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Solides amorphes de la transition vitreuse jusqu’à 1 Kelvin

Comprendre la nature fondamentale de la transition vitreuse et des solides amorphes est au coeur
d’un vaste effort de recherche. La description théorique des solides vitreux reste essentiellement
phénoménologique. Ce travail explore l’hypothèse selon laquelle une nouvelle phase amorphe de la
matière expliquerait naturellement leurs propriétés physiques. Nous analysons la thermodynamique
des verres dans la limite de dimension infinie. Cette théorie exacte de champ moyen prédit deux
phases vitreuses, une "simple" et une "marginalement stable", séparées par une transition de Gard-
ner. Nous démontrons que les verres sont marginalement stables dans une grande variété de con-
ditions physiques, couvrant des régimes pertinents pour décrire la matière granulaire, les mousses,
les émulsions, les colloïdes durs et mous, ainsi que les verres moléculaires. Nous confrontons nos
prédictions théoriques à des simulations numériques en trois dimensions. Nous développons un
algorithme numérique efficace qui crée des verres très stables. Nous montrons que les verres col-
loïdaux et granulaires sont marginalement stables: ils évoluent dans un paysage hiérarchique et
présentent des excitations délocalisées de basse énergie. Dans ce régime, des variations cycliques de
la température donnent lieu à des effets de rajeunissement et de mémoire, précédemment observés
dans les verres de spin. En revanche, le comportement des verres moléculaires est régi par des dé-
fauts localisés, dont les propriétés quantiques à basse température sont également analysées. Nous
étudions le rôle de l’entropie configurationnelle dans le ralentissement dynamique qui accompagne
la formation du verre. Nous mesurons l’entropie configurationnelle dans des liquides à très basse
température, et analysons les théories thermodynamiques de la transition vitreuse.

Mot-Clés : Physique statistique des systèmes désordonnés, théorie de champ moyen, simula-
tions numériques, transition vitreuse, transition de Gardner, dynamique hors d’équilibre, entropie
configurationnelle.



Amorphous solids from the glass transition to 1 Kelvin

Understanding the fundamental nature of the glass transition and amorphous solids is at the core of
a large research effort. The theoretical description of glassy solids remains mainly phenomenolog-
ical. This work explores the hypothesis that a new amorphous phase of matter naturally explains
their physical properties. We analyze the thermodynamics of glasses in the limit of large dimensions.
This exact mean-field theory predicts two glassy phases, ‘simple’ and ‘marginally stable’, separated
by a Gardner transition. We find that glasses are marginally stable in a wide range of physical
conditions, covering regimes relevant to describe granular matter, foams, emulsions, hard and soft
colloids, and molecular glasses. We confront our theoretical predictions to three-dimensional nu-
merical simulations. We develop an efficient numerical scheme which creates well-relaxed glasses.
Colloidal and granular glasses are found to be marginally stable: they evolve in a hierarchical land-
scape, and present delocalized low-lying excitations. Temperature cycles in this regime give rise
to rejuvenation and memory effects, previously observed in spin glasses. In contrast, the behavior
of molecular glasses is governed by localized two level systems, whose low-temperature tunneling
properties are also analyzed. We investigate the role of the configurational entropy in the glassy
dynamical slowdown accompanying glass formation. We measure the configurational entropy in
extremely supercooled liquids, and assess thermodynamic theories of the glass transition.

Keywords : Statistical physics of disordered systems, mean field theory, computer simulations,
glass transition, Gardner transition, out-of-equilibrium dynamics, configurational entropy.
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Chapter 1

Introduction

What do a sandpile, a mayonnaise and a window glass have in common? They are ‘amorphous’
solids, characterized by a disordered organization of their constituent particles. At the microscopic
scale, the presence of disorder generates excitations and defects much more complex to quantify
than in crystalline solids. For example, the lifespan of the billions of screens of smartphones or
computers marketed each year is limited. Why? Because of the slow relaxation of the amorphous
layer contained in the organic light-emitting diodes. In the context of fundamental research, the
resolution of interferometers built for gravitational wave detection, which was awarded the Nobel
Prize in Physics in 2017, is mainly limited by the mechanical dissipation caused by defects present
in the amorphous thin films covering their mirrors.

How can we characterize the excitations and microscopic defects of amorphous solids? What
are the consequences for their macroscopic, mechanical, and thermal behavior? There is still no
theory describing how the macroscopic properties of amorphous solids emerge from a microscopic
description. This problem combines two theoretical challenges, as it tackles disordered systems,
which evolve out of thermodynamic equilibrium. This area of research is known for its multitude
of phenomenological approaches, none of which has allowed us to understand the profound nature
of materials that we use daily.

This introduction presents the main aspects of amorphous solids relevant for the work presented
below. Complete reviews on glass phenomenology and theories can be found in Refs. [1–3].

1.1 Supercooled liquids and glasses
We focus on a class of physical systems that we call ‘glassy’. Let us give a general definition,

and therefore quite vague. The term ‘glassy’ is used in a variety of contexts to describe systems
characterized by an apparent lack of order in their degrees of freedom, and whose relaxation time
becomes extremely large, eventually infinite, as a control parameter is changed [4]. If the divergence
of the relaxation time is well localized in temperature, or density, one can talk about a ‘glass
transition’.
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Introduction

1.1.1 The experimental glass transition

Atomic and molecular liquids can transform into amorphous solids at low temperature. They
are canonical examples of glassy systems. We describe the phenomenology of glass formation,
starting from the high-temperature liquid. The liquid is characterized by a high degree of structural
disorder. Relaxations occur on timescales of order 10−13−10−11 s. In this regime, the liquid is easily
thermalized during an experiment. The high-temperature liquid can be described with theoretical
tools from thermodynamics and equilibrium statistical mechanics [5]. Its state is defined by few
control parameters (pressure, temperature, volume, etc.), which are related by an equation of state.
For example, at constant pressure, the volume of a liquid decreases with temperature, as illustrated
in Fig. 1.1 [6].

If the liquid is cooled at an infinitely slow rate, thermodynamic equilibrium is reached at all
temperatures. For most materials, the stable thermodynamic phase below the melting tempera-
ture, Tm, is the crystal. Slowly cooled liquids crystallize at Tm. This first-order phase transition is
signaled by a discontinuous jump of the volume in Fig. 1.1 [7]. The presence of the crystal should be
carefully considered when studying glass formation, either experimentally or numerically. The ma-
terial’s composition and the protocol should frustrate crystallization [2]. In experiments, mixtures
of different atoms or large molecules are cooled at fast rates, typically 0.1− 100 K/min [8].

If the disordered liquid is robust against crystallization, it becomes supercooled below Tm
(shaded box in Fig. 1.1). In the supercooled region, the liquid is at thermal equilibrium, but is
metastable with respect to the crystal. Most importantly, it remains structurally disordered. As
temperature decreases, dynamical processes become increasingly slow. When relaxation processes
become longer than the observation time, the liquid can no longer thermalize. This defines the
experimental glass transition at Tg, at which an out-of-equilibrium amorphous solid is formed.
Below Tg, the system does not follow the equilibrium equation of state, and its properties depend
on time. The experimental glass transition is not a thermodynamic phase transition: its location
depends explicitly on the operator [9]. Longer timescales, or slower cooling rates, allow to reach
equilibrium down to lower temperatures, creating denser glasses (the glass 2 is denser than the
glass 1 in Fig. 1.1).

The phenomenon described above is observed in a wide variety of materials: atomic and molecu-
lar liquids [8], but also polymer films [10, 11], metallic alloys [12, 13], suspensions of small colloidal
particles [14–16], or driven granular matter [17–20]. In the last two cases, a glass transition is
observed by compressing the system.

The phenomenology presented in Fig. 1.1 raises many fundamental questions. What is the
origin of the dynamical slowdown in supercooled liquids? Is it a purely dynamical process, or is
it driven by an underlying thermodynamic phase transition? Solving the glass problem amounts
to identifying and obtaining direct experimental signatures about the fundamental nature and the
mathematical description of this mechanism. Beyond its formation, the properties of the amorphous
solid obtained at Tg remain theoretically unexplained. Can we build a first-principles theory for
amorphous solids? Are the properties of the solid the same from Tg down to zero temperature?
In this work, we provide new theoretical insights to these open questions using a combination of
analytical and computational techniques. The approach explored in this work relies heavily on a
thermodynamic description of glass formation and glasses.
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may affect the mechanical properties of the glass in a
spectacular manner. The glass faces of smartphones
have been optimized in both composition and pro-
cessing to robustly protect the display.

Suppose we want to make a higher-density glass
in the expectation that it would also show improved
stiffness and thermal stability. Figure 1 shows one
method: If held for a long period of time below Tg,
the volume of a glass will decrease toward the super-
cooled liquid volume in a process known as physical
aging. That densification occurs as a result of the
thermodynamic driving force to reach the super-
cooled liquid state. However, the process is kineti-
cally hindered by the extremely long times required
for rearrangements of the local structure. The situa-
tion is actually worse because for every step made to-
ward the supercooled liquid, a structure is formed
that has even higher barriers to rearrangement. Thus
the process of densification through physical aging
slows logarithmically over time.3

Alternatively, researchers have recently discov-
ered that high-density glasses can be assembled
much more quickly in a process known as physical vapor de -
position,4 as illustrated in figure 2. Mobility at the free surface
of a glass can be 109 times higher than in the interior and is the
key to the process. Even below Tg, molecules near the surface
quickly equilibrate toward the supercooled liquid state, a
process that occurs much more slowly in the bulk. Much like
a block-stacking video game, further deposition locks the pack-
ing into place. 

Surface mobility coupled with slow deposition leads to
well-packed glasses that exhibit high kinetic stability, even at
temperatures above Tg. Ultrastable glasses made via physical
vapor deposition can be nearly 1.5% denser than conventional
glasses. Achieving such density through physical aging would
require an estimated 106 years.

Physical vapor deposition produces high-density glasses
with remarkable properties. They have lower enthalpy than
liquid-cooled glasses and provide the first indications of how
supercooled liquids might behave if the liquid state could be
extended to temperatures below Tg. The materials have higher
stiffness and their packing can be so efficient that they trans-
form into a liquid via a sharp transformation front when heated
above Tg. That behavior is more like the isothermal melting of
a crystal than the gradual so#ening observed in liquid-cooled
glasses. 

In another indication of high-density glasses’ efficient pack-
ing, their heat capacities were recently shown to maintain a
cubic temperature dependence5 down to 0.6 K. In that regard,
high-density glasses resemble nonmetallic crystals, in which
phonons are the dominant contributors to heat capacity. In con-
trast, the heat capacities of lower-density liquid-cooled glasses
show a roughly linear temperature dependence at low temper-
atures, a behavior that had been interpreted as evidence for
universal low-temperature excitations in amorphous solids. 

The deposition conditions that produce high-density
glasses can also produce oriented glasses in which the mole-
cules adopt, for example, planar orientation in the film. Or-
ganic LEDs, used in many millions of mobile phone displays,
are made from glasses produced by vapor deposition. Creating

planar orientation of the emi$ing molecules in those glassy
films could increase the display efficiency by more than 30%.

A genuine state of matter?
In practice, glasses prepared from liquids use finite cooling
rates and form by falling out of equilibrium with respect to the
supercooled liquid. What state would result if a liquid could
be cooled infinitely slowly without crystallization? Can an
equilibrium liquid-to-glass phase transition exist? Those ques-
tions touch on fundamental issues in the statistical mechanics
of phase transitions for complex systems that contain disorder,
impurities, and many-body interactions. Despite decades of in-
tense research and steady progress, the questions have not yet
been answered satisfactorily.1,2

In the conventional Landau approach to phase transitions,
one must first identify an order parameter—for example, the
magnetization in ferromagnetic transitions or the density in
liquid–gas transitions—before surmising an expression for the
free energy based on general symmetry considerations. For
first-order phase transitions, the order parameter discontinu-
ously becomes nonzero. For second-order phase transitions, it
obeys algebraic scaling laws and goes continuously to zero
near critical points. 

For the putative liquid-to-glass transition, the choice of an
order parameter is not at all obvious because the molecular
arrangements in the glass are so similar to the ones found in the
liquid (see figure 1). There is no obvious symmetry breaking be-
tween the two states. Rather, the two states are dy namically dis-
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FIGURE 1. CAN YOU FIND THE GLASS? The enthalpy or molar 
volume of a liquid as the temperature is lowered past the melting
temperature Tm illustrates the production of three different glasses. 
If crystallization is avoided, glass will be formed on cooling a liquid
(glass 1). Slower cooling produces a denser glass (glass 2). Isothermal
aging below the glass transition temperature Tg produces an even
denser glass (glass 3). Typical particle configurations from molecular
dynamics computer simulations are shown for a glass, a supercooled
liquid, and a crystal. 
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Figure 1.1 | Schematic plot of the enthalpy, or volume, of a glass-forming liquid as a
function of temperature. Glass-forming liquids are robust against crystallization and remain
disordered below the melting temperature Tm, in a supercooled region (shaded). The liquid be-
comes increasingly viscous upon cooling, and eventually falls out of equilibrium at Tg, defining
the experimental glass transition. Glasses do not follow the equilibrium equation of state (line 1).
Denser glasses are created by slower cooling protocols (glass 2), or isothermal aging (downward
arrow). Particle configurations from computer simulations are shown for a supercooled liquid, a
glass and a crystal. Reprinted from [6].

