial for the shape of an absorption spectra.

This means that even if the given transition’s strength is high, and there are sufficient electron states
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related to the transition (which is governed by the joint density of states), the transition might not
occur, unless the initial state is occupied while the final state is be empty.

At low temperature an occupation of given level varies very rapidly while crossing the Fermi
energy — the bands are either completely filled or empty. With increasing temperature the electron
distribution is smoother as a function of energy and some levels with energy close to the Fermi energy
are occupied partially, meaning that there are possibilities to execute transitions into and from these

partially occupied levels.

2.3 Experimental Methods

2.3.1 FIR Spectroscopy

The whole electromagnetic (EM) spectrum includes all the frequencies — from low-energetic radio
waves (=~ 10" Hz) to high energy gamma rays (up to 10?2 Hz). There is no single spectroscopic method
which allows to study the light and matter at the whole EM spectrum. As the properties of matter
differ with the frequency, different spectroscopic techniques have to be used to investigate specific
physical phenomena in a given spectral region. For example, in solid state physics the electronic
energy levels span over a wide energies in a range from few meV to few eV. This corresponds to
energies of photons from far-infrared (FIR), through visible, to ultraviolet range.

The parts of EM spectrum, relevant in the scope of this thesis, are the THz and FIR regions, as
they allows to investigate physical phenomena in narrow-gap semiconductors (NGS) and topological
insulators (TI). In general, the THz region spans over the frequency domain between 0.3 THz to 30
THz, which translates to 10 - 1000 ecm ™!, or ~ 1.25 — 125 meV. This energy range covers most of
the possible inter- and intra-LL transitions in NGSs and TIs, which allows to investigate their band

structure in a thorough way.

2.3.2 Experimental Set-up

The experimental work of this thesis is based on the infrared /THz magneto-spectroscopy measure-
ments of TIs and NGSs. The spectroscopy experiments were performed using a specially customized
Oxford liquid helium cryostat coupled to a Bruker Fourier spectrometer IFS 66v/S. The schematics of
the system is presented on Figure 2.5. At the bottom of the cryostat an additional chamber was placed
(white space), separated from the rest of the system by a diamond window, which is well transparent
in the infrared range and isolates thermally the chamber itself. A composite germanium bolometer
QGEB/X was placed inside the chamber, being cooled by a liquid helium. A helium bath assures that
the bolometer is kept at low temperature at all times. Sensitivity of a bolometer is strongly related
to an operational temperature, and decreases drastically with increasing temperature.

A thermal separation provided by the diamond window assures the optimal environment for the
bolometer while the temperature can be varied in the vicinity of the sample in a broad range. A
temperature sensor and a heater are place near the sample. A combination of these two devices is
used to set the temperature in the vicinity of the sample space on demand up to around 140 K.
Higher temperatures are difficult to obtain due to the thermal radiation emitted by the sample and its
surroundings, which heats up the bolometer, decreasing its sensitivity. The temperature in the cryostat

can be decreased to around 1.6 K, by lowering the liquid helium pressure. At the ambient pressure the
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Figure 2.5: Sketch of the experimental set-up. The first part is composed of a Fourier (FT Spec-

trometer) spectrometer with a Gobar lamp (Source), which works using the Michelson interferometer
principle. The radiation is guided (by a Waveguide) into the cryostat. The liquid-helium cryostat is
supplied with a liquid nitrogen coating. The sample is placed inside the cryostat in a variable temper-
ature insert (VTI). The superconducting coil (Coil 1) can provide magnetic field with inductance up
to 16 T, while the compensating coil (Coil2) keeps the overall magnetic field at zero in the vicinity of
the bolometer. Near the sample there is a temperature controller, allowing to vary and stabilize the

temperature. The bolometer is separated (by a Diamond Window) from the sample space.

boiling temperature of helium is equal to 4.2 K. At the A point helium becomes superfluid — at around
22 mbar the temperature reaches around 1.8 K, which is the lowest possible in this experimental
set-up.

A system of two superconductive coils was embedded into the cryostat (Figure 2.5). The main coil
(Coil 1) is capable of creating a constant and homogeneous magnetic field of inductance up to 16 T
in the vicinity of the sample. At the same time, the second coil (Coil 2) compensates the magnetic
field created by the Coil 1 in the vicinity of the bolometer. This procedure is required to maintain
zero magnetic field at the position of the bolometer. This system allows to perform measurements
in a broad range of temperatures and magnetic fields, while preserving optimal environment for the
bolometer.

In the experiment a globar lamp integrated with the spectrometer was used as a radiation source.
Globar is a broadband thermal emitter, which is typically used for infrared spectroscopy. It is formed
by a silicon carbide rod heated electrically up to a couple of hundreds degrees Celsius. Its radiation
is suitable for spectroscopy as it is continuous and resembles the blackbody radiation. The radiation
is delivered to the cryostat via a waveguide, which ends with a light-focusing cone. The focused light

passes through and interacts with the sample. The transmitted light is detected by the bolometer. An
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electrical response of the bolometer is passed back to the spectrometer, where the Fourier transform

occurs and the final spectra are calculated.

Fourier spectrometer

A fourier transform spectrometer has a Michelson interferometer in its core. The Michelson inter-
ferometer consists of two mirrors, one in a fixed position and one is moveable, and a beamsplitter.
The light from the source is split into two paths and gets reflected by the mirrors. By moving the
movable mirror over some distance, the relative optical path of two beams is varied, and an interfer-
ence pattern is created that encodes the spectrum of the source. The interference pattern is a Fourier
transform signal of the original spectrum. The Fourier spectrometer has some advantages over the

regular spectrometers:
e it can scan multiple wavelengths simultaneously, greatly increasing the operational speed,
e high speed allows to increase the number of measurements, increasing the signal-to-noise ratio,
e it does not require prism/grating to split the beam in order to analyze it.

A coupling of a Fourier spectrometer as a source of light and a bolometer as a detector can be

used to perform spectroscopy of solid state systems quickly and effectively.

Bolometer

A bolometer is a device used to measure the power of incident electromagnetic radiation through
heating of an absorptive element. Any radiation illuminating the absorptive element raises its tem-
perature — the higher the absorbed power, the higher the increase of temperature. The temperature
change can be measured directly with an attached resistive thermometer, or the resistance of the
absorptive element itself can be used as a thermometer. Nowadays, most of the bolometers are based
on semiconductor or superconductor absorptive elements, which allows them to operate at cryogenic

temperatures, significantly increasing the sensitivity.

Analysis of spectroscopic data

Transmission spectra are used to characterize samples and give an insight to their energetic structure.
The peak positions in an FIR spectrum correlate with an optical transitions between distinct energy
levels within the sample. The standard way to obtain a transmission spectrum is to acquire a spectrum
with respect to some reference. A use of a reference spectrum allows to remove features, which are
related to the experimental set-up itself, and do not provide any useful information about the sample.
For example, in magneto-spectroscopy, a spectrum taken at zero magnetic field (Tp—or) can serve as
the reference to a different spectrum, taken at nonzero magnetic field (Ts.or). Both of the obtained
spectra are influenced by all of the optical parts of the set-up, therefore a formula for the measured

reference spectrum can be expressed as

fB:OT(hw) = Esrc(hw) : Tsetup(hw) ‘ Tsample,B:OT(hw) . Sdet(h(ﬂ)» (234)

where E,. is the emission spectrum of the source, Tsetyp is the transmission of the elements of the
experimental set-up, Tsqmple is the actual transmission through the sample, and Sge; is the sensitivity
of the detector. All of those parameters depend on the frequency of light (w). A similar formula can

be written for a spectrum at nonzero magnetic field

fB;éOT (w> = Esrc(w) . Tsetup(w) . ,Tsample,B;éOT(w) . Sdet(w)a (235)
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where all but one (Tsqmpic) elements are the same. This is obvious since magnetic field influences only
the sample. The final transmission is obtained by dividing the spectrum at nonzero magnetic field

(Equation 2.35) by the reference spectrum (Equation 2.34):

_ fB;éOT(W) _ Esrc(w) : Tsetup(w) . sample7B;£0T(w) . Sdet(w) ) (236)

T(w) B fB:OT(W) Esrc(w) : Tsetup(w) : Tsample,B:OT(w) : Sdet (w)

this division allows to explicitly remove parts depending on Esy¢, Tsetup, and Sge;. Only the parts of

the transmission related to the sample remain

T(w) = Leample.B20T (@) (2.57)
Tsample,B=01 (W)

To obtain a complete evolution of optical transition as a function of magnetic field, this procedure
has to be repeated at different values of magnetic field, with a proper resolution. There exits exper-
imental set-ups, where the detector is situated close to the sample, where magnetic field can have
an influence on the detector as well. In these systems, the parameter Sy.; does not reduce itself in
Equation 2.36, thus additional reference spectra have to be obtained to eliminate the magnetic field

dependence of the detector on the signal.

Tsamplc,B;éOT(W) . Sdet,B:OT(w)

T(w) = ,
( ) Tsample,B:OT(w) Sdet7B;£0T(W)

(2.38)
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Figure 2.6: Panel (a): Transmission spectra calculated from spectra from panel (b). Panel (b):
Ezample spectra obtained at B = 0 T (blue) and B = 8 T (red). The minima present in both spectra
are explained by the absorption on the parts of experimental set-up, phonons, or impurities. The
minima present only in red spectrum correspond to optical transitions marked as T1 and T2. FEach

minimum on transmission spectra was connected to a corresponding minimum of the raw spectra.
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An example of infrared spectra, as well as the transmission obtained via the described procedure, is
presented in Figure 2.6. Panel (b) shows two curves, which are an example of raw spectra obtained by
a spectrometer. Both spectra are presented as a plot of counts versus energy, where counts correspond
to the intensity of light detected at given energy (wavelength) of light. The blue spectrum was taken
at zero magnetic field, while the red spectrum at B = 8 T. The spectra are similar at the whole energy
range, except at the vicinity of two wavelengths, 340 cm™! and 475 cm™!, where red spectra exhibit
a visible minimum, absent in blue spectra. Those minima correspond to optical transitions marked as
T1 and T2.

Those minima are linked with corresponding minima of a transmission spectra presented on Panel
(a). The transmission spectrum was obtained by a division of the red spectrum (Tp—gr) by the blue
spectrum (Ts—or), and it presents five absorption peaks (with one broad around 260-320 cm™—1).

The minima on red and blue spectra, which are related to the sample itself have their corresponding

minima on the transmission spectra:

I correspond to an absorption on impurities and defects

e Two minima around 120 and 150 cm™
of the sample. As they are present at both magnetic fields, they potentially could be removed
from transmission spectrum by division. It is not the case because the absorption is almost
100%, which means that the intensity detected is very small (therefore the signal-to-noise ratio

is high), and it results in such artifacts in division of two very small numbers.

e The broad absorption, visible around 260-320 cm ™!, corresponds to the absorption by the phonon
bands. It remains visible in the transmission spectra because of the same reason — the absorption

is almost 100% leading to division artifacts.

e The actual optical transitions 7'1 and 72, which resulted from an evolution of energy levels in

magnetic field and transitions between them.

The rest of minima are absent in transmission spectra, which means that they are related to the

absorption by the experimental set-up, rather than by the investigated sample.



Chapter 3

HgCdTe Bulk Systems

In this work a significant attention will be paid to 3D bulk systems, 2D quantum well heterostruc-
tures, and strained HgTe layers with intermediate thickness. This variety of systems gives a unique
opportunity to study different physical effects taking place in the structures.

At the beginning of the chapter a general introduction to HgCdTe-based materials will be given.
Later, the bulk system will be described. A Hg; ,Cd,Te system is very versatile in terms of band
structure. In a HgCdTe crystal in an inverted band order phase the conduction and valence bands
overlap, which means that the bulk is conductive. However, if a bulk band gap is opened by strain or
a different mechanism, the system could exhibit a TT phase. In a regular band order phase, a band
gap is present, which means that HgCdTe can be either a semiconductor or a semimetal, depending on
its both internal and external parameters. It will be shown that it is possible to demonstrate a phase
transition from inverted to regular band order, which makes these systems particularly interesting. In
the bulk systems in a gapless state a new class of relativistic excitations arises, called Kane fermions,
which can be studied using THz spectroscopy.

The description and experimental results on HgTe/CdTe QWs will be presented in the Chapter 4.1.
The band structure of a QW might exhibit a topologically insulating phase, as there is a way to obtain
a band inversion with a bulk energy gap, which is provided by the quantum confinement within the
QWs structure. Finally, in Chapter 4.2, an overview and preliminary experimental results obtained
on strained HgTe films will be presented. HgTe films can be considered as thick QWs, because the
quantum confinement is still present in these systems. However, it is too small to open an energy gap.

A different mechanism of gap opening is used — a strain.

3.1 Introduction to HgCdTe Systems

HgCdTe alloy crystal is formed by II-VI compounds which crystallize in a zincblende structure,
which consists of two face-centered cubic sublattices. In the zincblende structure each of Te-ions has
four nearest neighbors, which can be either Hg or Cd. The presence of a different atom on each lattice
site breaks the inversion symmetry, which results in reducing the point group symmetry from cubic
to tetrahedral.

Both compounds, HgTe and CdTe, are well lattice-matched, having the lattice constant parameter
equal to 6.45 A and 6.48 A, respectively. Hg;_,Cd,Te mixed crystals have a direct band gap, which
value varies from 1.6 eV for pure CdTe, a relatively large gap semiconductor, to -0.3 €V for pure HgTe,

a semimetal. A negative band gap is a consequence of an unusual band alignment in the crystal, where

27
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p-type (I's) bands lie around 0.3 eV above the s-type (I's) bands. This is caused by an extraordinary
large SOC in HgTe (due to the presence of a heavy element Hg), which leads to an inverted band
structure. The light-hole I's band forms the conduction band, the heavy-hole band forms the first
valence band, and the electron s-type I's band is pulled below the Fermi level and lies between the
heavy-hole band and the spin-orbit split-off band I';. The band order of both CdTe and HgTe is

presented in Figure 3.1.
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Figure 3.1: Inverted band order of HgTe and normal band order of CdTe. Figure comes from work

[17].

3.2 Overview of HgCdTe Bulk Crystals

The earliest studies of Hgy;_,Cd,Te crystals were aimed at a development of infrared detectors,
especially for radar applications. In 1958, Lawson et al. syntesized for the first time a mixed crystal
of HgCdTe at the Royal Radar Establishment in England. Their work was published [66] a year later.
Because of its extraordinary properties, HgCdTe was recognized early as the most versatile material
for detection over the whole infrared range, with a special attention put on the wavelength of around
10 ym. This is the range of the second wide atmospheric window, which made it of a great interest
for communication applications. Moreover, it covers the range of the maximum of thermal radiation
at the room temperature, which opened a way for possible applications for everyday life.