1.1.2 Stylized facts on supercooled liquids

The experimental glass transition observed at Tg is not the phenomenon theoreticians are most
interested in. Its definition is anthropocentric, and appears different from usual critical phenomena.
The existence of universal features associated to glass formation is of theoretical interest [1]. It
opens up the possibility of a unified theoretical description of glass formation. This universality
contrasts with the microscopic diversity of materials considered. We describe two universal features
of equilibrium liquids approaching the glass transition.

Dynamical slowdown – A dramatic dynamical slowdown is observed as supercooled liquids are
cooled towards Tg [8]. The growth of the microscopic relaxation time tr can be tracked experi-
mentally by measuring macroscopic transport coefficients, such as the viscosity η. Both are linked
by Maxwell’s relation η = G∞tr, where G∞ is the infinite-frequency shear modulus (whose tem-
perature dependence is weak) [21]. The temperature dependence of the viscosity of several liquids
is presented in Fig. 1.2. The representation of the data in terms of log(η) versus Tg/T allows to
appreciate the complexity of the relaxation processes in the liquid. For simple relaxation processes
controlled by the thermally-activated crossing of energy barriers ∆, the relaxation time obeys an
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tween T, and the high-temperature limit special contribution to ACp. 
and provide the "strong" liquid extreme of The  whole pattern can be reproduced 
the pattern. Others, characterized by simple quite well by variation of one parameter 
nondirectional coulomb attractions or by in a modified version of the famous 
van der Waals interactions in a subgroup of Vogel-Fulcher or Vogel-Tammann-Fulcher 
substances with many 7~ electrons (primar- (37-39) equation (40, 41 ). The original 
ily aromatic substances), provide the other equation: 
extreme, "fragile" liquids. In fragile liquids, 
the viscosities vary in a strongly non-Arrhe- rl = rlo ex~[B/(T-To)l (1)  
nius fashion between the high and low lim- can be written in the form: 
its. This stronglfragile liqu2s pattern (1 7, 
36) has become has been used as the basis 
for a classification of liquids, to indicate the 
sensitivity of the liquid structure to temper- 
ature changes. Fragile liquids have glassy 
state structures that teeter on the brink of a 
collapse at their T,'s and which, with little 
provocation from thermal excitation, reor- 
ganize to structures that fluctuate over a cz 

wide variety of different particle orienta- 
tions and coordination states. Strong liq- 
uids, on the other hand, have a built-in 
resistance to structural change, and their 
vibrational spectra and radial distribution 
functions show little reorganization despite 
wide variations of temperature. Strong liq- 
uids can be converted to more fragile be- 
havior by changing their densities-an ex- 
ample will be given below. Strong liquids 
typically show very small jumps in AC, at 
T,, whereas fragile liquids show large jumps. 
This contrast is indicated bv the insert in 

rl = rlc exp[DTc(T-To)I (2) 
In this form the parameter D controls how 
closely the system obeys the Arrhenius law 
(D  = a). The effect of changing D from 5 
to 100 is shown in the insert to Fig. 4. As D 
changes, so will the value of To change 
relative to T,; the relation is a simple linear 
one of the form 

Tg/Tc = 1 + DI(2.3031og rlglrlc) (3) 
where log (q,/qc) is -17 (42-44), accord- 
ing to Fig. 4. 

The most fragile liquids identified to 
date are polymeric in nature and cannot be 
entered into a figure like Fig. 4 without 
modification because the viscosity of a poly- 
mer liquid is largely controlled by its mo- 
lecular weight. This effect must be removed 
before any common pattern can be ob- 
tained. It is preferable in classifying polymer 
liauids and rubbers to utilize some relax- . , 

Fig. 4. Hydrogen bonding seems to make a ation time characteristic of the segmental 

TdT 
Fig. 4. Arrhenius plots of the viscosity data scaled by values of T, from Fig. 3 and other sources showing 
the "strong-fragile" pattern of liquid behavior on which the liquid's classification of the same name is 
based. As shown in the insert, the jump in C, at T, is generally large for the fragile liquids and small for 
strong liquids, although there are a number of exceptions, particuiarly when hydrogen bonding is present. 
[From (36)] 

motions, that is, a microscopic relaxation 
time. such as is obtained from transient 
mechanical spectroscopy near T,, digital 
correlation spectroscopy, or dielectric relax- 
ation. When this is done (45, 46), polycar- 
bonates and polyvinyl chloride prove to be 
the most fragile systems yet identified with 
D -2. 

The equivalent treatment of magnetic 
relaxation in spin glasses, which have much 
phenomenology in common with glass- 
forming liquids, shows (47) that much more 
fragile behavior can be found in some of 
those systems, such as Cu-Mn. In this case 
Eq. 3 shows that T, and To will almost 
coincide, which is probably the reason for 
suggestions that in some spin glass systems 
there is a real phase transition with an 
associated diverging length scale. 

It is to be stressed that Eq. 2 no  means 
accurately describes the behavior of any 
liquid over the entire 15 orders of magni- 
tude for which data are available, although 
it does remarkablv well for some liauids in 
the middle of thk Fig. 4 pattern, iuch as 
glycerol (48, 49). Generally speaking, the 
more fragile the liquid, the poorer the fit. 
Manv other two and three Darameter eaua- 
tions [summarized in ( I ) ]  -have been pro- 
posed, but none perform significantly better 
than Eq. 2. Also, the key parameter in Eq. 
2, To,-which best fits the data in the tem- 
perature domain entailing the last six orders 
of magnitude in T before T, (50, 51 ) (or the 
entire range for glycerol), can frequently be 
predicted independently by the purely ther- 
modynamic analysis (52) described below. 

O n  the other hand, a different picture 
emerges from a recent analvsis of data on - 
many fragile systems in which adherence to 
Eq. 2 is tested rather stringently through a 
differential analysis (49). This analysis, 
which emphasizes the shorter relaxation 
time data, suggests that Eq. 2 better fits data 
in a higher temperature domain. Fitted in 
this domain, the To parameter no longer 
coincides with the Kauzmann temperature 
T, (defined below). Indeed it is unphysical, 
lying above T,. Thus there is little that is 
physically robust to be found in quantita- 
tive analysis of the relaxation-time temper- 
ature dependence. 

A n  analysis of the higher temperature, 
lower viscosity data which has gained much 
credence in recent years is that based on the 
very detailed predictions of mode coupling 
theory, MCT (14, 15). This is described as 
a mathematical theory of the glass transi- 
tion (15) and, as such, much of the physical 
picture has had to be put in a posteriori. 
There has been some confusion in nomen- 
clature as a result. However, its success in 
detailing subtle aspects of the phenomenon 
in the simple atomic systems to which 
it might be expected to apply (53), [and 
also to many more complex systems to 
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Figure 1.2 | Rapid increase in the viscosity of various materials upon approaching the
glass transition, from Ref. [8]. Reducing the temperature by a factor of two results in an increase
of more than 10 orders of magnitude in the viscosity. The temperature at which the viscosity
reaches 1013 poise defines the experimental glass transition temperature Tg. For most materials,
the increase in viscosity is super-Arrhenius, i.e. faster than exponential with temperature. The
exact origin of this dramatic dynamical slowdown is still unclear.

Arrhenius law tr ∝ exp(∆/T ). Simple processes correspond to straight lines in Fig. 1.2. This is the
case for a few materials, such as silica and GeO2, which have a strong tetrahedral order, labelled
‘strong’ glass-formers. Most materials are ‘fragile’: their viscosity increases in a super-Arrhenius
way, suggesting instead tr ∝ exp(∆(T )/T ), with ∆(T ) an effective activation energy which increases
upon cooling. This indicates that relaxations in supercooled liquids are increasingly collective as
temperature decreases. The idea that a growing static lengthscale drives the glassy slowdown is
explored in Sec. 1.4.1.

Configurational entropy – Liquids have a specific heat larger than crystals [23]. This implies
that the liquid entropy Sliq decreases faster than the crystal one SX . This led Kauzmann to define
an excess entropy for supercooled liquids ∆S = Sliq − SX [22]. This quantity was interpreted as
the (log of the) number of available states to the liquid. Kauzmann compiled the excess entropy
of various glass-forming liquids, presented in Fig. 1.3. The excess entropy measured in equilibrium
decreases sharply with temperature (full lines), until the liquid falls out of equilibrium (dashed
lines), where a saturation of ∆S is observed. A reasonable extrapolation of the equilibrium excess
entropy below Tg gives a vanishing ∆S at a finite temperature. In Kauzmann’s words: “Certainly
it is unthinkable that the entropy of the liquid can ever be very much less than that of the solid.”
To avoid this unthinkable situation, called an ‘entropy crisis’, Kauzmann suggested the possibility
of a thermodynamic glass transition well below Tg, at a positive temperature, TK , called Kauzmann
temperature. Although he indicated that crystallization may prevent an entropy crisis, Kauzmann’s
intuition of a thermodynamic transition remains very influential.

While the decrease of the excess entropy with temperature is an indisputable fact, its interpre-
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glucose. Lactic acid shows the same behavior to an even more marked degree 
than does glucose, while glycerol, ethyl alcohol, and propyl alcohol show it to a 
somewhat lesser degree. Boron trioxide, on the other hand, seems not to show 
it a t  all, partly, perhaps, because it becomes a glass a t  a relatively higher tem- 
perature than the other substances mentioned. 

1.0 

0.8 

0.4 

0.2 

0 
0 0.2 0.4 0,6 0.8 I. 0 

rlT, - 
FIG. 4.  Differences in entropy between the supercooled liquid and crystalline phases. 

Abscissa: as in figure 3. Ordinate: difference in entropy expressed as fraction of the 
entropy of fusion. 

B. An apparent paradox 
It might be argued that these results show that the non-vitreous liquid can 

somehow pass continuously over into the crystalline state in a manner analogous 
to the liquefaction of gases above the critical temperature (see, for example, 
Simon (85)). There is little justification for such a view, however, since the 
entropy curves do not seem to approach the abscissa a t  the same temperatures 
as the heat content curves. Moreover, the free energies of the two phases show 
no tendency to  approach one another down to T, (figure 5 ) .  

Then how are these curves to be extrapolated below T,? Certainly it is un- 
thinkable that the entropy of the liquid can ever be very much less than that of 
the solid.’ It therefore seems obvious that the “true” or “non-vitreous” curves 

It could conceivably become slightly less a t  finite temperatures because of a “tighter” 
binding of the molecule in the highly strained liquid structure, with consequent higher 
frequencies of vibration and a lower density of vibrational levels. 

Figure 1.3 | Kauzmann’s insight of a finite-temperature thermodynamic transition.
Temperature dependence of the excess entropy ∆S = Sliq−SX measured at equilibrium for various
liquids (full lines). Both axis are normalized by their value at the melting temperature Tm. At low
temperature, the data is measured out of equilibrium (dashed lines). Extrapolation of the liquid
excess entropy (dashed-dotted line) suggests the existence of a thermodynamics transition at finite
temperature. Reprint from [22].

tation is still debated, more than 70 years later. Two are two main theoretical positions. In one of
them, thermodynamics plays no role in glass formation, and the decrease in ∆S is an irrelevant fact.
The other position, explored in this work, interprets the dynamical slowdown as the consequence
of an underlying thermodynamic transition.

The reason for which the glass problem remains unsolved lies in its nature. By definition,
equilibrating liquids below Tg is challenging. This makes it difficult to draw conclusive statements
about the existence of an equilibrium thermodynamic transition below Tg. Getting closer to TK
is an important research goal [24]. In the following, we describe two recent methods, one experi-
mental (Sec. 1.1.5) and the other computational (Sec. 1.4.4), which succeed in getting closer to the
Kauzmann transition.

1.1.3 Nonequilibrium dynamics in glassy systems

A liquid transforms into a glass when its slowest relaxation processes exceed the observation time.
The dynamics of glasses takes place out of equilibrium. This does not imply that all dynamical
processes are frozen below Tg, as they continue to take place on all timescales. Despite microscopic
differences, many systems display similar ‘glassy’ dynamics: aging, hysteresis, rejuvenation and
memory effects, violation of equilibrium properties, etc. [25, 26]. Contrary to equilibrium liquids,
the properties of a glass depend on its complete history. In order to study the universality of
nonequilibrium effects, one should clearly specify the protocol used.

Aging – A prototypical feature of glassy dynamics is aging [26–30]. The standard protocol
consists in rapidly cooling an equilibrium liquid down to T < Tg. The age of the glass, also
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Fig. 1. - Evolution with age of ,$‘ during a temperature cycle for AT = 2 K and t l  = tz = t3 = 350min. In 
the insert, we show the points taken during tl and &, plotted vs. the total time spent at  T = 12 K. The 
solid line is a reference relaxation curve measured up to 3000 min, after a simple quench from above Tg. 
Fig. 2. - xff vs. age (total time spent after quench) for AT = 0.3 K and tl = lOOOmin, = 1200min, and 
t3 = 800min. In the insert we show that the real time spent at  T - AT is equivalent to an effective time 
t e f f -  100min at T = 12 K. 

relaxation during t3 is the exact continuation of that during t l .  The time spent at  T - AT 
appears completely inefficient, even though xff experienced a large relaxation during b .  In 
ref.[5], we already mentioned this kind of behaviour from another set of f 
measurements. 

The new relaxation, after the temperature step from T t o  T - AT, can be accounted for, in 
the droplet model, by the rearrangement of the correlations at length scales larger than the 
overlap length Z A T .  Indeed, in this experiment, ZAr is small due to the large value of AT used. 
In that case, however, the same model predicts a reinitialization of aging as the temperature 
is raised back to T ,  since the correlations developed during t l  should be broken down to ZAT 
during t2 and must start their growth all over again during t 3 .  No such reinitialization i s  
observed. 

It was suggested, in ref. [3], to remove this contradiction by introducing a characteristic 
time zb to break the correlations down to ZAT. zb is supposed to be very large either for very 
small values of AT (large values of ZAT) or for low temperatures T - AT. In particular for 
AT = 2 K, zb could be much larger than t2  = 350min and no effective breaking would occur 
during t2.  However, tb should be of the order of experimental times at  least for intermediate 
AT’S. For instance, from the results of Granberg et al. [ l l ]  and from ref. [3], values of 
AT = 0.3 K and t2 = 1200 min should ensure, in our case, a value for r b  smaller than t 2 ,  and 
thus a quasi-complete breaking of the correlations established at T during tl = 1000min. 

The results of an experiment with these parameters are displayed in fig. 2. Again, the 
relaxation observed at T - AT shows that IAT is short enough to significantly affect the 
density of probed droplets and restart part of the aging processes. Therefore after the 
temperature increase back to T a new relaxation should also appear, since t b  is now shorter 
than t z .  The experimental data do not show any reinitialization. After a slight increase, 
instead of the predicted decrease, xff slowly relaxes during t 3 ,  matching the reference curve 
as shown in the insert. The further slow relaxation during t3 does not simply start by the end 
of the tl relaxation as is the case for AT = 2 K. An effective time teff must be introduced, which 
accounts for the effect at T of the processes occurred during t2 at T - AT. 

A further experiment was performed with a set of parameters AT = 0.3 K, tl = IlOmin, 

Figure 1.4 | Nonequilibrium dynamics in glassy materials. Left: Aging in the mean-squared
displacement of large and small particles in a binary colloidal glass [34]. The age of the glass
increases from top to bottom. Right: Aging, rejuvenation, and memory effects in the dynamic
susceptibility of a disordered magnet subjected to a temperature cycle, from Ref. [35].

called waiting time tw, starts at the time of the quench. Glasses are said to age because their
dynamics slows down with tw. A consequence of aging dynamics is that the relaxation time of a
glass tr increases with tw. In a remarkable number of experiments, one finds that tr ∝ tw [31–
33]. This ‘simple aging’ behavior indicates that the age of the system tw is the only relevant
timescale in the system. Experimental results suggest that the relation tr ∝ t µw describes the data
more accurately [31]. The cases µ > 1 and µ < 1 have been termed superaging and subaging,
respectively. This point was discussed extensively in the spin glass literature [29].

The properties of glassy systems, which evolve out of equilibrium, depend explicitly on the time
at which they are measured. The violation of time-translational invariance, evidenced by two-time
quantities, allows to detect and quantify aging effects. Two-time observables C(t, tw) compare the
state of the system at time tw and tw + t, where t the observation time (t < tw). Aging studies
in structural glasses follow the evolution of density-density correlations. In colloidal experiments,
the mean-squared displacement of particles can be computed, as shown in Fig. 1.4 (left). The age
tw of the glass increases from top to bottom curves. The abscissa corresponds to the measurement
time t in the above definition. The evolution of the dynamics with tw is the hallmark of aging. The
relaxation of the glass can be decomposed into two relaxation time scales. A fast ‘β-relaxation’,
identical at all temperatures, and a longer ‘α-relaxation’ at which correlation functions drop to zero
(usually defined as C(τα, tw) = e−1). The α-relaxation time depends on the age of the system and
corresponds to the time tr introduced above: tα ' tr ' tw. For structural glasses, the β-relaxation
can be interpreted as the fast exploration by particles of the ‘cage’ formed by their neighbors. The
breaking of the cage requires cooperative rearrangements, which happen over long times, resulting
in a plateau in C(t, tw) at intermediate times t. The relaxation of the cage takes place on timescales
of order τα, for which C(t > τα, tw) ∼ 0.

At the theoretical level, aging in glasses is a consequence of disorder in the system. Glasses are
disordered, and thus characterized by a huge number of possible arrangements. This complexity is
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captured by the concept of a rough free energy landscape [26, 36]. The roughness of the free energy
landscape leads to slow relaxations, and eventually aging effects.

Rejuvenation and memory – More elaborate protocols were designed to investigate the nonequi-
librium dynamics of glassy systems. Adequate thermo-mechanical histories can reveal unexpected
effects, such as memory and rejuvenation effects (see [37] for a review). A glass ‘rejuvenates’ if it
has aged for a long time at temperature T1, and restarts to age as a young glass when cooled to
T2 < T1. These effects were first evidenced in spin glass materials, see Fig. 1.4 (right) [29, 35, 38–
42]. Such complex protocols were employed to probe the free energy landscape of a glass: how
many minima there are, how they are organized, and by which type of barriers they are separated.
Temperature cycles have been used in the past to classify and compare the behaviour of distinct
classes of disordered materials. In particular, they reveal rejuvenation and memory effects in spin
glasses. When similar protocols are applied to molecular glasses, such as glycerol, no rejuvenation
is observed [43], although some memory can be found [44–46]. Both effects were however reported
in gelatin gels [47].

In Chapter 3, we are able to identify in which physical conditions structural glasses are charac-
terized by a complex landscape which should give rise to complex aging effects. We are successful
in numerically observing memory and rejuvenation effects in a simple structural glass, for the first
time.

1.1.4 Low-temperature anomalies of glasses

Experiments conducted on a wide variety of atomic and molecular materials reveal that glasses
share a number of low-temperature ‘anomalies’ with respect to crystals. Again, the universality
of these anomalies suggests that their origin lies in the disordered nature of glasses, and that
microscopic details of materials may be irrelevant. The excitations and defects in glasses are still
mostly explained by phenomenological arguments. An important research goal is to find a universal
explanation for these anomalies, starting from first-principles.

The first careful measurements of the thermal conductivity and specific heat of silica and
germania-based glasses was performed by Zeller and Pohl in the early 1970s [48]. They com-
pared their results with available data (polystyrene, glycerol, PMMA) and concluded that with
no exception, the specific heat of glasses departs from Debye’s prediction cP ∝ T 3 below 1 K,
where they find an anomalous scaling cP ∝ T [49]. A similar anomaly is observed in the thermal
conductivity which behaves as κ ∝ T 2, instead of T 3. The deviation from Debye’s prediction is
revealed in Fig. 1.5 (right): the ratio cP /T 3 of the ‘conventional’ liquid-cooled glass (top curve)
departs from a plateau around T . 1 K, and diverges roughly as 1/T 2.

These results are puzzling, since sound waves (longitudinal and transversal) are known to exist
in glasses. One would expect only long-wavelength phonons to contribute to the specific heat
at low temperature. The disorder, present at small lengthscales, should not be relevant to these
phonons, and Debye theory should hold in amorphous solids [49]. This conclusion is invalidated
by experiments: the paradigm of solid state physics, small harmonic vibrations around a reference
equilibrium structure, does not apply to glasses. If, in addition to phonons, there is an excess of
quasi-particles active at T . 1 K, one can rationalize the above scalings.

Shortly after Zeller and Pohl’s paper was published, a phenomenological ‘tunneling two-level
system’ (TLS) model was proposed independently by Phillips [50] and by Anderson, Halperin,
and Varma [51]. The model postulates that because of the disordered nature of the system, some
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entities in the glass (an atom, or groups of atoms) can take two almost degenerate configurations.
These TLS are assumed to be randomly distributed in the glass. At low temperature, these entities
can tunnel quantum mechanically between the two configurations. Assuming a plausible form for
the distribution of TLS parameters (classical energy asymmetry, quantum splitting), the model
accounts for the linear behavior of the specific heat.

Let us assume that there is a quantized excess excitation with two states, and that the energy
of the excited state is E. The partition function of this TLS is Z = (1 + e−βE). Its heat capacity
is given by

CTLSp = 1
kBT 2

E2e−βE

(1 + e−βE)2 . (1.1)

Assuming that there are many independent TLS, distributed with a constant P (0 ≤ E ≤ ∞) = n0,
the heat capacity of the system is equal to

Cp = π2

6 n0k
2
BT, (1.2)

which yields the correct linear behavior of the specific heat.
The original model has been improved, but its spirit remains the same [52]. The TLS model is

still a prominent theoretical explanation for the low-temperature anomalies of glasses. Its weakness
is that most ingredients are introduced by hand. Even if some arguments are given for the choice of
the TLS distribution, the situation is unsatisfactory. Although some independent support for the
existence of TLS comes from single-molecule spectroscopy experiments [53], the structural origins
of the TLS are unclear. Some believe that they are made by small groups of atoms that can locally
tunnel between two distinct mechanically stable states [50, 51]. Others suggested that collective
effects are extremely important in determining TLS properties [54].

Ideally, one would like to identify the tunneling entities in a real glass, measure their properties
(distribution, parameters), and check the validity of the model. In Chapter 3, we search for TLS
in stable computer glasses, and analyze their classical and quantum properties.

1.1.5 An alternative to liquid cooling: vapor-deposited glasses

The fact that different protocols may create glasses with different properties opens exciting
scenarios. Materials with desired physical properties could be obtained following a specific protocol.
However, the liquid-cooling procedure described in Sec. 1.1.1 does not offer much flexibility. The
very steep increase of the viscosity (Fig. 1.2) confines the glass transition temperature Tg to a
relatively narrow interval. Since liquid-cooled glasses are all prepared in similar conditions, their
physical properties cannot be significantly modified.

Recently, experimental molecular glasses were synthesized by vapor deposition. Vapor depo-
sition has been used to prepare organic glasses for several decades [55, 56]. The method is also
widely used in the industry. For example, the active layer in the OLED display of mobile phones
are vapor-deposited organic semiconductors. It was realized only in the last 10 years that some
deposition conditions produce glasses with remarkable properties [57].

The vapor deposition technique contrasts with the canonical liquid-cooling protocol. Glasses
are ‘grown’ layer after layer by vapor depositing molecules onto a substrate. The key is to hold
the substrate at a temperature below the experimental glass transition temperature of the bulk
material, typically 0.8 − 0.85 Tg. At such temperatures, the molecules in the top few nanometers
of the sample are considerably more mobile than in the bulk [57, 58]. Recent work on molecular
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FIG. 3. A schematic representation of the potential energy landscape of a
glass forming system. At constant volume, a single landscape controls the
dynamics, thermodynamics, and structure of the supercooled liquid and all
possible glassy states.

when cooling the liquid at 1 K/min; when the material leaves
equilibrium at Tg, it is stuck on the energy landscape and
further cooling does not lower its potential energy. Extended
aging not too far below Tg allows some equilibration and low-
ers the position of the system on the landscape; the line shown
might indicate the influence of one year of aging. The posi-
tion on the energy landscape achieved for some systems by
physical vapor deposition is much lower than can be achieved
in the laboratory by aging or slow cooling, as we discuss
below.

A key feature of Fig. 3 is that there is a well-defined bot-
tom to the amorphous part of the potential energy landscape.
The rapid drop of the entropy of the supercooled liquid as it
is cooled indicates a landscape with fewer and fewer amor-
phous states at lower potential energy, i.e., fewer and fewer
ways of arranging the molecules. The bottom of the landscape
corresponds to the temperature where the part of the entropy
associated with configurations (Sconf) reaches zero. This rep-
resents a limiting state of perfected amorphous packing which
is sometimes called the “ideal glass.” Whether the actual land-
scapes of real systems have an ideal glass state (with Sconf = 0)
is an open question that we discuss below. While some models
of the glass transition make specific predictions about what
happens near the bottom of the landscape,10,13,14 the proper-
ties of glasses near the bottom of the landscape are of interest
beyond these predictions. For example, it is likely that the
lowest energy glass has the highest modulus and the highest
thermal stability of any amorphous packing. For cooling at
constant pressure, the lowest energy glass is likely the densest
possible amorphous packing of a given system. As discussed
below, states approaching the ideal glass or lowest energy glass
can be prepared by physical vapor deposition.