The following studies were focused on a determination of the band gap of mixed compounds with
composition ranging from = &~ 0.2 to x ~ 0.6 by optical methods [67][68] (based on a detection of
the absorption edge), which provided the band structure parameters for a wide range of temperatures
and empirical formulae for the value of the band gap as a function of Cd content and temperature.
Moreover, an indication of a semimetal-to-semiconductor phase transition was observed. The studies
of samples with band gaps close to zero were performed by Groves et al. [69] and Saur [70]. Further
magneto-optical studies performed on samples with small energy gap by Kim et al. [71] explored the
properties of the band structure in a semimetalic regime. The first extensive magneto-spectroscopic
studies of HgCdTe in a semiconducting [72] and a semimetallic [73] phase were performed by Guldner
et al. and Rigaux [74]. The investigations allowed to explore the phenomena such as the band structure

evolution at the point of phase transitions or polaron anomalies.
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Recently, as the growth techniques have gradually advanced over the years, the quality of HgCdTe-
based structures improved significantly. Especially, a Molecular Beam Epitaxy (MBE) method gives
a possibility to grow structures of immense quality. Despite this, the growth of Hg-based structures
is still a challenging task and requires a lot of experience and know-how to be done properly. That is
why there are only few laboratories in the world (like CEA-LETI, Wiirzburg or Novosibirsk) where

the growth process was mastered.

MBE method is an epitaxial method of growing crystalline films on top of a monocrystal substrate.
MBE takes place in an ultra-high vacuum environment (around 10~!° mbar). The vacuum prevents
a deposition of unwanted molecules, reducing the amount of non-intentional impurities. In a solid
source MBE, pure elements are heated separately in effusion cells or electron beam evaporators until
they start to slowly sublimate. The gaseous elements are delivered to a wafer, where they condensate,
forming a crystal. They may also react with each other, creating mixed crystals. The quality of
the growth can be controlled in-situ by a reflection high energy electron diffraction, which provides
information about a growth rate. There are also other methods of epitaxial crystal growth, which will
not be described in this work. The most popular and widely used are: liquid phase epitaxy, vapor

phase epitaxy, and metalorganic chemical vapor deposition.

Nowadays, because of the possibilities given by the high quality growing methods, the applications
of HgCdTe compounds is no longer limited to the infrared detection. There has been a renewal of
interest of physical community in this topic as a HgTe/CdTe QW was demonstrated to be a 2D TI,
which was followed by the discoveries of 2D Dirac Fermions and 3D TIs. The attention of the part of
physics community is now centered at the phenomena relative to the fundamental science of narrow-
gap semiconductors and TIs. These phenomena are, including but not limited to, the variations of
effective mass of electrons, appearance of new quasi-particles in semiconductor systems and new exotic

phases of matter that they are related to.

The electrical and optical properties of Hg;_,Cd,Te crystals are determined by its dielectric func-
tion and conductivitiy, which are closely related to the band structure. The shape of both electron and
hole bands can be described using the Kane model [75]. The band gap varies from negative to positive
monotonically and almost linearly with the cadmium content x — the crystal composition. It means
that at some point there must be a special composition, where the band gap vanishes, which, accord-
ing to [30], implies that the effective mass collapses as well, and quasi-relativistic particles appear.
HgCdTe bulk crystals give a special opportunity to realize and investigate a condensed matter system
with particles exhibiting relativistic Dirac-like properties in all three dimensions. Three dimensional
topological insulators also exhibit states with a relativistic dispersion relation, but their presence is

limited to the 2D surfaces of a sample.

Recent experimental [76] and theoretical [77] works on Hg;_,Cd,Te crystals characterizded by a
cadmium concentration close to the critical led to a discovery of another massless Dirac-like quasi-
particles called Kane fermions [76]. These three dimensional particles are not equivalent to any other
known relativistic particles. Kane fermions show a resemblance to the pseudospin-1 Dirac-Weyl sys-
tem [77] — the band gap vanishes [78] and their energy dispersion relation forms a Dirac cone with an
additional band crossing the vertex. These conical bands may have several spectacular properties sim-
ilar to those in Dirac and Weyl semimetals (such as Klein tunnelling and suppressed backscattering)
[76].
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3.2.1 Band Structure and Temperature

The band structure and electronic dispersion relation of a Hg;_,Cd,Te crystal can be varied both
intrinsically and externally. Intrinsically — by changing the chemical composition. Externally — by
varying external parameters, like temperature [79] or pressure [80].

However, the method of variation of chemical composition of band structure engineering has its
limitations. First of all, it can be done only once — during the crystal growth. Secondly, it is technolog-
ically difficult as even small fluctuations of composition may disable the ability to perform fine tuning
of the band gap in the vicinity of the critical value, where the band gap vanishes and a topological
semimetal-to-semiconductor phase transition takes place.

To deal with these issues, there is a need to find an easy-controllable external parameter, which
allows to fine tune the band structure, and is generally available even in a simple experimental set-up.
It turns out that a temperature regulation allows to precisely control the band structure and provides
a well-set enviroment to investigate the relativistic properties of Kane fermions, which arise while
the system is tuned across the gapless state at the point of a phase transition [81]. The only major
drawback of the usage of temperature as a tuning parameter is its range. There are two general factors
limiting the range of available temperatures.

The first limit is related to the properties of the material itself. Mercury is a very volatile element,
which tends to diffuse and alter the sample structure even at relatively low temperature in comparision
to other compounds, which reduces the quality of the structure. This limitation is the reason, why
processing of mercury-based compounds is a very challenging task. In general, it is assumed that the
highest safe temperature for a HgCdTe system should be around 80 °C [82].

The second limit is related to the energy range that one wants to investigate. If a desired phe-
nomenon, like an optical transition, is in energy range comparable with the thermal energy k7', it will
not be observed. Moreover, an increase of temperature usually follows an increase of disorder within
the sample, reducing the signal-to-noise ratio of measurements. This renders the available tempera-
ture range narrower than possibly anticipated. That is why, the cadmium content allows to tune the
band gap in a broad range, while the temperature acts as a fine tuning parameter. Depending on the
phenomena that one wants to observe, it is required to choose the specific cadmium content, which
makes the band gap close to the desired value. In case of this work, the desired value of the band gap
was negative, preferably close to zero, which would allow the temperature to tune it from a negative
to a positive regime.

At low temperatures a Hgy_,Cd,Te crystal is a regular semiconductor for cadmium content higher
than the critical value z > z. ~ 0.17. On the other hand, if the cadmium content is lower than the
critical value x < =z, the band structure is inverted, as schematically shown in Figure 3.2, and
the structure exhibits a semimetallic behavior. The two phases are not topologically equivalent, as
characterized by the Z; topological invariant [17].

As was mentioned before, the band structure depends on more parameters than only the cadmium
content. Considering temperature as a second parameter, the point of closing the band gap becomes
a curve on a two dimensional (z,7T) parameter space. This clarifies that the critical contentration
. =~ 0.17 is valid only for temperatures close to the absolute zero. However, samples with a little
lower cadmium content have the critical temperature elevated. Our team for the first time used the
temperature as an external parameter to induce a topological phase transition and investigate the
Kane fermions arising in the gapless state [81]. The two samples (A and B) used in that experiment

had the cadmium content of x4 = 0.175 and zp = 0.155. This allowed to study the physics of Kane
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Hg,,Cd, Te

X=Xg

Figure 3.2: A dispersion relation of a Hgy_, Cd, Te system for different cadmium contents x. A blue
surface represents an electron band, while red surfaces represent light- and heavy-hole bands. The
heavy-hole band is almost dispersionless, as the effective mass of a heavy-hole is large in comparison
to the mass of a light-hole and an electron. On the left side a band structure in a semiconducting
phase is shown, where the band gap is positive and the conduction band is formed by a T'g band. On
the right side the band structure is inverted. The band gap is negative and the conduction band is
formed by a I's band. For both regular and inverted band orders the bands are parabolic. For a critical
concentration x. the band gap vanishes and the system exhibits a Dirac-like dispersion relation with
additional flat band (heavy-hole). The image comes from the work of Orlita et al. [76].

fermions at higher temperatures, as the temperature of phase transition of the Sample B was around
77 K.

The temperature is an important factor considering the physical phenomena occurring in solid
state materials, especially in NGSs like HgCdTe. Temperature also influences the energy structure via
a lattice thermal expansion. This modifies the Hamiltonian and the band structure in the consequence,
by elevating the hole band energy. In the case of NGSs, especially if the dependence on temperature
is significant, it can lead to a gap closure, as in the case of HgCdTe. The energy gap depends on
cadmium content x and temperature T, and that dependence can be expressed (following Laurenti et
al. [83]) as:

E,(z,T)[eV] = —0.303(1 — x) 4 1.606x — 0.1322:(1 — z)+
6.3(1 ) —3.250 —5.92(1—2) 4 (3.1)
11(1— )+ 7872+ T ’

which is a function on two parameter space. If the left side of Equation 3.1 is equal to zero, it
obviously limits the space to a case of the gapless state. A dependence z.(T, E; = 0) can be derived
from Equation 3.1, which gives a quantitative information about the band structure in a form of
a phase diagram with both samples marked is presented in Figure 3.3. Sample A is in a normal
semiconducting regime at the whole relevant temperature range. Sample B, on the other hand, at low
temperature is in an inverted band order regime, and as the temperature rises it enters the normal

regime.
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Figure 3.3: Phase diagram of a bulk Hg,_, Cd, Te crystal as a function of temperature T and cadmium
content x.. The red (blue )area represents a parameter range, where the system is in a semiconducting
(semimetallic) state. The two horizontal lines mark the Cd concentration of Sample A (0.175) and
Sample B (0.155). For Sample B, which undergoes a phase transition, the critical temperature T, is

marked as well.

The appearance of Kane fermions in not restricted only to the gapless state, where they are truly
massless. Even if a system has a gap, the behavior of (massive) carriers can be regarded as relativistic
as long as the considered energy range is small in terms of the energies of nearby bands, mainly the
spin-split T'; band, which lies Agp = 1 eV [84] lower in energy. Moreover, HgCdTe systems are not
the only ones, where Kane fermions can be found. Recent studies of another extraordinary material,
namely cadmium arsenide, revealed that Kane fermions are indeed potentially present in that system
[85] as well.

CdsAss has been identified as a 3D topological Dirac semimetal in which a topological phase is sta-
ble under ambient conditions [86]. This system brought again a considerable interest in the electronic
properties of the scientific community, upon which investigations started in the late sixties [87][88].
This compound was at first expected to contain the Dirac-like particles. ARPES measurements con-
firmed those expectations, claiming that the electronic bands of CdsAs, consist of a single pair of
symmetry-protected 3D Dirac nodes, located close to the I' point of the Brillouin zone, which span
over a few hundred meV [89][90], or even €V [86]. However, a recent optical reflectivity experiments
performed by Akrap et al. [85] shed some light on that matter. As it turns out, the electronic bands
of Cd3zAss are quite different if considered in high and low energy scales. In high energy scales, in the
order of few hundreds of meV, the band structure resembles a set of two conical bands, which originate
from the Kane model applied to a narrow gap semiconductor. The bands are not symmetry protected
and they host a genuine Kane fermions. However, at low energy scales, of the order of few meV, the
band structure may be formed by two sets of twin Dirac cones, which are protected by the symmetry.
This means that the excitations of the higher energy behave accordingly to the Kane particles, while

the excitations of the lower energy, if present, are Dirac-like.
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3.2.2 The Simplified Kane Model

The simplified Kane model [91][75] can be used to describe an electronic structure of a HgCdTe
crystal near the I" point of the Brillouin zone, where all the interesting physics takes place. This model
accounts for the k - p interaction between the I'g and I's bands, while neglects the influence of the
remote spin-split I'; band. The final Hamiltonian (3.2), neglecting the small quadratic in momentum
terms, takes form of:

H = Biné® + Gaups + E0ypy + E0.ps, (3.2)

where ¢ is the Fermi velocity, m is the effective mass, and p; is the momentum. This Hamiltonian

resembles the one for the true 3D Dirac fermions, presented in the Dirac equation (3.3),

o
iha = (ﬂmc2 + cQzps + caypy + cap.) V. (3.3)

However, the matrices &; are different from «; [81]. There are multiple bulk condensed matter systems,
which can be described well by the Dirac equation 3.3. Nevertheless, the Hamiltonian 3.2 does not
reduce itself to the Dirac Hamiltonian nor to any other known Hamiltonian describing relativistic

particles. The 6x6 matrix version of Equation 3.2 is:

me  Lap, e 0 0 —ép,
Bep,  —md 0 0 0 0
1~ ~ ~
N —5Cp— 0 —mé? —Cp. 0 0 ~
Hpy,py,p: = =cp-J, (3.4)
0 0 —ép, me e Lep,
V3x 5 o2
0 0 0 —%2Cp- —mc 0
_5pz 0 0 %~p+ 0 —1né?

where py = p, +ip,, E, = mé? is the energy gap, and ¢ = \/2P2?/3h? is the universal velocity. The
material properties are included within the model by E, and the Kane element P. There are three
eigenvalues of Equation 3.4, representing the energetic structure of the system. Each one is doubly

degenerated due to the Kramers theorem. The eigenvalues can be presented as:
E¢(p) = &mé® + (1) 00 ¢ /m2et + p2é2, (3.5)

where the ¢ parameter takes values of £ = —1 for the light-hole band, £ = 0 for the heavy-hole band,
and ¢ = 1 for the electron band. () is the Heaviside step function, equals to 1 for m > 0, and 0
if m < 0. An eigenvalue for £ = 0 means that the heavy-hole band is energetically completely flat
(dispersionless), which is a consequence of an assumption that the heavy-hole mass is infinite. The
assumption is valid as long as the effective electron mass is significantly smaller than the effective

heavy-hole mass of about mp; ~ 0.5 mg [78], which is the case for narrow gap regime [76].

3.2.3 Bulk HgCdTe at Magnetic Field

The energy structure becomes quantized in a presence of magnetic field. The 3D dispersion
relation takes form of a set of unequally spaced Landau levels (LLs), or more precisely, a form of
1D Landau bands which disperse with the momentum component along the field direction (usually z
axis). Moreover, these LLs are characterized by a distinct E ~ +/B behavior, as is stated in Equation

3.6. The similar behavior is found for example in a gapless graphene, where the LL structure can
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be expressed by E, = sgn(n) \/WBW, where sgn(n) takes value +1 for electronic LLs, and —1
for hole-like LLs [92]. This is a direct consequence of the linear dispersion relation F(p) o« p, as
states the Equation 3.5. In a case of a parabolic dispersion relation E(p) oc p?, found in the most
semiconductors, the LL structure takes form of E = hw.(n + 1/2) = h<2(n 4 1/2). In this case, the

m
energy of a LL is proportional to applied magnetic field, and each consecutive LL is separated from

the adjacent one by a constant factor of Aw..