HIGH DENSITY AND LOW ENTHALPY
VAPOR-DEPOSITED GLASSES

Figure 1 highlights an important regime of high den-
sity materials that is inaccessible from the supercooled liq-
uid because of the enormous times scales that would be
required for cooling or aging. In 2007, Swallen et al.
showed that glasses with these high densities could be pre-
pared by physical vapor deposition.4 Figure 4 shows results
from an ellipsometry experiment on an ⇠600 nm film of

FIG. 4. Spectroscopic ellipsometry measurements of film thickness for a
glass of indomethacin vapor-deposited at 0.2 nm/s onto a silicon substrate
at 285 K. The arrows indicate the thermal path of the sample, with heating
and cooling at 1 K/min. The as-deposited glass is denser and has a higher
onset temperature than the liquid-cooled glass. Data are taken from Ref. 15.

indomethacin.15 The glass was vapor-deposited onto a silicon
substrate held at Tsubstrate = 285 K and then heated at 1 K/min
while measuring the thickness. After the sample transformed
into the supercooled liquid, it was cooled and then re-heated
at 1 K/min in order to obtain data on a reference liquid-cooled
glass. The as-deposited glass is 0.85% thinner (i.e., 0.85%
more dense) than the liquid-cooled glass. An extrapolation of
the data shown indicates that the density of the as-deposited
glass (at Tsubstrate) is very close to that expected for the equilib-
rium liquid at this temperature, even though this is 25 K below
the conventional Tg = 310 K. There are a number of ways
to estimate how long one would have to age a liquid-cooled
glass to attain this density, with results ranging from 100 to
100 000 years. Based upon these estimates, such high-density
glasses until recently would have been considered “impossible
materials.” Another notable feature of the as-deposited glass
in Fig. 4 is its high kinetic stability as indicated by the fact
that the onset temperature for transformation into the super-
cooled liquid is 20 K higher than for the liquid-cooled glass;
this indicates that the energy barriers governing rearrange-
ment are higher in the as-deposited glass. Qualitatively, one
could consider the as-deposited glass to be “superaged” in
that it has the high density and high kinetic stability expected
for highly aged liquid-cooled glasses. As shown below, even
denser and “older” glasses of indomethacin can be prepared at
lower Tsubstrate.

The results shown in Fig. 4 are surprising given the pre-
2007 literature on vapor deposition. It had been thought that
vapor-deposited glasses always exhibited low density and low
stability, as a result of the very fast cooling rate for individ-
ual molecules when they hit the surface (⇠1013 K/s). From
Fig. 1, we see that fast cooling rates would be expected to yield
glasses with low density since the system would leave equi-
librium at a high temperature. The formation of high density
glasses via vapor deposition can be rationalized by a surface
equilibration mechanism: If there is sufficiently high mobil-
ity at the surface of the glass, molecules can equilibrate (or
nearly equilibrate) as they are deposited even if the tempera-
ture is below Tg.4,16 Even in 2007, there were indications that
mobility at glass surfaces might be more than 104 times faster

vapor

“ordinary” glass (27). However, recent experiments conducted
in vapor-deposited glasses of the four isomers of Tris-naph-
thylbenzene have shown that anisotropy is unrelated to glass
stability, rather being a secondary feature that will appear more
or less prominently depending upon molecular structure (28).
In Fig. 3 we show that the low-q peak appears indeed in the

WAXS pattern of our vapor-deposited USG, whereas it is absent
in the conventionally prepared glass. The presence of this peak
for the USG should be related to some sort of molecular order
along the growth direction, perpendicular to the substrate, as
clearly revealed in the in-plane–out-of-plane diffraction experi-
ments of Fig. 3B. This orientation may be enabled by the high
mobility of the IMC molecules when they impinge the substrate
surface from the vapor (25). Molecular orientation in vapor-
deposited glassy films of organic semiconductors has been widely
recognized as a potential source to increase carrier mobility
through an enhancement of π-conjugation. The longer the mo-
lecular length is, the larger the anisotropy of the molecular ori-
entation becomes (29).
Let us discuss more specifically our case of IMC. In melt-

quenched or grinded amorphous IMC the most favorable nearest-
neighbor packing direction occurs normal to the plane containing
the indole ring, as occurs in the γ-crystalline polymorph. The

dominant XRD peak at 2θ ∼ 20° (Cu Kα, Fig. 3A) corresponds to
an average distance between nearest neighbors of 0.45 nm, which
matches the IMC molecular thickness when including the van der
Waals radii. Interaction between molecules thus occurs from hy-
drogen-bonding cyclic dimers through the carboxylic groups.
Nonetheless, vapor-deposited IMC glasses exhibit another strong
XRD peak at 2θ ∼ 8.5° (Fig. 3A), indicative of an additional order
within the structure, with a molecular packing distance of 1.1 nm.
This value approximately corresponds to the distance between
IMC molecules along the long axis. As we have verified from in-
plane and out-of-plane synchrotron XRD experiments (Fig. 3B),
molecular anisotropy occurs mainly in the growth direction. This is
again a strong indication of a layered growth (27).

Discussion
Our experimental work is not the first one reporting lack of TLS
in an amorphous solid. Nonetheless, previous reports (30–33)
claiming the absence of TLS in amorphous solids are scarce and
somewhat controversial. Angell et al. (34) proposed the desig-
nation of “superstrong liquids” for some “tetrahedral liquids”
which could be potential “perfect glasses,” with a residual entropy
near zero, and where the defect-related boson peak and TLS
excitations were weak or absent. Specifically, they identified two
instances where TLS had been reported to be absent: (i) amor-
phous silicon (a-Si) and (ii) low-density amorphous (LDA) water.
Let us stress, however, that Pohl and coworkers (30) did find

TLS in pure a-Si (the ideal superstrong liquid). It was only in
1 atomic % hydrogenated silicon where they observed a dramatic
reduction of the internal friction plateau, which is proportional
to the amount of TLS weighted by the TLS–phonon coupling
energy. The suppression of TLS in hydrogenated a-Si was attrib-
uted by the authors (30) to a more compact fourfold coordination
due to the passivation of the dangling bonds by the hydrogen,
hence producing an overconstrained vibrational network. On the
other hand, Hellman and coworkers (31, 32) have reported ther-
mal measurements suggesting a zero density of TLS in some a-Si
thin films. Their conclusion was based on the variation of the
specific heat above 2 K in a series of a-Si thin-film samples with
different densities and preparation methods. In general, mea-
surements in these and other tetrahedrally bonded amorphous
semiconductors have given conflicting results (32).
The case of amorphous water seems clearer in this respect. At low

temperatures, there are (at least) two different amorphous states of
water, high-density amorphous (HDA) and low-density amorphous
(LDA), associated with a high-density liquid (HDL) and a low-
density liquid (LDL), respectively. The LDL of water has been
found to be the strongest of all liquids known (35). Agladze and
Sievers (33) reported no far-infrared resonant absorption by TLS in
LDA ice at low temperature, whereas HDA ice exhibited the typical
TLS response of other glasses.
At first glance, one might thus ascribe the found suppression

of the tunneling TLS in USGs of IMC to the extraordinary sta-
bility (either thermodynamic or structural) of these particular

Table 1. Specific heat coefficients

Sample state cTLS (μJ/g·K2) cD (μJ/g·K4) cD
elas (μJ/g·K4)

Crystal –– 15.0 ± 0.3 ––

Conventional glass 13.7 ± 0.3 49.4 ± 0.2 51
USG-1 0.2 ± 0.9 46.4 ± 0.6 41
USG-2 0.02 ± 0.8 36.9 ± 0.4 41
Degraded USG 13.0 ± 0.7 40.6 ± 0.5 ––

Coefficients and statistical errors from the least-squares linear fits at low
temperatures to the function CP = cTLS·T + cD·T

3 (Fig. 2B). The last column
indicates the expected Debye coefficient cD

elas for conventional and USGs of
IMC, obtained from published elastic data at room temperature (24).

Fig. 2. Specific-heat data for USGs of IMC 50 μm- (USG-1) and 80 μm (USG-2)
thin films, compared with the crystalline phase (Debye extrapolated at lower
temperatures) and the conventional glass. A degraded USG (Materials and
Methods) has also been measured and is presented. Dashed lines show the
corresponding linear fits CP = cTLS·T + cD·T 3 for experimental data below 2 K.
(A) Debye-reduced CP/T

3 versus T representation; (B) CP/T versus T 2 plot at
very low temperatures to determine the TLS and the Debye coefficients,
which are given in Table 1.
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Figure 1.5 | Enhanced kinetic stability and suppression of tunneling two-level systems
in vapor-deposited glasses. Left: Liquid indomethacin cooled at 1 K/min transforms into
a glass at Tg ' 310 K (top curve, downwards). Heated at the same rate, the glass melts at
Tonset ' Tg (top curve, upwards). A glass vapor-deposited at 285 K, 0.2 nm/s is more kinetically
stable: heated at the same rate than the liquid, it melts at a much higher temperature (bottom
curve, upwards). Reprint from [67], original data from Ref. [68]. Right: the specific heat Cp of
conventional glasses departs from Debye’s prediction Cp ∝ T 3 below 1 K. The anomaly is not
observed in vapor-deposited ultrastable glasses (USG). Reprint from Ref. [69].

glass formers has shown that surface diffusion can be up to 108 times faster than bulk diffusion
at Tg [59–62]. At sufficiently low deposition rate, the molecules can sample many configurations
before getting buried and immobilized by the next layers. This surface equilibration mechanism has
been supported by computer simulations [63–65]. Each layer can almost reach thermalization at
the substrate temperature, i.e. significantly below Tg. Vapor-deposited glasses synthesized within
a few hours are more stable than 20-million-year-old glasses [66].

Vapor-deposited glasses bring new exciting challenges to glassy physics [67]. Below, we describe
three of them which are related to our theoretical work.

Dense and kinetically stable glasses – For a given molecule, vapor-deposited glasses are
denser than any liquid-cooled glass [68], as shown in Fig. 1.5 (left). While only few scientists
master vapor-deposition, many people have already played at Tetris. The idea is the same: the
particles at the surface are more mobile and can find an optimal position. This process naturally
produces glasses denser than liquid cooling, in which rearrangements are costly, cooperative motion
of particles.

In addition, vapor-deposited glasses exhibit greatly enhanced kinetic stability: they remain
solid up to temperatures much higher than Tg, as shown in Fig. 1.5 (left). More precisely, the
kinetic stability of a glass is defined by S(T ) = tmelt(T )/τα(T ), where tmelt(T ) is the time for
the glass to melt after its sudden heating to temperature T , and τα(T ) the relaxation time of
the equilibrium liquid at T . The values given below correspond to S = maxT S(T ). Standard
experimental glasses have a stability ratio S . 102 [70], while values of S ∼ 104− 106 are typically
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Figure 1.6 | Bulk melting of ultrastable computer glass. A two-dimensional in silico glass
sample is synthesized in equilibrium conditions at 0.4 Tg using the particle-swap algorithm (see
Chapter 4). We study the dynamics of the sample after a constant-pressure heating into the liquid,
around the Mode-Coupling temperature. During the melting process, we compare the neighbors of
each particles between time t = 0 (initial sample) and t. For each particle, we compute the fraction
of unchanged neighbors, and color it accordingly, from fraction equal to 1 (blue) to 0 (red). The
red regions correspond to the liquid: the local structure has changed, and is much more mobile.
Melting proceeds by nucleation of liquid bubbles (red) in the glass sample (blue), which grow over
time and gradually transform the sample into a liquid. Left to right: t = 4.105, 7.105, 106 after the
temperature jump.

measured in ultrastable glasses [71, 72]. Computer stable glasses prepared with the swap algorithm
have an equivalent stability ratio S ' 105 [73].

The melting mechanism of ultrastable glasses is of current interest [74, 75]. The melting of
ultrastable films is mediated by a constant-velocity front initiated at the free surface. Such a melting
process is reminiscent of crystal melting [76]. This analogy is difficult to rationalize theoretically
because glass and liquid are not distinct thermodynamic phases [77, 78]. The heterogeneous melting
of stable glasses is being studied by several experimental groups. I am currently performing a similar
study on stable computer glasses. Preliminary results confirm the nucleation-and-growth melting
mechanism of stable glasses proposed by Jack and Berthier [78]. We show in Fig. 1.6 a snapshot of
a stable glass during melting. The particles in blue are in the dynamically arrested phase (glass),
while the red particles are mobile (liquid). The liquid domains are much larger than observed in the
melting of stable, randomly pinned, computer glasses [79]. In Fig. 1.6, the typical size l of a liquid
droplet is comparable with the linear system size L ' 20 nm. An accurate measurement of the
average domain size requires the use of even larger samples. My work also aims at characterizing
the speed at which the liquid droplets invade the glass, as a function of the glass preparation, and
melting temperature. I am also investigating several aspects of the nucleation-and-growth picture.
In particular, if we create a liquid droplet of radius R inside the glass, do we find a critical radius
Rc above which melting proceeds?

Suppression of TLS – The results reported by Pérez-Castañeda and collaborators call into
question the ‘universality’ of glassy anomalies at T ∼ 1K [69, 80]. In Fig. 1.5 (right), the specific
heat of vapor-deposited indomethacin is measured down to 0.6 K, and no deviation from Debye’s
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law is observed. Provided that TLS are the origin of the anomalous scaling, Fig. 1.5 suggests
a suppression of TLS in ultrastable glasses, at least those active at T > 0.6 K. While the data
does not exclude a Cp ∝ T scaling at T < 0.6 K, the behavior of ultrastable glasses contrasts
with conventional glasses. The low-T anomalies would not be a hallmark of amorphous materials,
but rather specific to liquid-cooled glasses. Two arguments were put forward to explain the heat
capacity of USG. Whether the observed depletion of TLS in vapor-deposited USG is due to the fact
that they lie deep much deeper in the energy landscape than conventional liquid-cooled glasses [81],
or to the anisotropy induced by vapor-deposition [68, 82, 83], is debated [84].