Magnetic field forces modification of the Hamiltonian by an inclusion of components related to a
magnetic vector potential A, through the standard Peierls substitution ik — hk — eA. In the case of
a 3D material like HgCdTe, the LL spectrum of massless and massive fermions takes a more complex

form:

. 1
E¢n0(p:) = M + (1>”<m>5\/ m2et + S eht?B(4n — 2 + o) + p2e?, (3.6)

where n is a Landau level index, o accounts for the Kramers degeneracy lifted by the magnetic field,
and can be considered as the Zeeman (spin) splitting of LLs [81]. The index n takes only integer
values, with respect to the parameter £. For £ = +1, n takes values of nonzero positive integers
n =1,2,.... For & = 0, n takes values of zero or all positive integers except one n = 0,2,3,... .
The parameters ¢, n, and p, fully determine the spin splitting. Moreover, when the effective mass m
vanishes, and at p, = 0, the spin splitting of LLs is exactly proportional to v/B. This means that the
g-factor, defined in the standard way as ge¢n = (E¢pnt — Een,y)/(upB) diverges at B — 0. This is
an extraordinary situation in a solid state system, and in particular, it does not exist in the case of
graphene [76], as the SOC is very weak [16]. An uncommon case of v/B spin splitting takes place in

HgCdTe because the g-factor becomes effectively infinite as the band gap vanishes.

At magnetic field, the energy spectrum becomes quantized into a set of LLs, and the Fermi energy
separates filled LLs from the empty ones. An example of a LL structure created following Equation
3.6 is presented in Figure 3.4. The possible transitions between LLs have to follow the basic rules
presented in Chapter 2. Moreover, the spin in a transition has to be conserved. It means that a
transition can take place between two LLs only if they are characterized by the same spin orientation.
The allowed transitions for this system, both inter- and intraband, are presented as arrows in Figure
3.4.

In the case of bulk HgCdTe the energy of the heavy-hole level does not depend on the k& vector
nor magnetic field. According to the Equation 3.6 it has zero energy for all nonzero integer values of
n (except n = 1), and both values of 0 = £1. As a consequence, it is not formed by a single level
but contains many levels, which are 2n times degenerate in energy. This is why transitions from a
heavy-hole band into electron LLs with indices n = 1 or n = 3 are possible. However, the transitions
into an electron LL with index n = 2 are forbidden, as it would require an existence of a heavy-hole
LL with n = 1, which is not the case.

Interband transitions give a valuable information, because at zero magnetic field the energies of the
transitions are equal to the energy gap itself. Intraband transitions, on the other hand, tend to have
zero energy at zero magnetic field, as the Landau quantization disappears. It is worth to mention,
that despite the fact that a transition is allowed, it might not be possible to observe it by the means

of spectroscopy, as it was explained in Chapter 2.
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Figure 3.4: Landau level graph of a bulk HgCdTe system as a function of magnetic field. Colored lines
represent Landau levels, characterized by a different value of €, n, and o, as described in indices of L
on the right side of the graph. The electron band Landau levels (with e = 1) have a near-\/B behavior.
The heavy-hole Landau level, plotted in purple, is fully degenerated. The vertical arrows represent a
possible transitions between Landau levels in this system. Dashed arrows are intraband transitions,

while solid arrows are interband. Energy gap was also marked on the figure by F,.

3.3 Experiment

3.3.1 Samples

The high-quality HgCdTe bulk samples were grown using an MBE method on a (013)-oriented semi-
insulating GaAs substrate in Novosibirsk by Dvoretskii and Mikhailov. The substrate was followed
by a ZnTe nucleation layer and a thick CdTe buffer layer to decrease the defect density arising from
the lattice mismatch between the GaAs substrate and the HgCdTe layer. An actual Hg; ,Cd,Te
layer was approximately 3.2 micron thick to assure three-dimensionality of an active region of the
sample, which was further confirmed by absorption coefficient measurements (Figure 3.7). The whole
structure was capped by a CdTe layer to prevent environmental degradation processes like oxidation.

The structure scheme of the samples is presented in Figure 3.5.

Sample characterization

To estimate the properties of the samples, like carrier concentration, the transport measurements
were performed at magnetic field as a function of temperature. Samples were contacted with indium
balls in a Van der Pauw configuration and placed in perpendicular quantized magnetic field (the
Faraday configuration). The carrier concentrations of the structures for temperatures in a range of
2 K — 140 K were established based on a low-field part of the Hall measurements. The magneto-

transport results are presented in Appendix B. The summary is presented in Figure 3.6. The electron
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Hg,..Cd,Te 3.2 um
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(013) GaAs substrate 400 pm

Figure 3.5: Layer structure of Hgy_, Cd, Te bulk samples. The cadmium content was equal to x4 =
0.175 and xg = 0.155 for samples A and B, respectively. The active region of the system is composed
of an approximately 3.2 pm thick Hg1_, Cd, Te layer, marked on blue on the sketch.

concentrations in both samples are comparable (one order of magnitude difference) and ranges from
na ~ 3-10" cm™3 for Sample A and ng ~ 2- 10" cm™2 Sample Bat T =2 K up to ny ~ 8 - 10*°
cm ™3 and ng ~ 9-10' cm ™3 at T = 140 K for Sample A and Sample B, respectively. Relatively low

concentration allowed to perform the transmission measurements as the absorption was moderate.

The dependence of absorption coefficient on incident photon frequency A(w) in 3D systems with
a conical dispersion relation is linear, which resembles a behavior of 3D Weyl systems [77]. This
is a direct consequence of the joint density of states of electrons with the linear dispersion, being
proportional to w? in 3D, and w in a 2D case, as presented in Chapter 2. An explicit formula for the

absorption coefficient as a function of energy can we written (following Chang et al. [93]) as:

B 1
a(hw) = T (A+b)\/(A+b)2—0b%+ §(A +2b)+/(A — 2b)2 — 4b2] | (3.7)
where A = hw — E,, and parameters b and B depend on cadmium content and can be determined by
fitting. The first term in bracket represents the absorption coefficient involving the heavy-hole band,
while the second term represents the contribution of the light-hole band. The situation is qualitatively
different from 2D Dirac systems like graphene, where the absorption coefficient is independent on

frequency [94].

The analysis of the absorption coefficient, presented in Figure 3.7, provided two pieces of infor-
mation. The first one — the dependence of the absorption coefficient is indeed linear as a function
of photon energy (and its frequency), even up to 300 meV, which is a sign that the system is three-
dimensional. Moreover, the fits of Equation 3.7 to the experimental data, excluding the influence of
phonon absorption, indicate that the samples differ from each other, as was expected because the

cadmium content is different.
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Figure 3.6: Electron concentration as a function of temperature of Sample A (orange squares) and

Sample B (purple squares).
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Figure 3.7: Optical absorption of pseudo-relativistic Kane fermions in Hg1_,Cd,Te at T = 4.2 K.
Zero field absorption coefficients exhibit a linear behavior reflecting the relativistic character of the 3D
carriers. The band gap values of 4 + 2 meV and -20 + 4 meV for Sample A and B, respectively, are
extracted from fits (dashed lines). The inset depicts inter-band transitions that contribute to the linear

optical absorption.
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3.3.2 Results

In this section magneto-spectroscopy results of two HgCdTe bulk samples are presented and their
band structure evolution as a function of temperature is compared. One of the samples (Sample A) is
a positive-gap semiconductor, and its band gap increases monotonically with temperature. The second
sample (B) is in a semimetallic state at low temperature and undergoes a semimetal-to-semiconductor
phase transition as the temperature increases. A theoretical analysis of the results based on a simplified
Kane model is presented and the implications are discussed.

In order to fully describe the Kane fermions in MCT, arising in the vicinity of a semimetal-to-
semiconductor phase transition, there is a need to carry the system through the transition and make
measurements along the way. The two investigated bulk samples provided an opportunity to directly
see the difference between the two different phases, characterized by an inverted and non-inverted
band ordering, and the evolution of their properties as a function of temperature.

The theoretical model of the LL structure of the samples, based on Equation 3.6, allowed to
predict observable optical transitions. However, the parameters m and ¢ had to be extracted directly
from the experiment by fitting. In theory, the parameter ¢, describing the carrier velocity, should
be temperature independent, as it depends only on the Kane element P and physical constants, as
described by Equation 3.4. On the other hand, the rest mass m, depending on both E, and ¢, is

expected to change as the energy gap changes.

Related experimental works

This chapter presents experimental results which can be considered as a direct extension and con-
tinuation of the work done by Orlita et al. on bulk HgCdTe [76], in which bulk sample, close to the
point of a semiconductor-to-semimetal topological transition, was studied by an infrared magneto-
spectroscopy. However, this investigation was limited to a constant and low temperature only. The
authors demonstrated for the first time the relativistic 3D Kane fermions, as they manifest themselves
through, among other effects, an E o /B dependence on inter- and intra- Landau level transitions
(Figure 3.8).

Experimental details

The transmission measurements were performed using the transform Fourier spectrometer. A data
acquisition range was 10-700 cm~! (1.25-87.5 meV) with spectral resolution of 4 cm~!. A transmission
spectrum was calculated by dividing a spectrum at given magnetic field by a reference spectrum, taken
at zero magnetic field. This allowed to detect changes in relative transmission as an effect of magnetic
field. Multiple spectra were gathered at a constant and stable magnetic field to increase the signal-to-
noise ratio, and after measurements the field was changed. A usual magnetic field resolution was 0.25
T, and results obtained with such a resolution are presented in this chapter. Few more measurements
at different temperatures were carried out with lower magnetic field resolution (0.5 T - 1.0 T). Those
results are presented in the Appendix B.

The data is presented in a form of three figures for each temperature. The first figure presents a LL
structure of a sample. Each level L¢ ,, , is described by a set of three parameters £, n, o, according to
Equation 3.6. LLs with a different number n were plotted with different colors, without any distinction
for the spin (1,]). A flat, black line represents the heavy-hole band with £ = 0 (Lo {0,2,3..}{14})5
red curves represent electron (§ = 1) LLs with n = 1, namely L, 74 3. Consequently, blue curves

represent LLs with n = 2 (L 2¢4,11), and green curves represent LLs with n = 3 (L 374 3). Moreover,
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Figure 3.8: Panel a) Landau levels in gapless MCT, L¢, -, as a function of the magnetic field,
calculated using the eight-band model. Arrows of different colors show the optically allowed transitions
in undoped gapless MCT in the two circular polarizations o™ and oc~. Panel b) Relative change
of absorbance Ap/Ap—q plotted as a false color-map. All of the observed resonances clearly follow
a \/B-dependence. The dashed lines are calculated positions of inter-LL resonances at k. = 0 using
parameters vyp = 1.06 - 106 m/s and A = 1 eV. The presence of the spin-orbit split band, expressed
by parameter A, does not qualitatively change the LL spectrum, but introduces a weak electron-hole

asymmetry. These images come from the work [76].

visible transitions at given temperature are marked with arrows with a unique color and an assigned
capital letter. There are two types of arrows — solid ones and dashed ones. Solid arrows indicate

interband transitions while dashed arrows indicate intraband transitions.

The second figure is a colormap. It represents a plot of spectra in a form of a surface plot, where
blue color represent a value of 1, and reddish colors represent lower values, usually around 0.5. The
scale is adjusted to every colormap to make fainter transitions visible, while avoiding to saturate the
scale. Colormaps for Sample B are plotted with z-axis in a /B scale to highlight the £ < B
behavior, which should appear as a straight line in a v/B scale. This is not the case for Sample A,
where the linear scale is preserved. The transitions are highlighted by white lines (representing the
fits to the data) and an explicit description of the origin and final level of the transition. The same
pattern of style (solid, dashed) of lines is applied to distinguish the interband from the intraband

transitions, as in the LL plot.

Due to the phonon absorption, there are two regions of energy where the data acquisition was not
possible, as the samples are completely opaque. Those regions are called reststrahlen bands. Phonon
excitations can absorb up to 100% of incoming radiation, therefore the transmission is almost zero, and
the signal-to-noise ratio is high. This means that the standard method of calculating the transmission
spectra may give useless results. There are two reststrahlen bands in presented transmission results.
One originates from the phonons of GaAs substrate (between 30 and 40 meV), the other from the
phonons of HgCdTe itself (between 15 and 20 meV). This is why transmission results presented in this
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Chapter have two grey stripes, covering relevant energy ranges.

The magnetic field resolution on a colormap seems to be higher than 0.25 T. This is due to the
way the data is processed. In order to present data in a smooth and visibly clear way, the data was
enhanced numerically by performing a linear extrapolation between consecutive spectra. This resulted
in an artificial increase of magnetic field resolution and an appearance of unwanted artifacts in a form
of oscillations of linewidth, visible near deep transitions. This effect is not physical, but numerical,

and should be disregarded.

The third figure, composed of two panels, shows the way how data was fitted to transitions (left
panels) and the raw transition spectra (right panels). The points on the left panels represent the
position of minima of a given transition, and the color of a set of points is consistent with the color
of the arrow from the LL plot. The spectra on a waterfall plot (right side) are plotted every 1 T and
each consecutive spectrum is shifted vertically by an appropriate value for clarity. A symbol is added
over every visible minimum to mark its position. The shape and color of symbols correspond to the

symbols used on the left panel of the figure.

The curves obtained via fitting, are plotted on the colormaps as well. Each fit provided two

parameters — the effective rest mass of carriers m and the carrier velocity ¢.

3.3.2.1 Sample A

Temperature 1.8 K

The temperature of 1.8 K is the lowest achievable in the experimental setup. The experimental
conditions are similar to the ones of work [76] (Figure 3.8), as the sample is the same and the
temperature is 1.8 K instead of 4 K. The band gap of the sample is positive and equal to 5 meV. There
are no intraband transitions visible, most likely due to the limits of a sensitivity of the experimental
set-up. The band structure is presented in Figure 3.9. Only the transitions A, B, E, and F are

observable.

The colormap (Figure 3.10) shows that the transitions follow an almost E ~ +/B dependence.
The band structure can be compared with a band structure of Sample B at 87 K, which is above
the critical temperature. The transitions marked as A and B are the most intense ones. This is a
consequence of an enormous density of states of the heavy-hole band in comparison to the density of
states of the electron band, which is directly related to a probability of a transition and its strength.

The high-energetic transitions E and F are barely visible.

Filled and open squares shown in Figure 3.11 represent interband and intraband transitions, respec-
tively. The difference in intensity between interband and intraband transition is explicitly noticeable.
The effective rest mass obtained from the fits, presented on Figure 3.11, turned out to be equal to
m = 0.61 £0.34 - 1072 mg. The carrier velocity was estimated to be equal to & = 1.062 £ 0.089 - 10°
m/s. The uncertainty of measurements, here and for all later fits, is based on a standard deviation of
values obtained from all fitted transitions. At T = 2 K there were only four fits (to each transition),

that is why the uncertainty of the effective mass is around 50%.
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Figure 3.9: Landau level graph of Sample A as a function of magnetic field at T = 1.8 K. Colored
lines represent Landau levels, characterized by different values of €, n, and o, as described as indices
of L on the right side of the graph. The electron band Landau levels (with € = 1) have a near-v/B
behavior. The heavy-hole Landau level, plotted in black, is fully degenerated. The vertical arrows with
corresponding capital letters represent observed transitions between Landau levels in this system. Solid

arrows (A, B, E, and F) mark interband transitions.
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Figure 3.11: Left panel: Points corresponding to the minima of the transmission of Sample A atT =
2 K with fits showing the expected evolution of transitions as a function of magnetic field. Right panel:
Transmission spectra plotted at magnetic fields in range from 0 to 13 T, with symbols corresponding

to the transitions from left panel. Symbols represent interband transitions.
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Figure 3.10: False color map of a transmission of Sample A as a function of energy and magnetic field
at T = 2 K. Blue color represents areas where the transmission is equal to 1, while lightblue/yellow/red
colors indicate where the absorption takes place. White curves show fits of the energy difference of

Landau levels to the experimental points. White arrow points the value of the band gap.

Temperature 57 K

Temperature of 57 K slightly changed the band structure. The band gap increased to 28 meV. The
transitions to LLs with n = 3 are not detectable anymore, therefore the LLs with n = 3 are not plotted
on the LL graph presented in Figure 3.12, as they are irrelevant. At this temperature an intraband

transition C became visible, represented by a dashed teal arrow.

The presence of the transition C allows to differentiate the intraband and interband transitions,
which was difficult at 7" = 2 K, as all of the transitions converged close to zero energy and zero
magnetic field. At T' = 57 K the band gap is enlarged, thus there is a clear difference between the
points of convergence for interband and intraband transitions, as it is presented on the color map in
Figure 3.13.

The intensities of the transitions are not constant at the whole range of energies. The most
pronounced example is an intensity of the transition C, which decreases at F =~ 40 meV, while the
intensities of the transitions A and B increase radically. As was explained in Chapter 2, this is a
consequence of the density of filled states and a position of the chemical potential, which lies around
40 meV above the heavy-hole band. Majority of the states below the chemical potential are occupied,
so a transition from an occupied state into another occupied state is not possible. In this sense the
transition A is less probable at magnetic field below ~ 1 T, as the energy of level L; 1, lies below the
chemical potential. On the other hand, the transition C is possible at low magnetic field, because the

level L 1, lies below the chemical potential while the level L, o) lies above it. The situation changes
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Figure 3.12: Landau level graph of Sample A as a function of magnetic field at T = 57 K. Colored
lines represent Landau levels, characterized by different values of €, n, and o, as described as indices
of L on the right side of the graph. The electron band Landau levels (with € = 1) have a near-\/B
behavior. The heavy-hole Landau level, plotted in black, is fully degenerated. The vertical arrows with
corresponding capital letters represent observed transitions between Landau levels in this system. Solid

arrows (A and B) mark interband transitions, while dashed arrow (C) marks an intraband transition.

at around B = 3 T, where both levels lie above the chemical potential, thus there are no occupied

states to execute a transition.

A new feature appeared on the color map at the energy of around 10 meV. This horizontal feature is
attributed to an absorption on defects of the structure. To be more precise on the mercury vacancies,
which act as a doubly-ionized acceptor centers [95], which got thermally activated by the elevated
temperature. The fits allowed to estimate the effective rest mass to be equal to m = 2.8240.77-1073
mo, and the carrier velocity to be equal to ¢ = 1.057 £ 0.060 - 10 m/s.



44 CHAPTER 3. HGCDTE BULK SYSTEMS

Energy (meV)

Figure 3.13: False color map of a transmission of Sample A as a function of energy and magnetic field
at T = 57 K. Blue color represents areas where the transmission is equal to 1, while lightblue/yellow/red
colors indicate where the absorption takes place. White curves show fits of the energy difference of

Landau levels to the experimental points. White arrow points the value of the band gap.
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Figure 3.14: Left panel: Points corresponding to the minima of the transmission of Sample A at

= 57 K with fits showing the expected evolution of transitions as a function of magnetic field.
Right panel: Transmission spectra plotted at magnetic fields in range from 0 to 13 T, with symbols
corresponding to the transitions from left panel. Open (full) symbols represent intraband (interband)

transitions.
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Temperature 77 K
At the temperature of 77 K the band gap increases further to 36 meV. The transitions A, B, and C
are still visible. A new interband transition D becomes detectable, as it is shown in Figure 3.15 as a

dashed orange arrow.
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Figure 3.15: Landau level graph of Sample A as a function of magnetic field at T = 77 K. Colored
lines represent Landau levels, characterized by different values of €, n, and o, as described as indices
of L on the right side of the graph. The electron band Landau levels (with ¢ = 1) have a near-v/B
behavior. The heavy-hole Landau level, plotted in black, is fully degenerated. The vertical arrows with
a corresponding capital letter represent observed transitions between Landau levels in this system. Solid

arrows (A and B) are interband transitions, while dashed arrows (C and D) are intraband transitions.

The temperature is high enough to lift the chemical potential up to around 45 meV, which causes
transitions A and B to gain intensity above this energy, while transitions C and D become fainter.
The horizontal feature, related to absorption on Hg vacancies becomes more pronounced. Also, at this
temperature it is accompanied by a second feature (visible at energies around 20 meV) just above the
reststrahlen band of HgTe. This absorption is related to the energy of TO CdTe-like phonons, arising
in a magneto-absorption due to the electron-phonon interactions. The frequency of these phonon

modes is independent on temperature [96].

The fits to experimental data allowed to estimate the effective rest mass to be equal to m =
3.19 £0.41 - 1073 my, and the carrier velocity to be equal to é = 1.049 4+ 0.052 - 10° m/s.
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Figure 3.16: False color map of a transmission of Sample A as a function of energy and magnetic field
atT = 77 K. Blue color represents areas where the transmission is equal to 1, while lightblue/yellow/red
colors indicate where the absorption takes place. White curves show fits of the energy difference of

Landau levels to the experimental points. White arrow points the value of the band gap.
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Figure 3.17: Left panel: Points corresponding to the minima of the transmission of Sample A at

= 77 K with fits showing the expected evolution of transitions as a function of magnetic field.
Right panel: Transmission spectra plotted at magnetic fields in range from 0 to 13 T, with symbols
corresponding to the transitions from left panel. Open (full) symbols represent intraband (interband)

transitions.
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Temperature 120 K
At T = 120 K the band gap of Sample A reaches as much as 59 meV, as it is shown in Figure 3.30.
The number of detectable transitions at that temperature is the same, as in the case of T = 77 K —

the transitions A, B, C, and D are visible.
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Figure 3.18: Landau level graph of Sample A as a function of magnetic field at T = 120 K. Colored
lines represent Landau levels, characterized by different values of €, n, and o, as described as indices
of L on the right side of the graph. The electron band Landau levels (with € = 1) have a near-v/B
behavior. The heavy-hole Landau level, plotted in black, is fully degenerated. The vertical arrows with
corresponding capital letters represent observed transitions between Landau levels in this system. Solid

arrows (A and B) are interband transitions, while dashed arrows (C and D) are intraband transitions.

Due to the position of the chemical potential, which lies more than 80 meV above the heavy-hole
band, the transitions A and B are not visible at low magnetic field. Moreover, the transitions C and
D vanish at high magnetic fields, as the filling factor changes.

The fits to experimental points are very accurate for available data (Figure 3.32). The temperature
related features become even stronger, as the thermal energy at 120 K is slightly more than 10 meV.
The fits allowed to estimate the effective rest mass to be equal to m = 3.38 & 0.46 - 10~2 my, and the
carrier velocity to be equal to ¢ = 1.037 £ 0.027 - 105 m/s.



48 CHAPTER 3. HGCDTE BULK SYSTEMS

Energy (meV)

Figure 3.19: False color map of transmission of Sample A as a function of energy and magnetic field
at T = 120 K. Blue color represents areas where transmission is equal to 1, while lightblue/yellow/red
colors indicate where absorption takes place. White curves show fits of the energy difference of Landau

levels to the experimental points. White arrow points the value of the band gap.
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Figure 3.20: Left panel: Points corresponding to the minima of the transmission of Sample A at
T = 120 K with fits showing the expected evolution of transitions as a function of magnetic field.
Right panel: Transmission spectra plotted at magnetic fields in range from 0 to 18 T, with symbols
corresponding to the transitions from left panel. Open (full) symbols represent intraband (interband)

transitions.
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3.3.2.2 Sample B

Temperature 1.8 K

At the temperature 1.8 K Sample B is in the inverted regime with the largest negative band gap.
The LL structure of the Sample B is presented in Figure 3.21. All of the LLs originating from both
electron and heavy-hole bands converge as the magnetic field goes to zero, even though the sample
has a negative energy gap. This is explained by the model via Equation 3.6. By assuming the energy
gap to have a non-positive value and putting B = 0, the whole expression equals to zero. There are
six observable transitions — four interband, marked with solid lines, and two intraband, marked with

dashed lines.
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Figure 3.21: Landau level graph of Sample B as a function of magnetic field at T = 1.8 K. Colored
lines represent Landau levels, characterized by different values of €, n, and o, as described as indices
of L on the right side of the graph. The electron band Landau levels (with € = 1) have a near-v/B
behavior. The heavy-hole Landau level, plotted in black, is fully degenerated. The vertical arrows
with corresponding capital letters represent observed transitions between Landau levels in this system.
Solid arrows (A, B, E, and F) are interband transitions, while dashed arrows (C, D) are intraband

transitions.

All of the observed transitions are presented in Figure 3.22. A green dashed line was plotted on
the figure to give an idea about a value of the energy gap. It was drawn as an extrapolation of the
transition A at high magnetic fields. One way to understand this is to invoke Equation 3.6. There are
two factors under the square root, first depends on the energy gap, and second depends on magnetic
field. For high magnetic fields the first factor is negligible, so the whole expression formally resembles

an expression in a form of E(B) = E;/2+ v aB, where « is a constant. This equation can be plotted
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as a straight line in a /B scale and it intercepts the y-axis exactly where E(B = 0) = E,/2, which
gives an indication of the value of the band gap divided by two. In Figure 3.22 this value is marked

with a black arrow and equals to —12 meV, which translates to £, = —24 meV.

Energy (meV)

1.5 20 25 3.0 35 4.0

B1/2 (T 1/2)

Figure 3.22: False color map of the transmission of Sample B as a function of energy and magnetic
field at T = 2 K. Magnetic field is presented in a /B scale. Blue color represents areas where the
transmission is equal to 1, while lightblue/yellow/red colors indicate where the absorption takes place.
White curves show fits of the energy difference of Landau levels to the experimental points. The green
dashed line is an extrapolation of the transition Lo o, — L1,1y, which points the value of the (negative)

band gap.

The colormap (Figure 3.22) shows that the transitions follow a dependence, which is neither linear
nor v/ B-like, but resembles a mixture of these two. This is expected because the dispersion relation

is neither parabolic nor exactly Dirac-like, as there is a finite (negative) band gap.

The fits to experimental points and the waterfall plot of transmission spectra are presented in
Figure 3.23. On Panel a) there is an unknown transition, represented by grey points, which is visible
as well in Figure 3.22. The fits allowed to estimate the effective rest mass to be equal to m =
—1.91 4 0.58 - 1072 my, and the carrier velocity to be equal to é = 1.091 £ 0.069 - 106 m/s.
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Figure 3.23: Left panel: Points corresponding to the minima of transmission of Sample B at T
= 1.8 K with fits showing the expected evolution of the transitions as a function of magnetic field.
Right panel: Transmission spectra plotted at magnetic fields in range from 0 to 16 T, with symbols
corresponding to the transitions from left panel. Open (full) symbols represent intraband (interband)

transitions.

Temperature 37 K
Temperature of 37 K slightly changed the band structure, as shown in Figure 3.24. The negative
energy gap got smaller, down to -14 meV. The LLs still converge at zero magnetic field. The most

noticeable change is a disappearance of the transition F.

Transitions C, D and E are faint in general, as their probability is relatively low, as is presented
on the color map in Figure 3.25. The horizontal feature (at around 10 meV) related to absorption on
mercury vacancies, starts to be visible. The position of the Fermi level lies close to 25 meV above the
heavy hole band, as the intensity of transitions A i D switch. However, both transitions are further
separated in comparison with the situation at 7" = 1.8 K. This can be explained by a change of the
Fermi distribution as the temperature is increased. The fits allowed to estimate the effective rest mass
to be equal to m = —1.4440.68-1072 myg, and the carrier velocity to be equal to ¢ = 1.05240.052-10°

m/s.
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Figure 3.24: Landau level graph of Sample B as a function of magnetic field at T = 37 K. Colored
lines represent Landau levels, characterized by different values of €, n, and o, as described as indices
of L on the right side of the graph. The electron band Landau levels (with € = 1) have a near-v/B
behavior. The heavy-hole Landau level, plotted in black, is fully degenerated. The vertical arrows
with corresponding capital letters represent observed transitions between Landau levels in this system.

Solid arrows (A, B, and E) are interband transitions, while dashed arrows (C and D) are intraband
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Figure 3.26: Left panel: Points corresponding to the minima of the transmission of Sample B at

= 87 K with fits showing the expected evolution of transitions as a function of magnetic field.
Right panel: Transmission spectra plotted at magnetic fields in range from 0 to 16 T, with symbols
corresponding to the transitions from left panel. Open (full) symbols represent intraband (interband)

transitions.
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Figure 3.25: False color map of the transmission of Sample B as a function of energy and magnetic
field at T = 37 K. Magnetic field is presented in a /B scale. Blue color represents areas where the
transmission is equal to 1, while lightblue/yellow/red colors indicate where the absorption takes place.
White curves show fits of the energy difference of Landau levels to the experimental points. The green
dashed line is an extrapolation of transition Lo oy — L1,1y, which points the value of the (negative)

band gap.

Temperature 77 K

The temperature of 77 K is the critical temperature for Sample B. This is where the band gap
vanishes completely and the dispersion relation is linear and is formed by a Dirac cone. The amount
of detectable transitions is the same as at T' = 37 K, however the transition E becomes even fainter
and more difficult to detect.

The Figure 3.27 presents that the band gap is zero and LLs follow precisely a v/B dependence on
energy. This means that all of the LLs converge at zero magnetic field. As a consequence, all the
transitions follow an exact v/B dependence on energy as well, as presented on a color map in Figure
3.28.

The temperature is high enough to lift the chemical potential up to around 50 meV, which causes
transitions A and B to gain intensity above this energy, while transitions C and D become fainter.
The transition E is barely visible. Both horizontal features related to absorption on defects become
more pronounced at this temperature.