We bring new insight to this question by means of computer simulations. We perform a numer-
ical search for TLS in glasses prepared with cooling rates which differ by 10 orders of magnitude,
presented in Chapter 3. Using the same glass-forming model and protocols, we determined that the
density of TLS depends dramatically on the cooling rate, and is therefore not an inherent property
of disordered materials. This conclusion opens the way to the design and synthesis of new materials
with low density of two-level systems, needed to meet new technological applications, in particular
quantum computing [85].

Revisiting the entropy crisis – Getting closer to the equilibrium entropy crisis is an impor-
tant research goal. By definition, liquid cooling will not get us there. Vapor-deposited glasses
provide new insights into the entropy crisis. The excess entropy of vapor-deposited glasses can be
estimated, and support the occurence of a finite-temperature entropy crisis [66]. Vapor-deposited
glasses have the density expected from extrapolating the supercooled liquid data to lower tempera-
ture [86]. Vapor-deposited glasses bring experiments closer to the Kauzmann transition. A similar
achievement in computer studies is presented in Chapter 5.

1.2 Glass and jamming transitions

1.2.1 The jamming transition of athermal systems

In the last decades, the study of glasses at low temperature has attracted significant interest,
both from a theoretical and an experimental point of view [87–89]. This is motivated by the fact
that a different solidity transition, the jamming transition, can be observed in a large class of
systems: suspensions of large colloids, foams, emulsions, granular matter, and powders. These
systems are ‘athermal’: the constituent particles are so large that the typical energy scales are
orders of magnitude larger than kBT . Contrary to the glass transition, thermal fluctuations play
no role in the jamming transition, which is a purely geometrical transition [90, 91].

A T = 0 geometric transition – The basic jamming scenario takes place in models of frictionless
spheres interacting via finite-range repulsive forces. Temperature plays no role: one considers
T = 0. Suppose that a low-density assembly of particles is gradually compressed. At low density,
the particles do not interact and the system is not mechanically stable. The jamming transition is
defined as the density at which a mechanically stable network of particle contacts emerges [87, 92].
If the interaction between particles is ‘hard’ (they cannot overlap), the pressure of the packing
diverges at jamming, and the system cannot be compressed further. This is the case for large
PMMA colloidal particles, metallic beads or disks. If particles are ‘soft’ (they can deform), the
solid can be compressed beyond the jamming transition. The network of contact forces sustains the
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Figure 1.7 | The jamming transition of soft frictionless spheres. At low packing fraction
ϕ, the system is mechanically unstable, and describes non-Brownian suspensions. Jamming takes
place at ϕJ , where a mechanically stable force network emerges. Frictionless granular solids sit
at the jamming transition. At densities above jamming, the particles overlap and the system is
jammed. The region ϕ > ϕJ describes foams and emulsions of large droplets.

rigidity of the system. Foams and emulsions are examples of ‘soft’ solids. This basic phenomenology
is illustrated in Fig. 1.7.

Models and protocols for jamming – Numerical and theoretical studies of jamming led to the
development of canonical models, soft frictionless repulsive spheres, as well as protocols to create
jammed packings. The interaction potential between two particles i and j is given by

V (rij) = ε

α

(
1− rij

σij

)α
Θ
(

1− rij
σij

)
, (1.3)

where rij is the distance between the centers of the two particles, σij the average of both diameters,
and ε the typical interaction energy. The particles do not interact if they do not overlap, hence
the Θ Heaviside step function in Eq. 1.3. The exponent α can be varied to tune the softness of
the interaction repulsion. Values of α = 5/2 (Hertzian model) and α = 2 (Harmonic model) are
mostly employed. The harmonic sphere model was first devised to study the jamming rheology of
wet foams [93, 94]. Hard sphere interactions are modeled in the limit ε→∞.

Numerical protocols have been developed to create jammed states. Note that these are nonequi-
librium protocols. A popular algorithm consists in starting from a dilute system, and ‘inflating’
the particles at a fixed rate during a molecular dynamics run [95]. Alternatively, one may start by
assigning random positions to N particles in a box of volume V (this is an equilibrium configuration
at T = ∞, ρ = N/V ). The algorithm proceeds as a succession of minimization and compression
steps [92]. During a minimization step, the potential energy of the system is minimized using, for
example, conjugate gradient [96]. The system is then slightly compressed, before being minimized
again, and so on. At ϕJ , the potential energy of the minimized packing becomes non-zero.

The jamming transition is determined by measuring the reduced pressure Z = βP/ρ or potential
energy e of the system, where β = 1/T , P is the pressure, and ρ = N/V the number density.
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As ϕ approaches ϕJ from above, e(ϕ) ∝ (ϕ − ϕJ)α [92]. Approaching jamming from below,
Z(ϕ) ∝ (ϕJ − ϕ)−1, where α is defined in Eq. 1.3 [97, 98].

The jamming transition can be located unambiguously within one realization of a protocol. It
is now understood that various protocols may lead to different values ϕJ [99]. This is particularly
striking when the algorithm described above is initialized with packings deeply thermalized in the
fluid phase of polydisperse hard spheres. In this three-dimensional model, ϕJ can be varied from
0.655 to 0.71 [100].

Jamming criticality – While the location of the jamming transition is system and protocol-
dependent, there are a number of universal features associated to jamming. The transition bears
similarities with ordinary second-order phase transitions, for which the scaling theory of critical
phenomena applies. The observables are expressed in terms of the distance to jamming, ϕ − ϕJ .
Contrary to glass criticality, which is elusive, jamming criticality is easily observed.

At ϕJ , all frictionless packings are ‘isostatic’ [101, 102]: the average number of force-bearing
contacts is ziso = 2d, the minimal value to ensure mechanical stability [103]. The coordination
number z jumps discontinuously from 0 to 2d as ϕJ is approached from below, recalling a first-
order phase transition. The excess contact number follows a scaling z − ziso ∝ (ϕ − ϕJ)νz , where
νz = 1/2 [92, 104](for isostatic jamming) is independent of the interaction potential.

There are three non-trivial critical exponents related to the isostatic jamming transition. The
distribution of contact forces has a pseudo-gap, as it scales as P (f) ∝ fθ for f → 0+. The
mechanic stability of packings at ϕJ is ensured by contacts carrying extremely small forces [105].
The distribution of gaps h between particles at jamming scales as g(h) ∝ h−γ as h → 0+ [97].
Finally, the plateau value of the mean-squared displacement ∆, or Debye-Waller factor, vanishes
as ∆ ∝ p−κ when jamming is approached from below [106, 107].

The critical exponents θ, γ, and κ can be accurately measured numerically and experimen-
tally. The exponent θ depends on the physical dimensions d, but numerical results indicate
θ ∈ [0.41, 0.44] [108, 109]. The dimensional dependence is caused by the presence of rattlers,
i.e. particles sustained by d + 1 contacts, that can move in and out of the plane formed by these
neighbors at almost no cost, creating an abundance of small forces. The critical exponent θ and γ
computed by removing rattling particles does not depend on d. The exponent κ measured numeri-
cally does not vary with d [97, 107, 108]. This suggests that the transition has universal properties,
and that a theoretical derivation of the critical exponents is possible [108–110].

Marginal stability and scaling relations – The network of contact forces formed at ϕJ is the
minimal to ensure mechanical stability [91]. The opening of one contact may destabilize the entire
system. Jammed packings are marginally stable [111] (in a mechanical sense), and possess many
soft vibrational modes [104]. Wyart and coworkers derived scaling relations for the exponents θ, γ,
and κ by assuming marginal stability [105, 112, 113]. They considered that the system is close to a
mechanical instability, and identified its elementary excitations. They selected low-lying excitations,
perturbed the system along them, and looked for stabilisation mechanisms. The derived scaling
relations are consistent with numerical results.

1.2.2 Glass and jamming phase diagram

Over the last few years, a remarkable unification of concepts has helped clarify the respective roles
of geometry and thermal fluctuations in systems as diverse as molecular glasses, colloidal systems
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and granular matter. The glass transition is responsible for the emergence of amorphous solids at
finite temperature, whereas the jamming transition is responsible for the emergence of mechanical
rigidity in athermal systems. The glass and jamming transitions are distinct phenomena, with
different origins [114–116].

The physics of both transitions can be captured with models of thermal soft repulsive spheres,
defined in Eq. 1.3. This strategy naturally follows Liu and Nagel’s initial attempt to propose a
unique phase diagram for amorphous solids, and to connect various rigidity transitions [87]. The
two control parameters for the model are the packing fraction ϕ and the ratio T/ε (noted T for
simplicity). Sufficiently dense packings of thermal soft spheres transform into glasses when cooled.
In this model, there is a line separating the liquid at high temperature, from the glass at low
temperature [106]. A numerical phase diagram for 3d harmonic spheres is given in Fig. 1.8 (left).
Mode-Coupling Theory (MCT) [117] and Vogel-Fulcher-Tammann (VFT) fits to the equilibrium
relaxation time τα(T ) provide an estimate for the ‘glass transition’ temperature of harmonic spheres
(dashed lines). The MCT law underestimates the experimental glass transition temperature. It
however gives an estimate of the computer glass transition: state points below TMCT cannot be
equilibrated (open symbols) with standard algorithms. The zero-temperature jamming transition
of random packings is indicated by a dashed arrow in the phase diagram.

The Weeks-Chandler-Andersen (WCA) model was employed in this context [118, 119]. It is a
variant of the Lennard-Jones potential, cut at its minimum, and shifted:

V (rij) = 4ε

(σij
rij

)12

−
(
σij
rij

)6
+ ε if rij < 21/6σij , (1.4)

and V (rij) = 0 for rij > 21/6σij . By construction, the potential is harmonic around the cutoff
rij/σij = 21/6: the harmonic model is recovered for intermediate densities. Hard sphere behavior
is recovered in the limit T/ε = 0, obtained for ε → ∞ at constant temperature. Contrary to the
harmonic model which has a trivial large-density limit, the WCA potential models an atomic-like
repulsion 1/r12 at large densities. A wide diversity of materials can be described by continuously
varying the packing fraction of WCA glasses [119]. This approach is employed analytically and
numerically in Chapters 2 and 3.

We presented glass formation and jamming transition through different protocols. However,
a class of jammed packings can be identified with the infinite-pressure limit of thermal repulsive
glasses [98, 106, 120]. In Fig. 1.8 (right), the equations of state for the reduced pressure Z(ϕ) of
hard spheres fluids and glasses are shown. Equilibrium fluids are rapidly compressed and depart
from the equilibrium equation of state (full line). The pressure of the glasses increases sharply
upon compression, and eventually form a jammed packing in the limit Z →∞. The identification
of jammed packings as the infinite-pressure limit of glasses, opens up the possibility to build a
common theoretical framework for glassy and jammed states [98, 121–123]. This program was
achieved in the mean field theory of glasses introduced in Sec. 1.3.

1.2.3 Critical region of the jamming transition

An important theoretical effort was devoted to elucidate where glass and jamming physics are
at play in the T − ϕ phase diagram [124–126]. Numerical exploration of the region around the
jamming transition (ϕJ , T = 0) was undertaken at finite temperature. Evidence was given for a
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Figure 1.8 | Glass and jamming transitions of hard and harmonic spheres in 3d, data
from Ref. [106]. (Left) Harmonic spheres are studied in equilibrium (open symbols). Estimates
for the glass transition obtained by fitting the relaxation time τα(T ) to known functional forms
(dashed lines). The jamming transition occurs around ϕJ (dashed arrow, more in Fig. 1.9). Right:
Reduced pressure Z of fluids (solid line) and glasses (dashed lines). Rapidly compressed fluids
transform into glasses, before jamming in the limit Z →∞. The jamming location ϕJ depends on
glass preparation.

critical region in which critical signatures of the T = 0 transition are found [126]. More precisely,
single particle dynamics reveal the divergence of a time and length scale as jamming is approached.
The jamming critical region, shown in Fig. 1.9, is narrow in the T −ϕ diagram and does not extent
beyond T ∼ 10−7−10−6. This narrowness makes its experimental investigation intricate [127–129].
No experimental study was able to probe this region yet. In the vicinity of the critical point, the
theory predicts three critical scalings, depending on the location with respect to jamming (colored
regions) [126].

A comparison of the temperature and packing fraction scales of the phase diagrams in Fig.1.8
(left) and Fig.1.9 indicate that the critical region of jamming is found deep in the glassy phase,
in a region much narrower than the glassy one. Jamming criticality is felt at temperatures lower
than those in Fig. 1.8. Figure 1.9 shows that a third protocol can be used to reach jamming.
Glasses of thermal soft repulsive spheres can be cooled down to T = 0, and gradually compressed
or decompressed until a jamming transition is found. This corresponds to entering the critical
region from above in the diagram Fig. 1.9. This protocol is employed in the numerical work of
Chapter 3.