The fits allowed to estimate the effective rest mass to be equal to 7 = —0.49 £+ 0.53 - 1073 my,
and the carrier velocity to be equal to ¢ = 1.056 &= 0.001 - 105 m/s. The effective rest mass at T = 77

K is the lowest observed in this experiment. The value is not equal to zero as, firstly, it resulted from
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Figure 3.27: Landau level graph of Sample B as a function of magnetic field at T = 77 K. Colored
lines represent Landau levels, characterized by different values of €, n, and o, as described as indices
of L on the right side of the graph. The electron band Landau levels (with ¢ = 1) have a near-v'B
behavior. The heavy-hole Landau level, plotted in black, is fully degenerated. The vertical arrows
with corresponding capital letters represent observed transitions between Landau levels in this system.
Solid arrows (A, B, and E) are interband transitions, while dashed arrows (C and D) are intraband

transitions.

an approximate theory relating energy gap with effective rest mass, and secondly, it was obtained by

performing fits to the experimental data, which are always flawed by an uncertainty.
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Figure 3.28: False color map of the transmission of Sample B as a function of energy and magnetic
field at T = 77 K. Magnetic field is presented in a /B scale. Blue color represents areas where the
transmission is equal to 1, while lightblue/yellow/red colors indicate where the absorption takes place.
White curves show fits of the energy difference of Landau levels to the experimental points. All of the

transitions converge at B = 0 T, when the band gap vanishes.
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Figure 3.29: Left panel: Points corresponding to the minima of the transmission of Sample B at
T = 77 K with fits showing the expected evolution of transitions as a function of magnetic field.
Right panel: Transmission spectra plotted at magnetic fields in range from 0 to 16 T, with symbols
corresponding to the transitions from left panel. Open (full) symbols represent intraband (interband)

transitions.
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Temperature 120 K
Above the critical temperature of 77 K Sample B becomes semiconducting, as the band gap opens.
At T = 120 K the band gap reaches as much as 18 meV, as is shown in Figure 3.30. The number of

detectable transitions diminished, as only transitions A, C, and D are visible.
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Figure 3.30: Landau level graph of Sample B as a function of magnetic field at T = 120 K. Colored
lines represent Landau levels, characterized by different values of €, n, and o, as described as indices
of L on the right side of the graph. The electron band Landau levels (with ¢ = 1) have a near-v'B
behavior. The heavy-hole Landau level, plotted in black, is fully degenerated. The vertical arrows with

corresponding capital letters represent observed transitions between Landau levels in this system. The

solid arrow (A) is an interband transition, while dashed arrows (C and D) are intraband transitions.

An interband transition A, for the first time for Sample B, does not converge at zero energy at
zero magnetic field. This is a direct indication that the band gap has opened. When the band gap
is positive, at zero magnetic field it points exactly to the value of the band gap, which is presented
in Figure 3.31. Due to the position f the chemical potential, being more than 80 meV above the
heavy-hole band, the transition A is not visible at small magnetic field. Because of the same reason
the transition D vanishes at high magnetic fields. However, the fit to experimental points is very

accurate for available data (Figure 3.32).

The temperature related features become even stronger, as the thermal energy at 120 K is higher
than 10 meV. The fits allowed to estimate the effective rest mass to be equal to m = 2.154+0.46- 1073
mg, and the carrier velocity to be equal to ¢ = 1.010 £ 0.007 - 10 m/s.
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Figure 3.31: False color map of the transmission of Sample B as a function of energy and magnetic
field at T = 120 K. Magnetic field is presented in a /B scale. Blue color represents areas where the
transmission is equal to 1, while lightblue/yellow/red colors indicate where the absorption takes place.
White curves show fits of the energy difference of Landau levels to the experimental points. White

arrow points the value of the band gap.
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Figure 3.32: Left panel: Points corresponding to the minima of the transmission of Sample B at

= 120 K with fits showing the expected evolution of transitions as a function of magnetic field.
Right panel: Transmission spectra plotted at magnetic fields in range from 0 to 16 T, with symbols
corresponding to the transitions from left panel. Open (full) symbols represent intraband (interband)

transitions.
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3.3.3 Summary

The results presented in this chapter present in a direct and straightforward way the evolution of the
band structure of bulk Hg;_,Cd,Te crystals characterized by a cadmium concentration close to the
critical. Results based on two samples were shown and compared to easily highlight the differences of
the band structure between a regular and an inverted band order systems. The temperature evolution
of the band gap and a semiconductor-to-semimetal phase transition was studied by the means of
magneto-spectroscopy.

A critical temperature was found by an investigation of LLs evolution as a function of magnetic

field — at the critical temperature two conditions must be met:

e All transitions between LLs have to follow an E « /B dependence at a broad scale of magnetic

fields and energies,

o All transitions between LLs have to converge to zero energy at zero magnetic field, showing that

the band gap vanishes.

Those conditions were met by Sample B with cadmium concentration of x = 0.155 at the tem-
perature T, = 77 K. Moreover, a positive band gap opening was registered at higher temperature
T > T, as the interband transitions converged at B = 0 T at nonzero energy. The value of the bang
gap increased as the temperature got higher. This process was expected due to the study of Sample
A, which band gap was positive at the whole range of temperatures, and its value increased with
temperature.

These results are the first evidence of a temperature induced phase transition investigated by
the THz magneto-spectroscopy on bulk HgCdTe structures with well-chosen chemical composition.
The genuine Kane fermions were observed at the critical temperature of 77 K. In order to describe
and analyze the data, the simplified Kane model was used. It allowed to determine the pseudo-
relativistic Dirac-like Kane fermions parameters m and ¢ as a function of temperature and cadmium
concentration. The nonzero rest mass obtained from fits at the critical temperature corresponds to the
limit of precision of the experimental set-up. The results are in agreement with theoretical predictions
and are consistent with the data obtained previously by Orlita et al. [76].

The magnetic field evolution of the transitions is shown explicitly in Figure 3.33, where the tran-
sition Lo, — L1,1; is shown for the broad range of temperatures between 2 K and 87 K. For T" =
120 K the transition Lg o+ — L1,1+ was plotted instead, as the transition Lo, — L1 1 is not visible.
The z-axis is presented in a v/B scale for clarity. The band gap is negative for all the temperatures
below the critical, and the dispersion relation does not resemble the Dirac cone, as the transitions
do not follow a true v/B dependence. The band gap opens above the critical temperature, as the
transitions for 87 K and 100 K do not converge to zero energy at zero magnetic field. Finally, at the
critical temperature, the band gap vanishes completely, and a pure v/ B dependence is observed, which
confirms that the system exhibits a true Dirac cone.

Each transition was fitted according to the model (Equation 3.6). One fit provided a set of values
of ¢ and m. All of the obtained values are plotted in Figure 3.34. The top panel (a) presents the rest
mass, while the bottom panel (b) presents the velocity. Error bars in Figure 3.34 originate from the
standard deviation of the values taken for every transition at given temperature.

Interestingly, the Kane fermion velocity ¢ is nearly constant over the whole range of temperatures
for both samples with Cd contents of 0.155 and 0.175. The extracted value of ¢ = (1.07 & 0.05) - 10°
m/s is in a very good agreement with the theoretical value defined by ¢ = \/W , which equals
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Figure 3.33: Ewvolution of the transition Lo o, — L1 1y for different temperatures (Lo ot — L1,14 for T
= 120 K). For all temperatures T < T, the band gap is negative, thus the transition converges at E =
0 meV at B = 0 T and the shape of transition does not have a pure /B dependence. At T = T the
band gap vanishes and the transition follows precisely a v/ B (a straight line on /B scale). At T > T,
the transition does not follow a /B dependence again. Moreover, it converges to a finite value of the

band gap at B = 0 T, which is a sign of the (positive) band gap opening.

to 1.05 - 10% m/s for the well-accepted value of E, = 2moP?/h? ~ 18.8 eV. Therefore, this universal
value of ¢ allows to determine the particle rest-mass for band gap values in the vicinity of a semimetal-
to-semiconductor phase transition induced by temperature, Cd content, or other external parameter
(e.g. pressure).

There are two points limiting the applicability of the simplified Kane model, considering the I'g
and I's band only, for the actual HgCdTe crystals. The first one, already mentioned, is related with
the presence of other bands, considered as remote and not included in the model. The energy gap
between the second and the lowest conduction bands in CdTe exceeds 4 eV, while the corresponding
gap in HgTe is about 3 eV. Therefore, the cut-off energies for conduction bands in the simplified model
should be lower than 3 eV. For the valence band, the cut-off energy is defined by the energy difference
A = 1 eV between the split-off I'; band, and the heavy-hole band. The second limitation is attributed
to the flat heavy-hole band, characterized by an infinite effective mass in the model. To ignore the
parabolic terms in the electron dispersion of the heavy-hole band, one has to consider sufficiently low

energies E, such that the relativistic mass of the fermions F /¢ should be significantly lower than the
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Figure 3.34: Parameters m and ¢ obtained from fits to the experimental data as a function of temper-
ature. Panel a): Rest mass of Kane fermions. For Sample B the mass changes sign at the T, while
for Sample A the mass is always positive. Panel b): Velocity of Kane fermions. Velocity is constant

at all temperatures, for both samples, which is highlighted by a dashed blue line placed at v = 1.07 - 10°

m/s.

heavy-hole mass mpj,. Assuming myy = 0.5 mg, where my is the free electron mass, a cut-off energy

is estimated to be equal to about 3 eV for the flat band approximation, which exceeds A.



Chapter 4

HgTe Quantum Wells

4.1 Overview of HgTe Quantum Wells

A typical HgTe/CdTe QW is formed when a layer of HgTe is sandwiched between two layers of
CdTe (or Hg;_,Cd,Te), which form barriers for the HgTe layer. Positions of energy levels, for both
electrons and holes, depend on the QW width. As the QW width varies, the relative positions of the
first electron-like subband (E1) and the first hole-like subband (H1) change. For thin quantum wells
with QW thickness d < 6.3 nm the quantum confinement is strong and the structure exhibits a normal

semiconducting phase with a conventional subbands alignment — the level E1 lies above the H1 level.

In an opposite case, for quantum wells with d > 6.3 nm, the situation is reversed — the quantum
confinement is weaker and the H1 level lies above the F1 level, which results in a band inversion.
Consequently, for d. = 6.3 nm the band gap vanishes and the system undergoes a topological phase
transition from a trivial insulator to a QSH insulator, and the QW hosts single-valley 2D massless

Dirac fermions [99].

The other way to understand this is to realize that the structure of a thin QW (dgg4re — 0) should
behave like CdTe and have a regular band ordering, i.e. bands with I'g symmetry form the conduction
subbands and the I's symmetry bands form the valence subbands. On the other hand, if the dgy7e is
large (dggre — 00) the structure resembles the properties of HgTe, characterized by an inverted band
order. Somewhere in between, as the thickness reaches a critical value d. = 6.3 nm, the I's and I'g
subbands cross and the structure becomes inverted — the I'g bands become valence subbands and the
I's bands become conduction subbands. The QW states derived from the heavy-hole band are named
H,,, where n = 1,2,3, ... denotes the states existing in the QW. Similarly, the levels originating from
the electron and light-hole bands are named E,. The band structure and first few energy levels of a
HgTe/CdTe QW as a function of QW width are shown in Figure 4.1.

4.1.1 Band Structure of a HgTe/CdTe Quantum Well

An energy dispersion of the E1 and H1 subbands of a HgTe/CdTe QW near the critical thickness
can be calculated using the 8-band Kane model. It turns out that near the I" point of the Brillouin
zone the dispersion depends linearly on momentum k. Using the states (after BHZ [17]) |E1, 1),
|H1,3), |E1,—3), |H1,—2) as a basis, an effective Hamiltonian for the E1 and H1 subbands takes

61
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Figure 4.1: Panel a) The energy of the states in the quantum well as a function of the width of the
HgTe QW layer. E,, represent electron-like states, while H,, represent hole-like states. Panels b), c)
Schematic of a quantum well geometry and lowest subbands for thicknesses below (b) and above (c)
the critical thickness. Images come from the works of Kinig [98] (a), and Bernevig [17] (b,c).

form of:

Hpuz(ks ky) = )
0  H*(—k) (4.1)

where o; are the Pauli matrices, and

dy +idy = A(k)l — Zk‘y) = Ak_,
dy = M — B(k3 + k), (4.2)
e=C—D(kI+k).

The two components of the Pauli matrices o in Equation 4.1 denote the E1 and H1 subbands, while
the two diagonal blocks H (k) and H*(—k) represent spin-up and spin-down states, connected to each
other by the time reversal symmetry.

In a gapples state, the relativistic mass M in Equation 4.2 vanishes. By neglecting the nonlinear
terms in each spin, H(k) and H*(—k) can be approximated by the massless Dirac Hamiltonian de-
scribing the genuine Dirac fermions. Since a HgTe QW does not have any valley degeneracy, the Dirac
fermions exist only in a single valley configuration. A comparison of an approximate Dirac-like band

structure and the results of numerical calculations of the band structure based on the Kane model
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(solid curves) are presented in Figure 4.2. As mentioned before, the Dirac approximation (plotted as

dotted curves) is valid in the vicinity of k = 0, where higher in momentum terms can be neglected.
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Figure 4.2: Comparison of band structures obtained using the 8-band Kane model (red and blue solid

curves) and the Dirac-type 2D Hamiltonian (black dotted curves) for a gapless state. Blue curve

represents an electron level E1, while red curve represents a hole level H1.

4.1.1.1 The Influence of Magnetic Field on the Band Structure

The LL structure of a HgTe QW at applied magnetic field can be described in two ways. The
first way is based on an approximation using the Dirac Hamiltonian, which can be solved explicitly
to obtain the equations describing the energy of the LLs. The approximation based on the Dirac
Hamiltonian holds only for a limited range of parameters. The second (more accurate and versatile)
approach is based on the 8-bands Kane Hamiltonian. However, its solutions can be found only via

numerical calculations.

The Dirac-like Hamiltonian describing a HgTe QW system in magnetic field takes form of:

Hefy = Hpuz + Hzeeman + Hsra + Hpra, (4.3)

where H, 7 is the effective Hamiltonian from equation 4.1 with a Peierls substitution k — k + 7 A
applied, Hzceman includes Zeeman effects, Hgr4 represents the structure inversion asymmetry (STA),
and Hpra bulk inversion asymmetry (BIA). The expressions for Hzeeman, Hsra, and Hpra can be

found in Appendix C.1.
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Neglecting the SIA and BIA terms, the Landau level spectrum takes form of:

B B

El(n) = == (2Dn + B) + %2 = (95 + gn)

eB, e KB 2

+a\/2nA2 +(M=BL (5D +280) "2 (gp+gn)))

h h 4

eB B (44)

Ef(n) = _Til (2Dn — B) — MB4 = (g5 + gu)

2¢BL _ B, (&- ] ’

+a\/2nA =+ (/\/l By (h( D +2Bn) + (gE+gH))) ;
where n = 1, 2, ..., @« = +1 for conduction band, and o = —1 for valence band. The parameter C is

usually set to zero to put the Dirac point at zero energy. For a sample in a gapless state (M = 0) the

expression 4.4 (for conduction band « = +1) at low magnetic fields reduces to

B
EY =B, (—%(217114— B) + %(QE +9H)> + am (4.5)

up to linear terms. This is an origin of the square-root magnetic field dependence that became the

signature of Dirac fermions in graphene [100], with an additional linear term describing the large g-
factor of a HgTe QW. This model holds well for low magnetic field regime, where the approximations
are valid. For higher magnetic fields, the 8-band Kane model has to be used and the magnetic field
dependence no longer follows a pure square-root function.

Meanwhile, the states for n = 0, called zero-mode [17] LLs, can be described by equations 4.6.
It is worth to mention that these states are labeled with n = 0 only in the Dirac-like Hamiltonian
approximation. In the Kane-model approach, these states are numbered differently, but still are

referred to as zero-mode.

B B
E'g:./\/lf ehL(D+B)+ o LgE
B B (4.6)
Ey = M+ —=(~D+B) - “32 Lon
The spin splitting of those LLs takes form
2eB B
AB, = B} - Bj =2M - =B+ 22 (g5 + gu). (4.7)

The detailed LL spectrum of a HgTe/CdTe QW is derived from the 8-band Kane Hamiltonian and
requires solving a set of eight coupled differential equations for a given LL. In general, for LLs with
n < 0, there are only 7, 4, and 1 non-trivial solutions for n = 0, -1, and -2, respectively. For LLs with
higher n indices the results consists of four pairs of spin-split levels. The single LL with n = —2 has
a pure heavy-hole character and its energy decreases linearly with magnetic field. This level, along
with one of the levels labeled as n = 0, form a set of zero-mode LLs, already described in Dirac-like

Hamiltonian approximation.

Zero-mode Landau levels
A very particular property of zero-mode LLs manifests itself with a variation of an applied magnetic
field. For magnetic fields below a critical value B., the lower zero-mode LL has an electron-like
character and arises from the valence band, while the higher zero-mode LL has a heavy-hole-like
character and arises from the conduction band. The edge channels are present as the structure is in
inverted band order phase. However, they are no longer protected by the time-reversal symmetry, as

the magnetic field is applied.
With increasing magnetic field the zero-mode LLs merge and eventually cross themselves, reversing

the order of the bands, and turning the system into the QHE phase. This critical magnetic field, where
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Figure 4.3: Landau level structure obtained using the 8-band Kane model for an inverted state. Thick
red (n = 0) and grey (n — -2) curves represent zero-mode LLs, which exhibit a crossing at B, = 5
T, marked with a vertical dashed line. The crossing point separates an inverted band ordering phase

(B < B.) from a regular band ordering phase (B > B.). Transitions originating from zero-mode LLs

are represented with arrows marked as o and o/ .

the crossing occurs, can be derived from Equation 4.7. By substituting AE; = 0 and neglecting small
g-factor terms, the expression for the critical magnetic field takes form of B} = %. In the inverted
regime M/B > 0, the crossing takes place at a positive magnetic field value, while in the normal
regime M /B < 0, the crossing extrapolates to a negative value of magnetic field. For a gapless QW,
the crossing occurs at zero magnetic field. Therefore, the position of the crossing is a well-defined
indication of the phase of the system. The zero-mode LLs (thick red and grey curves) and their
crossing point (marked with a vertical dashed line), separating the inverted phase from the QHE

phase, is presented in Figure 4.3.

In the case of a HgTe/CdTe QW in a gapped state, the off-diagonal terms of the massless Dirac
Hamiltonian have to be completed by the diagonal massive terms. In any case, the zero-mode LLs still
appear due to the off-diagonal, linear in k terms. Moreover, in a gapped state, the zero-mode LLs are
split in energy due to the existence of the mass term, and their position changes monotonically as a
function of the temperature or the width of the QW. The magnetic field evolution of the zero-mode LLs
in HgTe QWs, and their crossing at B, can be considered as a field-driven insulator-metal-insulator
phase transition. The transport data [14] gave an indication that those LLs simply cross themselves,

but also a possibility of a weak anticrossing was considered [98].

Indeed, several magneto-spectroscopy studies [101][102] proved that those levels may exhibit an
anticrossing in the vicinity of the calculated B.. This effect can be observed in magneto-spectroscopy as
an evolution of two transitions, which are shown as arrows in Figure 4.3. The first of those transitions
is a regular transition from LL n = 0 to LL n = 1, designated as transition «, following the notation of
Schultz et al. |103]. However, the second transition, designated as ¢/, is a transition from LL n = —2
to LL n = 1. This transition does not satisfy the selection rules An = +1 in the Faraday configuration,
and is forbidden in the electric dipole approximation, as was explained earlier. The appearance of

this transition is related to a coupling between the LLs n = 0 and n = —2, resulting from BIA. The
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band structure calculations of HgTe QWs often neglect BIA, which is inherently present in zinc-blend
crystals. A consequence of BIA is a mixing of the states of the zero-mode LLs in the vicinity of B..

This mixing activates the transition o', rendering it detectable in magneto-optical studies.

4.1.1.2 The Influence of Temperature on the Band Structure

Apart from the variation of a QW thickness, which is inherently an internal parameter of the
structure — once set (at growth) cannot be changed, external paramteres like hydrostatic pressure [80]
and temperature [62] (as in the case of HgCdTe bulk systems presented in Chapter 3) can be used
to induce a phase transition in HgTe QW systems. This is a consequence of a strong temperature
dependence of energy of the E1 level. The temperature dependence of the energy gap and a band
order evolution is presented in Figure 4.4 for two systems — a 6 nm HgTe QW with a regular band
order at all temperatures (Panel a)), and an 8 nm HgTe QW with an inverted band order at low
temperature (Panel b)). The second system undergoes a temperature-induced phase transition at a
critical temperature 7., and turns into a regular semiconductor at higher temperatures. The energy
of H1 (and H2) bands does not change with temperature at all, while there is a clear dependence of

energy on temperature of the E1 band.
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Figure 4.4: Temperature dependence of the electron-like E1 (blue curve) and hole-like H1, H2 (red
curves) subbands at k = 0, calculated for Panel (a) a 6 nm HgTe/CdTe quantum well, and Panel
(b) an 8 nm HgTe/CdTe quantum well. AtT = T, the 8 nm quantum well undergoes a phase transition

characterized by a band inversion.

The calculations of the band structure and the band nonparabolicity are based on the 8-band Kane
model which takes into account the temperature dependence of all relevant parameters, including but
not limited to the lattice and elastic constants of Hg;_,Cd,Te. The model takes into account also
the interactions between I'g, I's, and I'; bands. Despite the fact that the electronic states of HgTe
QWs can be described qualitatively by the 6-band model, only the inclusion of the I'; band in the
calculations allows to obtain the quantitative values of hydrostatic pressure or temperature of the
phase transition [80]. For other HgCdTe-based materials, like bulk systems, this is not the case — the
influence of the I'; band can be neglected in the calculations [77].

The calculations of the band structure of the 8 nm thick QW revealed that at high temperatures
the band order is regular and the energy gap between E1 and H1 bands considerably decreases with
decreasing temperature, which is presented in Panel (c) of Figure 4.5. At the critical temperature
T, = 90 K the band gap vanishes giving rise to massless Dirac fermions (Panel (b)). Further decrease

of temperature induces a phase transition and renders the band structure inverted with an indirect
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Figure 4.5: Dispersion relation of an 8 nm HgTe/CdTe quantum well in Panel (a) the topological
insulator phase T < T., Panel (b) the gapless state T = T., and Panel (c) the semiconductor phase
T > T,. The electron-like E1 (hole-like H1) subband is represented as a blue surface (red surface). In
the inverted phase the indirect band gap is formed by the presence of side mazima of the E1 subband.

band gap, which arises due to the presence of the side maxima of the valence band (Panel (a)).

4.1.2 Experiment

4.1.2.1 Samples

The high-quality HgTe QW samples were grown in Novosibirsk by Dvoretskii and Mikhailov [104]
using an MBE technique on a (013)-oriented semi-insulating GaAs substrate followed by a relaxed
CdTe buffer layer. An active part of a QW consists of a (6 nm for Sample A, 8 nm for Sample B) HgTe
layer sandwiched between 40 nm thick Cd,Hg;_,Te barriers. A cap layer of CdTe was deposited on
top of the structures to prevent oxidation. Sample A remained undoped, while the barriers of Sample
B were doped on each side with a 15 nm layer of indium with the doping concentration of 6.5 - 1016
cm~3. This resulted in a formation of a 2D electron gas in the QW of Sample B. The QW width d

and cadmium concentration in barriers z of investigated structures is given in Table 4.1.2.1.

Table 4.1: The properties of investigated HgTe/CdTe quantum wells — quantum well thickness, Cd

concentration in the barrier, and type (p for holes, n for electrons) and concentration of dominant
carriers.

Sample name | QW thickness | Barrier Cd rate z | Type, carrier concentration (2 K)

Sample A 6 nm 0.62 p=3-10'0 cm—2

Sample B 8 nm 0.80 n=3-10" cm—2

The critical thickness corresponding to a phase transition at different temperatures for HgTe /Hg;_, Cd,. Te
samples with = 0.62 (the same as Sample A) and z = 0.80 (the same as Sample B) is presented
in Figure 4.6. The 6 nm Sample A (represented by a black curve) is in a semiconducting state at
the whole temperature range. The 8 nm Sample B (red curve) at low temperature is a topological

insulator and is expected to exhibit a phase transition at 7' = 90 K followed by an opening of the
band gap.
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Figure 4.6: The critical thickness at different temperatures for HgTe/Hg,_,, Cd, Te samples with x =
0.62 (black curve) and x = 0.80 (red curve).

4.1.2.2 Results

Related experimental works

The first results, concerning the particular behavior of zero-mode LLs were reported in works of Konig
et al. [14] and Zhang et al. [24]. Tt was shown that the magnetic field evolution of the zero-mode
LLs in HgTe QWs is an origin of a magnetic field-driven insulator-metal-insulator phase transition,
which is characteristic for these systems. It is worth to stress that this is not a topological insulator-
metal-insulator transition but a topological insulator-metal-insulator transition, as the magnetic field
breaks the time-reversal symmetry and, as a consequence, the topological protection. A crossing of
these levels at the critical field was confirmed in [14] by magneto-transport data.

Orlita et al. [101] demonstrated for the first time by magneto-spectroscopy measurements on two
8 nm wide HgTe QWs an evolution and an anticrossing of transitions originating from the zero-mode
LLs. These findings were confirmed by the work of Zholudev et al. [105], in which the anticrossing
was observed via magneto-spectroscopy as well, and its presence was attributed to BIA. Moreover, it
was speculated that some other processes can cause the levels to avoid crossing, e.g. electron-electron
interactions [101].

The first systematic magneto-spectroscopy study of HgTe QWs systems with different QW widths
close to the critical was performed by Zholudev [102]. In his experiment a set of four samples was used
— two of them being in an inverted regime of thickness, while the other two being in a non-inverted
regime. This allowed to directly observe the difference between the two separate topological phases

and the band structure that they originate from. An anticrossing of zero-mode LLs was also observed.

The first temperature dependent study of phase transition in HgTe QWs were done by Ikonnikov
[106]. The study was conducted in pulsed magnetic fields up to 45 T using monochromatic radiation
sources. It revealed a temperature-induced merging of the absorption lines, corresponding to the
transitions from the zero-mode LLs. The results are presented in Figure 4.7.

All the magnetospectroscopy studies of Dirac fermions in HgTe mentioned above were conducted
either at low temperatures and/or using monochromatic THz sources. In 2015, a magneto-transport
study conducted by Wiedmann et al. [62] showed fingerprints of a temperature-induced transition

from the topological insulator at 4.2 K to the semiconductor phase at 300 K. However, the critical
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Figure 4.7: Magneto-resistance and magneto-absorption spectra obtained at different temperatures on
an 8 nm HgTe QW. Panel a) Solid lines 4.2 K, dotted lines 20 K, dashed lines 30 K, using a 14.8-um
QCL. Panel b) Solid lines 80 K, dotted lines 102 K, dashed lines 174 K, using a COs laser emitting
at 10.6 pm. Images come from the work of Ikonnikov [106].

temperature for the samples, where the phase transition occurs and the massless Dirac fermions arise,
was too high to be determined by this technique. This is caused by a significant degradation of

resolution between LLs observed in magneto-transport at high temperatures.

Experimental details

In this work a set of two samples was investigated in order to determine if a temperature induced
topological phase transition takes place in HgTe/CdTe QW. Similarly to the bulk systems, the first QW
sample exhibits a semiconducting behavior at the whole range of temperatures, while the second one
has an inverted band structure at low temperatures, then undergoes a phase transition at the critical
temperature, and finally turns into a regular semiconductor at high temperatures. In contrary to bulk
systems, a two-dimensional HgTe/CdTe QW in inverted state is not a semimetal but a topological
insulator (if no magnetic field is applied).

Magneto-spectroscopy measurements were performed at magnetic fields up to 16 T and in energy
range 80 - 800 cm~! (=~ 10 - 100 meV) with a 4 cm ! resolution. The relevant temperature range was
between 2 K and 130 K. The infrared transmittance spectra were measured by a Fourier spectrometer
with a Globar lamp as a source of radiation. The system was coupled to a liquid helium cryostat.
The transmission spectra were obtained by dividing the spectra taken at given magnetic field by the
spectra obtained at zero magnetic field.

In order to interpret the experimental results, a set of temperature-dependent band structure and
LL structure calculations based on the 8-band Kane Hamiltonian were performed. The calculations
took into account a tensile strain in the layers resulting from the mismatch of lattice constants of
CdTe buffer, Cd,Hg;_,Te barriers, and HgTe QW. The energies of LLs were obtained using an axial
approximation, while the calculations of dispersion relations held also non-axial terms.

On each spectra there is a completely opaque region due to the presence of reststrahlen bands, exist-
ing between 16 and 21 meV and 30 and 37 meV corresponding to a phonon absorption of HgTe/HgCdTe
layers and a GaAs substrate, respectively. Because of that, the energy regions corresponding to these

bands were covered by grey areas on the spectra.
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4.1.2.3 Sample A

Temperature 2 K

The results of the LL calculations for 7' = 2 K for Sample A are presented in Figure 4.8. Only two
bands (E1 and H1) are present. In the Faraday configuration, optical transitions between LLs are
required to follow a An = +1 selection rules, provided by the electric dipole approximation (Chapter
2). By taking into account the previous optical studies of HgTe QWs [103][101][102][106][107][105], the
transmission spectra are expected to be dominated by the transitions between LLs with low indices.
Those transitions are marked in Figure 4.8 by small Greek letters (a1, as, §) and solid arrows, as
all visible transitions are interband transitions, which is a consequence of the low concentration of
holes as dominant carriers in Sample A. According to a convention applied in HgCdTe bulk systems

in Chapter 3, dashed arrows are reserved for intraband transitions.
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Figure 4.8: Landau level graph of Sample A as a function of magnetic field at T = 2 K. Colored lines
represent Landau levels, characterized by a different value of n, as described as indices of L on the
right side of the graph. The Landau levels with n = —2 and n = 0 are zero-mode Landau levels. The
energy of those levels at zero magnetic field is an indication of the band gap. The vertical arrows with
corresponding Greek letters represent observed transitions between Landau levels in this system. Solid

arrows oy, ag, and [ indicate interband transitions.