The phase diagram in Fig. 1.8 organizes the physics of a variety of materials by describing how
fluids loose their ability to flow. It however suggests that the solid phase has similar properties
across a broad range of physical conditions. We describe below recent analytical results revealing
the existence of two distinct glassy phases, separated by a sharp ‘Gardner’ transition. Both phases
should be located in the phase diagram Fig. 1.8 (left) in order to describe correctly amorphous
solids. This theoretical and numerical effort is at the centre of this work. Theoretical predictions
are presented in Chapter 2, and confronted with 3d numerical simulations of various glass formers
in Chapter 3.
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Figure 1.9 | Dynamic criticality at the jamming transition, from Ref. [126]. The criticality
of the jamming transition (T = 0, ϕ = ϕJ) survives a small amount of temperature and packing
fraction variation (colored region), where power law divergences and ‘anomalous’ vibrational motion
obey various scaling relations. No experimental study (green labels) has been able to detect the
jamming dynamic criticality. Note the small range of parameters for which the effect of the T = 0
jamming critical point is felt, which can directly be compared with the temperature range of Fig. 1.8
(left).

1.3 Thermodynamics of liquids and glasses in large dimensions
Building a first-principles theory for glasses is both a tremendous challenge and a major research

goal. Theoretically dealing with disordered, out-of-equilibrium systems requires the development
of new tools and concepts which fall outside the scope of standard statistical mechanics.

Building a statistical mechanics framework of simple equilibrium liquids, which are also charac-
terized by a high degree of structural disorder, already required a large theoretical effort. Starting
from the 1950s, this effort lead to the development of a liquid-state theory [5]. It allows to com-
pute the thermodynamic and structural quantities of liquids from the knowledge of the microscopic
interactions [5]. Quantitative results are obtained using closure relations, such as Hypernetted
Chain [130] or Percus-Yevick [131] closures, which neglect three-body correlations. The results are
therefore approximate, but compare well with experiments and simulations [5, 132].

Contrary to standard condensed matter systems, glasses cannot be described using a pertur-
bative treatment around a reference frame: there is no small parameter in the glass problem.
The theoretical description of amorphous solids is more complex than crystalline solids, which
are described by harmonic vibrations around an ideal periodic lattice [133]. Statistical physicists
compensate the absence of a small parameter by studying the problem in a hypothetical space of
dimension d = ∞. The problem simplifies in this limit, and an exact solution can be derived.
Once the infinite-dimensional problem is solved, 1/d can be treated as a small parameter, with
the hope of recovering the behavior of the physical system in d = 2, 3. The idea of using 1/d as a
small parameter led to significant progress in the fields of strongly coupled electrons [134], atomic
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physics [135], and gauge field theory [136].
In the 1980s, Frisch, Rivier and Wyler laid the foundation for a theory of liquids in large

dimensions. They computed the free energy of d→∞ hard-sphere fluids in the high-temperature
regime, from which they derived the fluid equation of state [137–142].

Shortly afterwards, Kirkpatrick and Wolynes suggested to extend the high-dimensional expan-
sion to the low-temperature glassy regime [143]. They established a connection between hard
sphere systems and a class of exactly solvable frustrated spin systems. They also pointed out that
while disorder is put by hand (quenched) in spin models, it is self-generated in structural glasses.
Replica methods needed to compute the free energy of systems without explicit disorder were only
developed in the following decade [144–150].

It was realized recently that the theoretical tools needed to construct an exact theory of d→∞
liquids and glasses in all regimes were available. This observation triggered an important research
effort, leading to the extensive analysis of the hard-sphere phase diagram in d → ∞ [98, 121–
123, 151, 152]. In this work, we contribute to this theoretical effort, explore and test its predictions.

1.3.1 Exact mean field theory

We are interested in the statistical mechanics treatment of a system made of N monodisperse
particles with short-ranged interactions, embedded in a space of d dimensions, in the thermody-
namic limit. A reasonable strategy to this statistical physics problem is to study its mean field
formulation. This strategy was undertaken in virtually all domains in physics. In the dense regime,
the particles have on average 2d neighbors. As d→∞, the force due to neighboring particles can
be treated as a mean force, hence the mean-field nature of the limit.

The starting point of the treatment is a density-functional formulation of the problem. The virial
expansion, a low-density expansion commonly used in liquid theory, allows to write a diagrammatic
expansion of the partition function (entropy, or free energy) [5]. In the finite-dimensional case, the
truncation of the virial expansion at any order is an approximation. In d → ∞, the truncation
of the virial expansion to second order is exact, up to densities relevant to describe the glassy
phase [98].

The reason for this simplification is geometric: consider three particles A, B and C, with AB
and BC interacting. The probability that A and C interact themselves is vanishingly small in large
dimensions: all terms in the virial expansion above the second one can be neglected. The network of
interactions is tree-like in the high-dimensional limit, as in mean field approximations [137, 140, 142].

1.3.2 Glasses as metastable states

The concept of metastable states is central to the theory of liquids and glasses in d → ∞. The
system is defined by a density profile ρ(x) =

∑N
i=1 δ(x − xi), where xi is the d-dimensional vector

position of particle i. The free energy of the system is a functional of the density profile F [ρ(x)].
The thermodynamic phases of the system can be identified with the minima of the free energy
functional.

At each temperature, the stable thermodynamic state is the global minimum of F [ρ(x)]. At
high temperature, it is the liquid state with uniform density ρ(x) = ρ, and the crystal with a
periodically modulated density profile at low temperature. In the limit d→∞, the two situations
are clearly distinguishable: the crystal can be eliminated from the theoretical analysis by imposing
uniformity of ρ.
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The amorphous density profiles ρ(x) may give rise to a complex free energy landscape, with an
exponentially large number of minima. In the thermodynamic limit and d → ∞, the free energy
barriers between local minima are infinite, because the system is fully connected. The minima of the
free energy have an infinite lifetime in the thermodynamic limit: they are relevant thermodynamic
‘metastable states’.

The free energy of a state α, sampled at equilibrium at T = 1/β is obtained by summing over
configurations X belonging to this state

fα(T ) = − 1
βN

log
∫
X∈α

dXe−βU(X), (1.5)

where U(X) is the total potential energy of the configuration X.

1.3.3 The Random First Order Transition theory

The state of the system is encoded in the free energy functional F [ρ(x)], which contains the
information of all particles in the system, but is potentially highly complex. Instead, one can study
a reduced free energy, which already contains interesting information. This approach, known as
the potential method, was introduced by Franz and Parisi in the context of spin glass models, and
later applied to mean field structural glasses [148].

In the mean field theory of glasses, the order parameter of the glass transition is the overlap (a
measure of similarity), or equivalently the distance, between two equilibrium configurations. We
consider a typical equilibrium configuration Y , selected with the Gibbs-Boltzmann distribution at
temperature T = 1/β. The configuration selects one of the metastable states, noted α, whose
free energy is computed by averaging over the configurations X that are close (in distance) to
Y [121–123, 151, 152]

f(T, Y,Dr) = − 1
βN

log
∫
dXe−βU(X)δ[Dr −D(X,Y )], (1.6)

where

D(X,Y ) = d

N

N∑
i=1

(xi − yi)2. (1.7)

This is the free energy of the state selected by an equilibrium amorphous configuration Y . Its
explicit dependence on Y , which is a priori unknown, prevents its practical computation. It is
an extensive quantity and should not fluctuate in the thermodynamic limit, unless some phase
transition happens. The free energy is ‘self-averaging’ [153], its average over Y , distributed with
the canonical distribution at T = 1/β, is representative of its typical value in the thermodynamic
limit

V (Dr) =
∫ dY
Z[β]e

−βU(Y )f(T, Y,Dr), (1.8)

where Z[β] is the standard configurational integral at temperature 1/β. The free energy cost of
maintaining a configuration at an average distance Dr of a reference equilibrium configuration at
T is equal to V (Dr). It is also called the Franz-Parisi (FP) potential, and noted V (Dr), by analogy
with spin glasses [148]. The FP potential V (Dr) is also a large deviation function for the order
parameter Dr.

Let us comment the form of Eqs. 1.6 and 1.8. The amorphous configuration Y acts as an
external disordered potential for X in Eq. 1.6. The average over the disorder Y is then taken
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Figure 1.10 | Sketch of the Franz-Parisi potential as a function of temperature. At
T > Td, the potential has a unique minimum in Dr = ∞, corresponding to the ergodic liquid.
At Td, a second minimum appears at a finite Dr, signaling the apparition of exponentially many
metastable glassy states, giving rise to an extensive configurational entropy Sc. The free energy cost
of constraining two configurations in the same state, i.e. at a distance Dr, is TSc. A thermodynamic
transition take place at TK , where the order parameter Dr jumps discontinuously to a finite value,
and Sc → 0 continuously. Inset: Configurational entropy as a function of temperature.

in Eq. 1.8. The configuration Y acts as a quenched disorder for X, which breaks translational
invariance and prevents the use of standard statistical mechanics methods. The replica method
was developed to compute V (Dr) [148]. This derivation is presented in Chapter 2.

The equilibrium value of Dr minimizes the free energy V (Dr) at temperature T . The knowl-
edge of which minima of the free energy functional F [ρ(x)] are relevant to the thermodynamics is
reduced to the knowledge of the minima of V (Dr).

We describe the behavior of V (Dr) with Dr and temperature. Whatever the temperature, the
probability that two equilibrium configurations are equal is zero: V (Dr = 0) = ∞. In the limit
Dr = ∞, the free energy is that of the liquid. For convenience, we sketch the FP potential with
respect to the liquid free energy V (Dr)− V (∞) as a function of 1/(Dr +1) ∈ [0 : 1] in Fig. 1.10.

At high temperature, the Gibbs distribution is effectively uniform, and larger Dr consists in a
larger region in configurational space: the FP potential increases monotonically with 1/(Dr +1), as
shown in Fig. 1.10.

At the dynamical transition temperature Td, a local minimum appears at finite Dr in the FP
potential. The free energy difference V (Dr) − V (∞) between constraining the system close to a
glass state, and the liquid free energy has an entropic origin. Indeed, in equilibrium, the liquid
and glass energies are equal. We can therefore define a configurational entropy Sc = −β(V (∞) −
V (Dr)). Alternatively, one can write sliq = sglass + Sc. The entropy of a liquid is that of a typical
glass, plus a contribution accounting for the many possible glasses, selected by distinct equilibrium
liquid configurations. We conclude that below Td, the partition function becomes dominated by an
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exponentially large number N of metastable states, with

Sc = lim
N→∞

1
N

logN . (1.9)

The configurational entropy Sc decreases with temperature, as shown in the inset of Fig. 1.10. At
T = TK , a thermodynamic transition takes place, the configurational entropy vanishes continuously,
and the free energy of the liquid and glass become equal. In mean field, the entropy crisis envisioned
by Kauzmann (Fig. 1.3) is exactly realized, hence the notation TK .

The reduced free energy V (Dr) captures the nature of the glass transition in mean field theory.
The theory goes under the name of Random First Order Transition (RFOT) theory, and predicts
the existence of two temperatures Td and TK [154]. The first temperature Td corresponds to the
appearance of exponentially many metastable glassy states, but the thermodynamic transition takes
place at a lower temperature TK . The shape of the Franz-Parisi potential in Fig. 1.10 illustrates
the first-order character of this transition as the order parameter Dr jumps discontinuously at TK .
This transition is however second order in the usual thermodynamic sense, since there is no a latent
heat associated to it. The mixed nature of the transition at TK is at the origin of the name ‘random
first order’ transition.

1.3.4 Thermodynamics of glasses: state-following construction

The Franz-Parisi method allows to compute the free energy of an equilibrium liquid at temper-
ature T . It gives important information on the nature of the equilibrium glass transition in mean
field. Interestingly, the method can be extended to study the properties of glasses out of thermal
equilibrium.

In order to motivate this statistical mechanics treatment, let us think about how the properties
of a glass are measured in an experiment. One should first create a glass. Various protocols can be
used, in order to shift the temperature Tg at which the system falls out of equilibrium. This glass
can then be subjected to an adiabatic perturbation, may it be a temperature change, compression,
shear, etc. While the perturbation is applied, the glass is thermalized inside an amorphous structure
selected at Tg.

The Franz-Parisi construction is therefore adapted to describe glasses in a statistical mechanics
framework. The only modification to be done to the equilibrium construction is to consider that
the configuration X probing the amorphous state is thermalized at a temperature T 6= Tg. In
this case, the computation is called ‘state-following’. It was developed in the context of spin glass
models [155–158].

The method was applied only recently to the simplest structural glass former, hard spheres, in
d→∞ [121–123, 151, 152]. In Chapter 2, we study more realistic models and compute their phase
diagram. The phase diagram depends in general on two control parameters, temperature T and
packing fraction ϕ.