The band gap is equal to 2.7 meV. The electrons from both of the zero-mode LLs, denoted asn = —2
and n = 0, take part in optical transitions, which allowed to confirm that these LLs do not cross (for

a positive value of magnetic field). This is an indication that the sample is in a semiconducting phase.

The expected dependence of energy of transitions on magnetic field can be derived from the
difference of the calculated LLs. In the Panel a) of Figure 4.9 these expected transitions are presented
along with experimental points corresponding to the minima of transmission of given spectra. There
is a strong agreement between the experimental data and the theoretical calculations. The strongest
transitions are oy and 3, which is shown on a waterfall plot in Panel b) of Figure 4.9. The spectra

are plotted every 1 T and shifted vertically for clarity.
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Figure 4.9: Left Panel: Points corresponding to the minima of the transmission of Sample A at
= 2 K with theoretical predictions of transitions as a function of magnetic field. Right panel:
Transmission spectra plotted for magnetic fields in range from 1 to 16 T every 1 T, with symbols

corresponding to the transitions from left panel.
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Temperature 30 K

At T = 30 K the band structure of Sample A slightly changed. The energy difference of zero-mode
LLs at zero magnetic field got higher — the band gap is equal to 10.2 meV. The LL structure is
presented in Figure 4.10.
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Figure 4.10: Landau level graph of Sample A as a function of magnetic field at T = 30 K. Colored

lines represent Landau levels, characterized by a different value of n, as described as indices of L on

the right side of the graph. The Landau levels with n = —2 and n = 0 are zero-mode Landau levels.
The energy of those levels at zero magnetic field is an indication of the band gap. The vertical arrows
with corresponding Greek letters represent observed transitions between Landau levels in this system.

Solid arrows oy, ag, and B indicate interband transitions.
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Figure 4.11: Left Panel: Points corresponding to the minima of the transmission of Sample A at
= 30 K with theoretical predictions of transitions as a function of magnetic field. Right panel:
Transmission spectra plotted for magnetic fields in range from 1 to 16 T every 1 T, with symbols

corresponding to the transitions from left panel.
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Temperature 70 K

73

At T = 70 K the band structure of Sample A changed even more. The energy difference of zero-mode

LLs at zero magnetic field got a higher — the band gap is equal to 23.2 meV. The LL structure is

presented in Figure 4.12.

50

Energy (meV)

10
Magnetic Field (T)

Figure 4.12: Landau level graph of Sample A as a function of magnetic field at T = 70 K. Colored

lines represent Landau levels, characterized by a different value of n, as described as indices of L on

the right side of the graph. The Landau levels with n = —2 and n = 0 are zero-mode Landau levels.

The energy of those levels at zero magnetic field is an indication of the band gap. The vertical arrows

with corresponding Greek letters represent observed transitions between Landau levels in this system.

Solid arrows a1, asg, and B indicate interband transitions.
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T = 70 K with theoretical predictions of transitions as a function of magnetic field. Right panel:

Transmission spectra plotted for magnetic fields in range from 1 to 16 T every 1 T, with symbols

corresponding to the transitions from left panel.
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4.1.2.4 Sample B

Temperature 2 K

At T = 2 K Sample B is in a topological insulator phase. The LL structure is presented in Figure
4.14. The value of the direct band gap is estimated to be E, ~ 26 meV. It is important to note that
at this temperature the H1 band is energetically higher that the E1 band, thus the band gap should

be considered as negative.
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Figure 4.14: Landau level graph of Sample B as a function of magnetic field at T = 2 K. Colored
lines represent Landau levels, characterized by a different value of n, as described as indices of L on
the right side of the graph. The Landau levels with n = —2 and n = 0 are zero-mode Landau levels.
The energy of those levels at zero magnetic field is an indication of the band gap. Their crossing
indicates the point of field induced semiconductor-metal-semiconductor phase transition, and indicates
that the sample is in the inverted band order phase. The vertical arrows with corresponding Greek
letters represent observed transitions between Landau levels in this system. The solid arrows indicates

interband transitions o and o, while dashed arrows indicate intraband transitions 3, v, and §.

The most interesting feature of the LL structure presented in Figure 4.14 is the crossing of the
lower level of the conduction band (with hole-like symmetry) with n = —2, and the upper level of the
valence band (with electron-like symmetry) with index n = 0, which takes place at the magnetic field
value of B. ~ 5 T. An application of magnetic field breaks the time-reversal symmetry making the
boundary states no longer protected, nevertheless the inverted band order is preserved. The situation
changes at B > B, — the zero mode LLs swap and the structure becomes a conventional quantum
Hall insulator.

There are five visible transitions in the spectra, all of them were marked by arrows in Figure 4.14.
An anticrossing of transitions o and o’ was already observed and reported [101][102][105]. Here, the
anticrossing is visible at magnetic fields close to the calculated B, ~ 5 T, as presented in Figure
4.15. However, the anticrossing is visible for magnetic fields from around 4.5 T up to around 8 T.
This evident lack of symmetry in regard to B, is caused by the position of chemical potential in the

sample. Below 4.5 T there are no empty states at LL n = 1 so the probability of both « and o’
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Figure 4.15: False color map of the transmission of Sample B as a function of energy and magnetic field
at T = 2 K. Blue color represents areas where the transmission is equal to 1, while lightblue/yellow/red
colors indicate where the absorption takes place. An anticrossing of tramsitions originating from the

zero-mode Landau levels is visible close to B, =~ 5 T.

transitions is equal to zero. For the same reason the 3 transition starts to be visible from energies
higher than 50 meV, which takes place at magnetic field of around 8 T.

Besides the o’ transition there are four other ones. The one with the largest intensity at high
magnetic field is denoted as «. It represents an optical transition between LLs n = 0 and n = 1. This
is also the only interband transition visible at 2 K. Its extrapolation to zero magnetic field gives an
idea about the value of energy gap in the system. The intraband transition 3, occurring between LLs
with n = -2 and n = -1 is energetically close to the transition «, and that relative energy difference
will change as the temperature increases. Two remaining transitions are v and §. The v transition
occurs between n = -1 and n = 0. The § transition, related to the cyclotron resonance, occurs between
n=0andn =1.

The expected dependence of transition on magnetic field can be derived from the difference of the
calculated LLs. In the left panel of Figure 4.16 these expected transitions are presented along with
experimental points taken from the spectra. Open squares, as well as dashed arrows on LL plot in
Figure 4.14, represent intraband transitions, while full points (and solid arrows) represent interband
transitions. There are visible discrepancies between experimental data and the theoretical predictions,
which will be discussed in the summary of experimental results.

The right panel of Figure 4.16 shows the spectra plotted every 1 T, shifted vertically for clarity.
Every minimum was marked with a colored symbol corresponding to the scheme presented on the left

panel of the figure. The intensity of a and § transition dominate the spectra for the high values of
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Figure 4.16: Left Panel: Points corresponding to the minima of the transmission of Sample B at T
= 2 K with theoretical predictions of transitions as a function of magnetic field. Full symbols represent
interband transitions, while open symbols represent intraband transitions. Right panel: Transmission
spectra plotted for magnetic fields in range from 1 to 16 T every 1 T, with symbols corresponding to

the transitions from left panel.

magnetic field, while v dominates the low field region.

At low magnetic field the energy f the cyclotron resonance line depends linearly on magnetic field,
which is visible in Figure 4.15 below the first reststrahlen band (E < 17 meV). At higher magnetic
field the cyclotron resonance line evolves into ¢ transition [101], not visible due to the particular LL
filling factor. The effective mass of electrons, obtained from the linear fitting of cyclotron resonance
(0) line, is equal to m* = eB/w. = 0.025 £ 0.011 my.

Temperature 50 K

At temperature 50 K the band structure, presented in Figure 4.17, is visibly different in comparison
to the band structure at 2 K. The band gap is smaller and the crossing of LLs with indices n = —2 and
n = 0 takes place at a smaller magnetic field value B, =~ 3 T. This is a reason why the anticrossing is
not visible — the chemical potential lies above the LL n = 1, thus excitations to this level are forbidden.
However, T = 2 K is not the only temperature at which the anticrossing is visible. This is the case
for higher temperatures as well. Even at T = 30 K, a faint sign of an anticrossing can be traced on
spectra. This is presented in Appendix C.

There are four transitions visible on the spectra — one interband « and three intraband 3, v, and
6. The energy gap, pointed by the « transition at zero magnetic field, is still negative and equal to
13 meV, which is considerably smaller than the energy gap at T = 2 K.

The transitions a and 3 are relatively close to each other, which makes them difficult to distinguish
at some point, as presented on the right panel in Figure 4.18. It can be assumed that transition «
starts to be detectable around B = 5 T, while transition § around B = 9 T. Both of them are visible
up to at least 16 T. The two lower in energy transitions, namely v and 4, are visible in intermediate
fields and low fields, respectively.

The effective mass of electrons, obtained from the linear fitting of § line, is equal to m* = eB/w. =
0.021 £ 0.003 my.
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Figure 4.17: Landau level graph of Sample B as a function of magnetic field at T = 50 K. Colored
lines represent Landau levels, characterized by a different value of n, as described as indices of L on
the right side of the graph. The Landau levels with n = —2 and n = 0 are zero-mode Landau levels.
The energy of those levels at zero magnetic field is an indication of the band gap. Their crossing
indicates the point of field induced semiconductor-metal-semiconductor phase transition, and indicates
that the sample is in the inverted band order phase. The vertical arrows with corresponding Greek
letters represent observed transitions between Landau levels in this system. A solid arrow indicates an

interband transition o, while dashed arrows indicate intraband transitions 3, v, and 6.
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Figure 4.18: Left Panel: Points corresponding to the minima of the transmission of Sample B at'T =
50 K with theoretical predictions of transitions as a function of magnetic field. Full symbols represent
interband transitions, while open symbols represent intraband transitions. Right panel: Transmission
spectra plotted for magnetic fields in range from 1 to 16 T every 1 T, with symbols corresponding to

the transitions from left panel.
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Temperature 90 K

The temperature 90 K is critical for Sample B. The band gap vanishes as the HH1 band merges with
the F1 band at B = 0 T, as presented in Figure 4.19. It can be thought as the anticrossing of LL
n = 0 and LL n = 1 takes place at B, = 0 T. Both transitions « and 3 converge at zero energy at zero
magnetic field. At the critical temperature the LL n = —2 is formed by a mixture of both H1 and E1
bands, thus it is impossible to declare whether transitions « and § are interband or intraband. This

was marked in the Figure 4.19 by dotted arrows.
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Figure 4.19: Landau level graph of Sample B as a function of magnetic field at T = 90 K. Colored
lines represent Landau levels, characterized by a different value of n, as described as indices of L on
the right side of the graph. The Landau levels with n = —2 and n = 0 are zero-mode Landau levels.
Their crossing takes place at zero magnetic field, which means that the sample is gapless. The vertical
arrows with corresponding Greek letters represent observed transitions between Landau levels in this
system. It is not possible to determine whether a and 3 are inter- or intraband transitions, therefore

they were marked with a dotted line. Dashed arrows indicate intraband transitions v and §.

The transitions « and 3 are further separated than at 7" = 50 K, and their intensity is comparable,

as presented on right panel of Figure 4.20.

The transition « starts to be visible at around B = 8 T, while the transition § as low as B = 4
T. T = 90 K is the first temperature where the transition § starts to be visible at lower magnetic
field than the transition «. Also, at this temperature, 8 has higher energy than «. The transition ~y
is visible at intermediate fields, and the transition ¢ at low. The effective mass of electrons, obtained

from the linear fitting of ¢ line, is equal to m* = eB/w. = 0.023 + 0.012 my.
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Figure 4.20: Left Panel: Points corresponding to the minima of the transmission of Sample B at'T =
90 K with theoretical predictions of transitions as a function of magnetic field. Full symbols represent
interband transitions, while open symbols represent intraband transitions. Right panel: Transmission
spectra plotted for magnetic fields in range from 1 to 16 T every 1 T, with symbols corresponding to

the transitions from left panel.

Temperature 110 K

At temperature 110 K the band order of Sample B is regular and the system is in a semiconductor
state. The LL n = —2 is the highest energetic level of the H1 level, while the LL n = —0 is the lowest
energetic level of the E1 level. The LL structure is presented in Figure 4.21. There are four transitions
visible — one interband 3, and three intraband «, v, and §. The zero-mode LLs crossing is not present
anymore, which indicates that a phase transition took place and the system is in the regular band
order. Because of that, the transition ( is interband, while the transition « is intraband, which was

not the case in the inverted regime. The band gap is positive and equal to 6 meV.

The transitions « and § are further apart than at lower temperatures. They start to be visible at
around 6 T and their intensity is the highest at high magnetic field. The transition v dominates in
the intermediate values of magnetic field, while the transition 4 is visible only at low B. The effective
mass of electrons, obtained from the linear fitting of § line, is equal to m* = eB/w. = 0.022 £ 0.010

mo.



80 CHAPTER 4. HGTE QUANTUM WELLS

150 T T T T T T T T T ) T T
— n =-
T=110K 5
100 | iy i n=0
— | n=
> n=2
(] 1
E s0f . §
2
e o} B ]
11
&V’
.50 - = .
| " 1 " 1 n 1 X 1 " | n 1 X | " | " 1 |—|

0 2 4 6 8 10 12 14 16 18 20
Magnetic Field (T)

Figure 4.21: Landau level graph of Sample B as a function of magnetic field at T = 110 K. Colored
lines represent Landau levels, characterized by a different value of n, as described as indices of L
on the right side of the graph. The Landau levels with n = —2 and n = 0 are zero-mode Landau
levels. The energy of those levels at zero magnetic field is an indication of the band gap. The vertical
arrows with corresponding Greek letters represent observed transitions between Landau levels in this
system. A solid arrow indicates an interband transition [, while dashed arrows indicate the intraband

transitions «, vy, and 0.
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Figure 4.22: Left Panel: Points corresponding to the minima of the transmission of Sample B at'T =
110 K with theoretical predictions of transitions as a function of magnetic field. Full symbols represent
interband transitions, while open symbols represent intraband transitions. Right panel: Transmission
spectra plotted for magnetic fields in range from 1 to 16 T every 1 T, with symbols corresponding to

the transitions from left panel.
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Temperature 130 K
At temperature 130 K Sample B is in a semiconductor state. The LL structure is presented in Figure
4.21. Similar to T = 110 K, there are four transitions visible — one interband 3, and three intraband

a, v, and §. The band gap is positive and equal to 12 meV.
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Figure 4.23: Landau level graph of Sample B as a function of magnetic field at T = 130 K. Colored
lines represent Landau levels, characterized by a different value of n, as described as indices of L
on the right side of the graph. The Landau levels with n = —2 and n = 0 are zero-mode Landau
levels. The energy of those levels at zero magnetic field is an indication of the band gap. The vertical
arrows with corresponding Greek letters represent observed transitions between Landau levels in this

system. A solid arrow indicates an interband transition 3, while dashed arrows indicate the intraband

transitions «a, vy, and 9.
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Figure 4.24: Left Panel: Points corresponding to the minima of the transmission of Sample B at
T = 130 K with theoretical predictions of transitions as a function of magnetic field. Solid symbols
represent interband transitions, while open symbols represent intraband transitions. Right panel:
Transmission spectra plotted for magnetic fields in range from 1 to 16 T every 1 T, with symbols

corresponding to the transitions from left panel.
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The transitions « and 3 continue to further separate. They start to be visible at around 5 T and
their intensity is the highest at high magnetic field. The transition v dominates in the intermediate
values of magnetic field, while the transition ¢ is visible only at low B. The effective mass of electrons,
obtained from the linear fitting of § line, is equal to m* = eB/w. = 0.021 £ 0.008 my.