The free energy fg of a glass prepared at temperature (ϕg, Tg), and adiabatically brought to
(T, ϕ) can be written as

fg(ϕ, T |ϕg, Tg,Dr) = − T
N

∫ dY
Z [ϕg, βg]

e−βgV [Y ] logZ [ϕ, β|Y,Dr] , (1.10)

where Z [ϕg, βg] is the standard configurational integral at (ϕg, Tg). The free energy has to be
computed for the parameter Dr verifying ∂Dr fg = 0.
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Figure 1.11 | Schematic representation of the Parisi Replica Symmetry Breaking
scheme, in the matrix ∆̂ of mean square displacement between n replicas. In the replica symmetric
(RS) case, all replicas are at the same distance D0 (left). At a 1-RSB transition, the n replicas
are divided into n/m groups of m replicas. Two replicas in the same group are at a distance D1,
and D0 if they belong to different groups (center). This step can be reproduced to obtain a 2-RSB
solution (right). In the full RSB phase, k →∞, the number of symmetry breaking goes to infinity.
From [159].

The replica method used to compute explicitly the glass free energy Eq. 1.10 is based on the
mathematical identity [150]

log[Z] = lim
s→0

Zs. (1.11)

The initial atomic liquid made of N particles, is replicated s times. One ends up with a ‘molecular
liquid’, in which each of the N molecules is made of s + 1 atoms. The computation of the glass
free energy Eq. 1.10 is replaced by the computation of the free energy of a molecular liquid [98,
122, 123]. The derivation is presented in Sec. 2.1. The replica method allows to rewrite the
original problem, with broken translational invariance, into the translationally-invariant problem
of a molecular liquid. Once translational and rotational invariance are restored, standard statistical
mechanics techniques can be employed.

Translational and rotational invariances imply that free energy of a molecular liquid is function
of the mean-squared distance between atoms, Dab, defining a s×sMSD matrix D̂. Finding explicitly
the matrix for which the replicated free energy is stationary is in general not possible. However,
symmetries are very helpful to guess its form. The replicas of the liquid are introduced as a
mathematical trick, and should a priori be equivalent. The replica symmetric (RS) ansatz for the
matrix D̂ is Dab = D for all a 6= b [153]. The RS assumption implies that a glass state is a restricted
portion of phase space, in which typical configurations are at the same distance D, i.e. the glass
is a simple free energy basin. The glass free energy can be expressed explicitly in terms of D. Its
thermodynamic value is taken at D minimizing fg.

This structure for the glass, remains however an assumption. One should check a posteriori
the stability of the ansatz, by computing the stability matrix of the free energy, and verifying
that Gaussian fluctuations around the RS solution are stable. In d→∞ hard spheres, glasses are
simple basins at small compression. At a certain point, however, the replica symmetric solution
destabilizes, signaling the emergence of a complex structure for the glass basin.
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1.3.5 A new amorphous phase of matter: the Gardner phase

Replica symmetry breaking – Replica symmetry can be broken in many ways. The simplest
one can think of is a one-step replica symmetry breaking (1-RSB) [153, 159]. In this case, a
glass state is no longer a simple basin. It becomes a ‘metabasin’, containing two sub-basins. The
structure of the glass is then parametrized by two values D0 < D1: two typical configurations
within the metabasin are at a distance D0 or D1, whether they belong to the same sub-basin or not.
See Fig. 1.11 (center) for an illustration of a 1-RSB matrix D̂ (different colors represent different
values).

One can iterate this construction by going to higher number k of replica symmetry breaking
steps, as pictured in Fig. 1.11. The glass metabasin is split into sub-basins, each containing other
sub-basins, and so on. This hierarchy goes on up to the point where, at the end, one finds the
individual metastable states, which correspond to dynamically connected groups of configurations
in configurational space.

A generic (k − 1)-RSB matrix is parametrized by a set of MSDs D0,D1, ...,Dk, and a set of
blocks s0 = s, s1, s2, ..., sk−1, sk = 1. The knowledge of this set of parameters defines entirely a
k-RSB matrix D̂. One can then define a piece-wise function D(x), with 1 < x < s, such that
D(x) = Dk for x ∈]sk−1, sk]. This function basically describes the profile of the first row of the
matrices D̂ presented in Fig. 1.11. While the limit s→ 0 of a s× s matrix D̂ makes little sense, its
interpretation in terms of a piece-wise function D(x) defined on the domain [0 : 1] is physical [160].
The infinite number of replica symmetry breakings (full RSB) is parameterized by a continuous
function D(x) [153].

Gardner phase in d → ∞ hard spheres – In hard spheres, replica symmetry is broken at
a full RSB transition, where the glass metabasin splits into am ultrametric fractal structure of
sub-basins [123]. The most important property of the full RSB individual states is that they are
marginally stable [161]: the Hessian has an eigenvalue which is identically zero in this phase.

Full RSB transitions were already discussed in the context of spin glasses. Elizabeth Gardner
first discovered (concomitantly with Gross and coworkers, who studied Potts models [162]) a full
RSB transition in Ising spin glasses at low temperature [163]. The full RSB transition in hard
spheres, discovered for the first time in the context of structural glasses, was called ‘Gardner
transition’ in tribute to E. Gardner. The Gardner transition in d→∞ hard spheres is equivalent
to the spin-glass transition found in the Sherrington-Kirkpatrick model, a mean field spin glass
model [164]

We show in Fig. 1.12 the phase diagram of the equilibrium liquid (black line) and glasses (colored
lines) of hard spheres in d→∞ [152]. Metastable states exist at densities larger than ϕd. Glasses
are prepared in equilibrium conditions (on the liquid equation of state) at some ϕg > ϕd, and
compressed or decompressed adiabatically. Below the Gardner transition ϕ < ϕG (bullets), the
glass is in a stable state. Above the Gardner transition ϕ > ϕG, the glass enters a new amorphous
phase of matter. The solid fractures in a hierarchical collection of marginally stable states [107].
The Gardner transition happens deep in the glass phase, and its location depends on the glass
preparation ϕg.

Jamming criticality – One of the successes of the infinite dimensional theory for hard spheres
is to identify jammed packings with the endpoints of metastable glassy states at infinite pressure
(see Fig. 1.12). This approach to the jamming transition, first reviewed in Ref. [98], allows the
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Figure 1.12 | Phase diagram of infinite dimensional hard spheres: rescaled inverse
pressure versus packing fraction. The liquid equation of state d/p = 1/ϕ is shown, along
with the equation of state of glasses prepared at various ϕg below the dynamical transition ϕd.
Upon compression, the glasses transform from simple metastable states to hierarchical structures
of marginal states at the Gardner transition ϕG (bullets). The infinite pressure limit of glassy
states correspond to jamming packing (squares). From [152].

treatment of jammed packings in a purely static way, and an exact computation of the critical
exponent of jamming in d → ∞. As seen in Fig. 1.12, jamming takes place inside the Gardner
phase. Taking into account the marginality of the glass is crucial to predict correctly jamming
criticality. It was shown that the marginality condition of the full RSB solution directly implies
the isostaticity of jammed packings, which manifests as a critical mode [123]. This corroborates
the picture of jamming as a critical phenomenon, anticipated in Sec. 1.2.1. More than this, the full
RSB solution yields the correct critical exponents at jamming. While a replica symmetric predicts
for example κ = 1, which is incoherent with the observations in d = 2, 3, the full RSB solution
predicts κ = 1.41574, θ = 0.42311 and γ = 0.41269, which are consistent with numerical and
experimental observations. These exact results, obtained from first principles, represent one of the
greatest accomplishment of the infinite dimensional theory for glasses. They prove the relevance of
the infinite-d Gardner phase to predict accurately the properties of glasses at high pressure, even
down to d = 2.

Consequences of a Gardner phase – The hierarchical structure of the marginally stable glass
has profound implications on its physical properties. In particular, the picture of the glass being a
simple solid, with phonon-like vibrations of the particles around well-defined disordered positions,
and density fluctuations with very fast relaxation timescale, breaks in the Gardner marginal phase.

Beyond the Gardner point, the hierarchical nature of the free energy landscape is expected
to give rise to complex dynamical effects. The aging dynamics of spin glasses characterized by a
complex landscape was explored theoretically and experimentally. It is extremely rich and as of
now still not fully understood [26, 35, 36, 38–42]. Similar aging effects should be observed in the
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Gardner phase of structural glasses. This aging phenomenology should be much more complicated
than the standard aging presented in Sec. 1.1.3, commonly observed in structural glasses. The
existence of a hierarchy of timescales implies that equilibration inside the glass metabasin becomes
extremely slow (yet shorter than the relaxation time τα). In Chapter 3, we present results for the
off-equilibrium dynamics of 3d marginally stable glasses. We find that it is similar to the aging
phenomenology of spin glasses.

Solids are characterized by their elastic response to small strains. The elastic properties of
glasses are affected by the Gardner phase, where theory predicts complex elastic responses, similarly
to what is observed in spin glasses [153]. More specifically, elastic modulii are strongly dependent
on the protocol used to measure them [165–167]: compressing a glass, then applying a strain is not
equivalent to applying the strain before compression. Some non-linear elastic moduli are predicted
to be divergent in the Gardner phase, implying that standard elasticity breaks down in this phase.

Marginally stable glasses are characterized by soft modes, and low-energy barriers separating
the glassy minima [111]. This picture, obtained from first principles, seems to explain naturally the
anomalies observed in amorphous solids. In this work, we explore the hypothesis that the Gardner
phase provides a paradigm to explain the anomalies of amorphous solids. In particular, we focus
on more realistic model glass formers, which interact with Lennard-Jones type pair potentials. In
these models, the jamming transition plays no role. Their study is relevant to determine whether
a Gardner phase is found at low temperature, in the absence of jamming. We present mean field
results in the limit d→∞ in Chapter 2, and by computer simulations in d = 3 in Chapter 3.

1.4 Towards finite dimensions
The d→∞ theory of glasses brings the dynamical, time-based description of the glass transition

down to a thermodynamic transition at a well-defined temperature, which is appealing to physicists.
It correctly predicts the jamming critical exponents measured in d = 2, 3, which is quite a success.
The theory predicts an entropy crisis at a finite temperature TK , in agreement with Kauzmann’s
observations in Fig. 1.3.

Mean field theory, however, relies heavily on the concept of metastability. As a consequence,
it does not capture finite-dimensional fluctuations and activation mechanisms. This is problematic
since the glassy slowdown is dominated by activated relaxations at low temperature. One can
wonder whether metastability in d → ∞ is an artifact, or if some of its features remain in finite-
d glasses. To settle this question, one should analyze the effect of finite-d fluctuations on the
mean-field description. The renormalization group is a method of choice to treat fluctuations
beyond mean-field theory [168]. The problem is that the spatial fluctuations relevant to the glassy
phenomenology in finite dimensions are still unknown.

Without a proper renormalization scheme at hand, theoreticians have focused on a class of ‘Kac’
models in which the interaction range can be tuned [169–171], in order to continuously connect
the mean-field limit with the finite-dimensional one. Scaling arguments were proposed to take into
account activation within the mean field picture [3, 172–174].

1.4.1 Metastability and configurational entropy

The concept of long-lived metastable state does not make sense in finite dimensions. The interac-
tion range between particles in a real glasses is short. As a consequence, free-energy barriers remain
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Figure 1.13 | Overlap profile in a cavity of radius R. (Left) Finding the overlap profile q(r)
is equivalent to solving Newton’s equation for a 1d particle in the potential −V (q), starting at
q = qEA (red point). (Right) One possible trajectory goes from qEA to 0, with a sharp interface in
between.

finite in the thermodynamic limit. We prove below that the mean field picture of an exponential
number of states breaks down in finite dimensions.

Nucleation destroys metastable states – Let us assume that there exists an exponential
number of metastable states. We pick a configuration which belongs to a metastable state, say α,
and follow its dynamics using a stochastic rule. Since α is a metastable state, there is at least one
other state, β, with a lower free energy fβ < fα. The nucleation of a bubble of radius R of the
state β in α can occur with finite probability. Its free energy cost is the sum of a free energy gain,
and the cost of creating an interface (Υ is the surface tension): ∆F = −(fα − fβ)Rd + ΥRd−1.
If R > Υ/(fα − fβ), the state β will invade the system. In the thermodynamic limit, α will
disappear within a finite time: it is not a thermodynamic state. Metastable states are destroyed
by finite-dimensional fluctuations.

The definition of metastable states is blurred in finite dimensions. So is the configurational
entropy, which counts the number of ‘states’. There can be no clear definition of the configurational
entropy in finite dimensions. In Chapter 5, we review several definitions for the configurational
entropy, along with numerical techniques to measure it, and discuss their relative merits [175].

A lengthscale for amorphous order – As a first step to go beyond mean field theory, let us
consider a spatially-fluctuating order parameter [170]. The order parameter for the glass transition
is the overlap q(C,Ceq) between an equilibrium configuration C and a reference one Ceq. We consider
an inhomogeneous order parameter, q(C,Ceq, ~x). Where ~x denotes a point in Nd-dimensional space.