4.1.3 Summary

The FIR magneto-optical results presented in this chapter prove that temperature can be used as an
adjustable external parameter to control a band structure of HgTe/CdTe QW and, as a consequence, to
induce a topological TT-metal-semiconductor phase transition. A set of two samples was investigated
— one sample (A) is in semiconducting state at the whole temperature range, while the other (B) is a
TI at low temperature and undergoes a phase transition at 7, = 90 K, characterized by a band gap
closure and a lack of crossing of zero-mode LLs.

The energy gap of Sample A is positive at all temperatures and its value increases with increasing
temperature. This behavior is presented in Figure 4.25. The Figure 4.25 presents the energy values
of minima of the transmission as a function of magnetic field for Sample A (open symbols), and the

results of numerical calculations based on the 8-band Kane model for different temperatures. The

120 +
110]
1001
901
801
701
601
50
40
30} ] - ) - -
20l ] , €23.2meV]

g / ! ©16.6meV
f—10.2 meV + T

T=156K | T=30K T T=50K | JTT=70K]

7

Energy (meV)

1/

/

10 § i

0 e 2.7 meV #5.'7mev. | N S S

0O 510150 5 10 150 5 10 150 5 10 150 5 10 15
Magnetic Field (T)

Figure 4.25: Energy of a1 (green curve), as (purple curve), and B (orange curve) transitions as a
function of magnetic field for Sample A at T = 2 K, 15 K, 30 K, 50 K and 70 K. The experimental
data corresponding to minima of the transmission is represented by open symbols. The value of band

gap s indicated with a blue arrow. The reststrahlen bands are covered by grey areas.

blue arrow points to the value of a band gap at given temperature. The experimental results and
theoretical predictions are in a good agreement. Sample A is almost gapless at T' = 2 K, and its band
gap value increases up to By, = 23.2 meV at T' = 70 K.

The evolution of energy gap and inter- and intra-LL transitions for Sample B is presented in
Figure 4.26. At T' < T, = 90 K the sample has an inverted band structure and negative energy gap,

characterized by the relative position of zero-mode LLs.
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Figure 4.26: Energy of a (orange curve), o' (red curve), B (blue curve), v (grey curve), and & (green
curve) transitions as a function of magnetic field of Sample B at T = 2 K, 50 K, 90 K, 110 K and
180 K. The experimental data corresponding to minima of the transmission is represented by open
symbols. The value of negative (positive) band gap is indicated with a red (blue) arrow. The gappless
state corresponding to the gap closure (black arrow) takes place at T. = 90 K. The reststrahlen bands

are covered by grey areas.

At T =2 K (and T = 30 K, as presented in Appendix C) an additional transition o’ appears in
the spectra in a small magnetic field range, which corresponds to the avoided crossing of zero-mode
LLs. This anticrossing is a direct indication of an inverted phase. The o’ transition is forbidden by
the selection rules. However, because BIA causes a mixing of zero-mode LLs and an activation of the
transition o, its appearance is possible and was previously reported in [101][102][105].

At T > T, =90 K the Sample B is in a semiconducting phase. The band gap is positive, which is
represented by a blue arrow in Figure 4.26, and reaches up to 12 meV at T = 130 K.

At the critical value T' = T, the band gap vanishes (black arrow) and the system hosts massless
Dirac fermions. The appearance of massless particle is characterized by a square-root dependence of
energy of inter- and intra-LL transitions on magnetic field. However, in the case of HgTe QWs, this is
valid only in the range of quasimomenta, where the band structure can be approximated by the Dirac
Hamiltonian. This reduces the characteristic E « v/ B dependence to the electrons in the vicinity of
the T’ point of the Brillouin zone, where k ~ 0. The terms proportional to k? in the Hamiltonian
become relevant at higher values of k. As a consequence, at high magnetic field the dependence of
the energy of the transitions on B becomes linear functions.

Figure 4.27 shows a comparison of the evolution of transitions «, 3, and + as a function of VB
in the gapless case in the presence of the Dirac cone in the vicinity of the I" point. The transitions
were calculated using an approximate Dirac approach and the numerical 8-band Kane model. The
calculated LLs transitions, based on the Kane model (solid curves), 8 and v do not follow a square-
root magnetic field dependence over the whole magnetic field range, which is not the case for the

LLs transitions based on Dirac model (dotted curves). On the other hand the transition « (solid red
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curve in Figure 4.27) has a square-root-like dependence (which means that the position of solid curve
coincides with the position of dotted curve). However, this behavior is not related to the conical band
dispersion, but is a consequence of the mutual compensation of the high order k terms in the 8-band

Kane model.
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Figure 4.27: Energy evolution of transitions o, 8, and y as a function of v B at T = 90 K approzimated

by Dirac Hamiltonian (dotted curves) and calculated using 8-band Kane Hamiltonian (solid curves).

A characteristic property of NGS with a non-parabolic dispersion is a sub-linear dependence of
cyclotron resonance on magnetic field. At low fields, the dependence is linear and allows to extract the
effective (cyclotron) mass of electrons. However, at higher fields the linear cyclotron resonance line
evolves into a transition denoted as ¢ [101]. The value obtained from the average of fits of § transition
at low magnetic fields, is equal to m* = eB/w. = 0.022 4+ 0.004 m, which exactly matches previous
results from works [101][102].

The experimental results for Sample A are in a fair agreement with the theoretical calculations.
However, there are unquestionable discrepancies between the theory and experimental results of Sam-
ple B, reaching around 10%. The origin of these discrepancies is not totally clear, as there are many
factors that could possibly be omitted in considerations. One of these factors is an electron-electron
interaction, which can be relevant in the case of Sample B, as there is one order of magnitude dif-
ference in carrier concentration, and can perturb the result. In addition, Sample B was doped on
both sides in the barriers, and this donor states can influence the results as well. Moreover, as was
already highlighted in [102] mercury-based heterostructures, can degrade with time via mercury dif-
fusion. This process is especially critical to structures with sharp interfaces, like QWs, because the
QW parameters like the shape of the well, the cadmium content in the barriers can change with time.
This has a profound influence on the obtained results as the investigated structure is different than

expected (at the time of growth).
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4.2 Strained HgTe Films

The systems, in which a HgTe layer sandwiched between CdTe, is wide enough to neglect the
interface interactions but not wide enough to cause a merging of the levels into bands, are called
films or slabs. These systems can be considered to be in an intermediate state between 2D and 3D.
However, these systems are semimetallic, as the quantum confinement is low — a different mechanism
is necessary to open an energy gap to render the bulk insulating. The solution to this problem is to
apply a strain to the material [55]. If a HgTe film is compressively strained, the bulk becomes fully
gapped in a response to a lowered symmetry [27]. This can be achieved by growing a layer of HgTe
on a substrate with a different lattice constant, which opens an energy gap. If the chemical potential
lies inside the band gap, the only conducting states left are topological surface states.

The existence of Dirac-like surface states in bulk HgTe has been known since the eighties [108][109],
however their topological nature has never been investigated in detail. These systems can potentially
allow to study already predicted novel properties of 3D T1Is, such as topological magneto-electric effect

[110], superconducting proximity effects and Majorana fermions [111][112].

4.2.1 Band Structure

In thin HgTe QWs the band gap is formed by a quantum confinement which originates from an
interaction between states at interfaces with barriers, and exists as long as the wave functions of these
interface states overlap. For the case of wider QWs this interaction is smaller, as well as the resulting
energy gap. As the thickness increases, the quantum confinement is still present but becomes too small
to open an energy gap, therefore the system becomes semimetallic. If a QW thickness is increased
even more, the relative distances between consecutive levels within the well shrink. If the process
continues up to a point where the level broadening (for example due to temperature) is higher than
the distance between the levels, the levels merge and form a band, and the system is considered as
bulk.

4.2.1.1 Strain

The lattice constant of HgTe grown on CdTe is 0.3 % larger than that one of bulk HgTe, which
leads to an apperance of a strain. As long as a HgTe layer is not thicker than around 150 nm (150 nm
[56], 200 nm [27]), the layer adopts the lattice constant of a substrate and it is strained homogenously.
However, in thicker layers the strain starts to be partially relaxed via the formation of dislocations.
In a fully strained system a band gap can be increased to approximately 20 meV [27][56]. Using a
different substrate, like Cdg.96Zng.04Te [58], it is possible to apply a stronger strain which increases
the value of the band gap. However, the stronger strain makes the structure more prone to relax via

exhibiting dislocations, reducing the maximal possible width.

4.2.1.2 Surface States

One of the most prominent features of narrow HgTe QWs (with thickness close to the critical) is
existence of one-dimensional channels of conductance on the edge, as presented in Chapter 1 in Figure
1.1. These states are available for electrons taking part in carrier transport, but do not take active
part in the light absorption. It has to be stressed that their presence is not related to an existence of
the interfaces between HgTe QW and CdTe barriers, but a one-dimensional interface between HgTe

QW and the surrounding vacuum (or air). From the point of view of the egde states, the sole role of
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CdTe barriers is to provide the quantum confinement, which opens the bulk gap and suppresses the
bulk conduction.

It is often neglected that the 2D interfaces between a HgTe QW and CdTe barriers are still present
in the system. The QW and barriers are characterized by a different topology, therefore a set of states
with linear dispersion relation should appear at the interface as well. This states are interesting from
the point of view of magneto-optics, because only electrons on the surfaces perpendicular to the beam
of light can absorb photons. The Figure 4.28 shows the results of the ARPES measurements, which
allowed to resolve topological-like features connecting heavy- and light-holes, which proved that the

boundary states are still present in the system but they are buried deep in the heavy-hole band.
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Figure 4.28: High resolution ARPES spectra for a mazimally strained [100] HgTe/vacuum interface
in the vicinity of the T'-point measured at room temperature. Panel (a): Energy-momentum intensity
spectrum after a background subtraction. Panel (b): The second derivative of the intensity data to
enhance the contrast. Panel (c): Intensity spectrum at different energies. Raw data on the left and
its second derivative on the right. The cone structure has a circular section up to =~ 0.4 eV. Images
come from the work of Briine et al. [27].

The edge states on the interface between HgTe and vacuum can be considered one dimensional as
long as the thickness of HgTe layer is small. If the thickness is increased, the 1D edge transforms into

a 2D surface, and an appearance of interface surface states should occur.

Origin of surface states

The band structure of a bulk HgTe is presented in Figure 3.1 in the introduction to HgCdTe-based
structures in Chapter 3. In the presence of strain an insulating energy gap opens between the heavy-
hole (HH) and light-hole (LH) bands by pushing the HH band downward in energy. To understand
better the processes occurring here, it is useful to ignore the HH band and consider the LH and E
bands only. According to the Kane model, the coupling of the LH and E bands, which takes place
in the vicinity of the I' point, can be represented by a 3D anisotropic massive Dirac Hamiltonian.
The Dirac Hamiltonian conserves the parity symmetry, therefore the bands can be labeled by parity
eigenvalues. The coupling is linear, thus there must be one even and one odd band. If the odd parity
band lies energetically below the even parity band, there will be a nontrivial Z, topological invariant,

which indicates an odd number of pairs of surface states that cross at invariant points [55][28]. The



4.2. STRAINED HGTE FILMS 87

presence of the HH band changes only the features of the dispersion, it does not change the presence
of the surface states, nor their protected crossing, as long as the strain-induced gap is opened, and

the chemical potential lies in the gap.
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Figure 4.29: Band structure of a 70 nm thick 0.3% strained HgTe slab. The Dirac-like states in the
gap are plotted in blue. The dashed red line schematically shows the dispersion of the Dirac surface
states at the two opposite surfaces before their hybridization with the I's heavy-hole band. The image
comes from the work of Briine et al. [27].

The energy structure of a 70 nm thick strained HgTe film is presented in Figure 4.29. The surface
states are represented in blue. In an absence of the HH band, their dispersion would be linear. A
qualitatively similar situation takes place in bulk PbSnTe, where the Dirac-like surface states are near
the L point of the Brillouin zone, connecting L6jE bands 4.30. However, in HgTe the HH band mutually
interacts with electron band and surface states, effectively changes the dispersion relation of the whole
system, as presented in Figure 4.29.

It is worth to mention that the names LH |I's +1/2) and E |T'g 11/2) are used to describe energy
bands in bulk system, along with HH [T's 13/5). In the language of QWs, the energy levels are named
with a letter (E for electron-like band, and H for hole-like band) and an appropriate number. What
does it really mean is that both the electron-like and hole-like bands contain a mixture of E and LH
bands of the bulk:

= an(w, L) |Tg+1/2) + Bul, L) [T +1/2) s

E,
) _ (4.8)
Hy, = an(x, L) [Ug 41/2) + Bu(z, L) [T's +1/2)

where au,, B, Gn, Bn are constants, which values depend on Cd content z, and film thickness L. For
sufficiently large L, the constants 3, and &, become small, and the QW levels E and H resemble the

bulk bands E and LH, respectively. This superposition of |I'¢ 11/2) and |I's +1,2) allows to smoothly
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switch from the bulk band to the QW band description. Due to the mixing of bands, only at £k = 0

it is possible to classify which band a given energy level belongs to.
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Figure 4.30: Topological phase transition and the Brillowin zone of Pbi_,Sn;Se and Pby_,Sn, Te.
Panel (a): Sketch of a topological phase transition that occurs at a critital point x. as a function of
composition in a system having a conduction and valence band of opposite parity (different color). The
bulk band gap closes at x.. Topological surface states emerge in the topological regime x > x. (shaded
blue region). In IV-VI topological crystalline insulators, this occurs at a critical Sn concentration x..
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