The partition function can be expressed in terms of the order parameter

Z =
∫
Dq(~x)e−βF [q(~x)], (1.12)

where the free energy functional is

F [q(~x)] = − 1
β

log
{∑

C
e−βH(C)δ [q(C,Ceq, ~x)− q(~x)]

}
. (1.13)
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In mean field, F [q(~x)] is the Franz-Parisi potential V (q) shown in Fig. 1.10 (its shape is similar by
replacing 1/(1 + Dr) with q). As a first approximation, we assume that

F [q(~x)] =
∫

ddx
{
c

2(∇q)2 + V (q)
}
. (1.14)

While V (q) is a priori different from position to position, we neglect these fluctuations. As a
consequence, this construction will yield results with trivial mean-field exponents.

We force the configuration C to be equal to Ceq outside a spherical cavity of radius R� 1, and
free inside the cavity [176]. We study whether C remains close to Ceq inside the cavity or not. The
boundary condition imposed is q(R) = qEA, where qEA is the value of the overlap in the secondary
minimum of the FP potential. If there is long-range amorphous order, one should find q(~x) = qEA
inside the cavity. The most probable profile q(~x) is found by minimizing F [q(~x)] in the presence of
the boundary condition. Assuming spherical symmetry, R � 1, r � 1 (the computation is easier
and remains general), the overlap profile in the radial direction q(r) verifies

c∂2
r q(r) = −V ′(q). (1.15)

This is the Newton equation for a 1d particle evolving in the inverted potential −V (q), with q ↔ x,
r ↔ t, c↔ m. See Fig. 1.13 (left) for a schematic representation of the problem. The total energy
of the system is conserved. Starting from the position q = qEA, what is the ‘dynamics’ (or spatial
dependence) of q? The solution depends on the initial kinetic energy c/2 ∂2

r q − V (q). There are
two relevant ‘trajectories’.

The first one is a constant profile q(r) = qEA. In this case, Fconst = 4/3πR3V (qEA). The other
solution consists in starting from qEA with kinetic energy V (qEA) = TSc, in order to reach the
point q = 0 with zero kinetic energy. The solution for the profile q(r) is shown in Fig. 1.13 (left).
Its free energy is the sum of three parts. In region ¬, F1 = 0. The region , where q varies from
0 to qEA, adds a contributions F2 = Υ4πRd−1. This is an interfacial term. The interface tension
Υ is a function of the function V (q). In ®, q(r) = qEA and F3 = V (qEA). In the limit T ∼ TK ,
V (qEA) ∼ 0 and the free energy of the fluctuating profile reduces to Ffluct = Υ4πRd−1.

Depending on the radius R of the cavity, the overlap profile will be flat, equal to qEA, or non-
homogeneous. For large R, q(r = 0) = 0: the amorphous boundary condition is not felt at the
center of the cavity. For small R, the effect of amorphous boundary condition propagates to the
center, where q = qEA. The crossover defines the ‘point-to-set’ length

ξPTS ∼
Υ

V (qEA) ∼
Υ
TSc

∼
T→TK

Υ
T − TK

(1.16)

which quantifies the scale on which amorphous order propagates. ξPTS can also be interpreted as
the lengthscale on which metastable states can be defined The configurational entropy vanishes
near TK as Sc ∼ (T − TK). The amorphous lengthscale ξPTS diverges at the thermodynamic glass
transition TK . The point-to-set length can be computed in numerical simulations [177–180], as
described in Chapter 5.

In disordered systems, the interfacial free energy cost is written as ΥRθ, where Υ is a generalized
surface tension, and a non-trivial exponent θ ≤ d − 1 is introduced to account for fluctuations of
the interface [181]. Physically, the interface can take advantage of the weakest spots by moving in
transverse directions. The relation between the point-to-set length and the configurational entropy
becomes

ξPTS ∼
1

S
1/(d−θ)
c

(1.17)
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There are several predictions for the value of θ. Kirkpatrick and coworkers argue for the value
θ = d/2 [173]. The value θ = d− 1, as obtained above, was put forward by Franz [170]. Note that
in d = 2, both theoretical predictions give the same exponent θ = 1. The difference between the
two predictions increases with d. In Chapter 5 we present new numerical simulations aiming at the
measurement of these non-trivial exponents in realistic model glass-formers.

Connecting statics and dynamics – A static description of glass formation should explain
the dynamical slowdown of supercooled liquids approaching the glass transition. The point-to-set
length provides an upper bound for the relaxation time τα < ebξ

d
PTS/T (with b constant) [182, 183].

A diverging ξPTS at TK also implies a diverging relaxation time.
At low temperature, the relaxation of the supercooled liquid is expected to be thermally acti-

vated τ ∼ τ0 exp [∆E/T ] with an energy barrier growing with the point-to-set length ∆E ∼ ∆0ξ
ψ,

where we introduce a dynamical exponent ψ ≤ d. τ0 is a microscopic timescale. By replacing the
point-to-set length with configurational entropy Eq. 1.17 in the relaxation time, one finds

log(τ/τ0) ∼ 1
TSαc

, with α = ψ

d− θ
. (1.18)

The consequence of a mean-field like entropy crisis is a super-Arrhenius increase of the relaxation
time, which diverges at the Kauzmann transition. Depending on the relative values of the two
independent exponents ψ and θ, this expression may or may not be equivalent to the Adam-Gibbs
relation (α = 1), which was derived as a first attempt to connect the statics and dynamics of
glasses [184]. The Adam-Gibbs relation has been tested in many experimental and numerical
setups, and has been often synonymous with testing the thermodynamic nature of glass forma-
tion [175]. The generalized Adam Gibbs relation should also be confronted with experimental
and numerical results. Measuring the non-trivial exponents θ and ψ in numerical simulations of
finite-dimensional glass formers is crucial to guide and test theoretical predictions beyond mean
field [154]. In Chapter 5, we provide a critical numerical test of the standard and generalized Adam
Gibbs relation, as well as estimates for ψ and θ.

1.4.2 The Gardner transition in finite dimensions

The mean-field Gardner transition is a critical phenomenon associated with the existence of
soft, long-range excitations. A full understanding of its criticality in finite dimensions should be
accessible from a renormalization group (RG) approach.

While the Gardner transition was discovered recently in d → ∞ structural glasses, its mean
field description is similar to the de Almeida-Thouless (dAT) transition for Ising spin-glasses in
an external magnetic field [186]. This transition, discovered in 1978, marks the transition from a
paramagnetic phase at high temperature to a full RSB phase at low temperature. The model is
described by the Hamiltonian

H =
∑

1≤i1<...≤N
Ji1,...,ipSi1Si2 ...Sip − h

∑
i

Si, (1.19)

where the Si are Ising spins, and the Ji1,...,ip are independent random gaussian variables. Since
both transitions display the same kind of order parameter and instability, they share the same field
theory of critical fluctuations. When the Gardner transition was discovered in d→∞ hard spheres
in 2013, the problem of its finite-d features already benefited from forty years of research. Over the
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Figure 1.14 | RG flow in the space of couplings for the dAT and Gardner universality
class in d = 3 for (a) a one-loop order RG expansion and (b) a two-loop expansion. The Gaussian
FP (red point) is unstable in both cases. In the two-loop expansion, a stable non-perturbative FP
(blue point) appears. Its basin of attraction is delimited by the two thick black lines. From [185].

last few years, the activity on the Gardner transition triggered several new RG approaches to the
problem.

In their recent work, Moore and coworkers [187] confirmed and detailed the original result
of Bray and Roberts, obtained in 1980 [188]. They explored the existence of a Gaussian fixed
point (FP) associated with mean-field theory. They showed that its bassin of attraction shrinks
to zero when the dimension approaches from above the upper critical dimension du = 6. For
many decades, the conclusion was that a Gardner/dAT critical transition could not exist in d < 6.
The possibility of a non-perturbative FP was not explored until recently. Several approaches were
developed: non-perturbative renormalization group [185], high-order resummations [189], and real
space RG [190–192]. They all predict that a non-perturbative FP can exist in relatively low d < 6.

Yet, the presence of a non-perturbative FP in finite dimensions does not ensure the existence
of a critical transition in a given physical system. Its existence depends on whether the initial
condition of the RG flow (encoded in the microscopic details of the system) lies within the basin
of attraction of the FP. For example, in d = 3, the transition could be present for some glass-
forming models, but not in others, as shown in Fig. 1.14 (right). Since no mapping exists between
a microscopic model and the RG flow parameters, probing numerically the relationship between
time and length scales in a model is a way to ascertain to which basin of attraction, or scenario, it
belongs to [193]. This is the aim of Chapter 3.

The lower critical dimension of the transition, if present, is not known. One can elaborate on
spin glasses without a field, for which a consensus dl ' 2.5 was found [190]. Assuming that adding
an external field weakens the transition, the lower critical dimension of the dAT/Gardner transition
should be equal or higher than 2.5. This assumption is not fully motivated, but suggests that the
transition may be observed in 3d structural glass-formers. In short, a Gardner transition could take
place in three dimensions and be related to a non-perturbative FP. Further investigations using
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more refined RG treatments, combined with new numerical simulations, are necessary to solve this
long and intricate problem.

Our works are motivated by a recent study of 3d hard sphere glasses, in which growing time
scales and lengthscales reminiscent of a Gardner transition were found [193]. This was a direct
confirmation that the RG predictions were correct and that a transition could be found in three
dimensional glasses. Employing relevant observables, first defined in Ref. [194], they detected ex-
tremely slow, cooperative and heterogeneous vibrational dynamics within the glass at high packing
fraction.

The Gardner transition had been discussed only for the hard sphere model. It is a good model
for colloidal or granular glasses, but its relevance to describe atomic or molecular glasses can be
questioned. The works presented in Chapter 3 aim at a numerical exploration of the Gardner phase
in several glass-forming models which describe amorphous solids at large: atomic and molecular
glasses, soft colloidal glasses, emulsions, granular glasses. We are able to predict in which type
of materials and physical conditions Gardner physics is relevant. In the last article of Chapter 3
‘Rejuvenation and memory effects in a structural glass’, we use this knowledge to explore the
nonequilibrium dynamics of structural glasses, which is expected to take place in a ‘hierarchical’
landscape, and exhibit novel features. We are successful in observing rejuvenation and memory
effects in a realistic model for structural glasses in 3d.

Analyzing the nature of the Gardner ‘transition’ observed in finite dimensional numerical sim-
ulations is intricate. In particular, it is not known whether a critical transition takes place in 3d
hard spheres. The same debate has been going on for several decades in the spin-glass community
about the dAT transition. Here, we take a pragmatic view on this problem and explore whether
new Gardner physics emerges in real glasses. We confirm in Chapter 3 that glasses exhibit a rich
new phenomenology.

1.4.3 Numerical simulations of glass-forming models

Computer simulations can be defined as the entire process of choosing a model, computing
observables, and analyzing the resulting data [132, 195]. They have become essential to the study
of supercooled liquids and glasses [196, 197]. All ‘ingredients’ in a simulation are known. The
influence of each parameter can be analyzed independently in order to identify the relevant ones. In
the works presented below, we take advantage of the great flexibility offered by computer simulations
to investigate the nature of supercooled liquids and glasses.

In the present context, a model is a set of N classical particles with some properties (size,
mass, or even shape), which interact via a pairwise interaction potential. The aim is to find the
simplest model which reproduces qualitatively some experimental features. For example, computer
studies of model glass-formers should reproduce the glassy slowdown in Fig. 1.2. Because glass
formation shares universal features amongst a variety of materials, one can focus on the simplest
numerical models, which are efficiently simulated and exhibit the desired phenomenology. They do
not, for example, capture the complexity of molecular glass-formers. In the context of the Gardner
transition, we study various simple models to understand in which conditions the transition is
found.

Numerical algorithms – Once a model for the particles is set up, one should choose a dynamical
rule to follow its evolution. Two important schemes are used in this context: molecular dynamics
(MD) [132], and Monte Carlo (MC) simulations [195].
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The physical dynamics of a system may be studied with MD simulations. They consist in solving
numerically the equations of motion of the N interacting particles. The differential equations are
discretized in time and solved numerically step by step. Given an initial position and velocity, the
trajectories of particles are computed. By construction, the trajectories take place in the NV E
ensemble. Additional fluctuating variables that mimic the effect of an external bath may be added
to simulate the NV T or NPT ensembles [198]. During the preparation of a sample, before any
measurement, cruder techniques such as velocity rescaling or a Berendsen thermostat may be used.
They both rescale instantaneously and smoothly, respectively, the velocities to attain the desired
kinetic temperature.

Another important scheme is the Monte Carlo method. It is a stochastic algorithm built to
sample efficiently configurational space. The particles’ trajectories are a priori not physical, but the
configurations are sampled with a probability proportional to the Boltzmann distribution (canonical
distribution). The evolution takes place in a series of ‘trial move’, and acceptance or rejection of it.
In a standard move, a particle is chosen at random, and displaced in a random direction. The most
common algorithm is the Metropolis MC, which uses the ratio of the Boltzmann weights of the old
and new configurations to accept or reject the move [199]. In the limit of small displacements, the
method is equivalent to Brownian dynamics. The method was however not developed to simulate
physical trajectories for particles.

A number of usual tricks are employed to simulate the bulk behavior of a system. Computer
simulations typically study system sizes N ∼ 1000 − 10000, orders of magnitude smaller than in
experiments. To remove strong boundary effects, periodic boundary conditions are systematically
implemented. The system is an ‘infinite’, repetition of the original cell of size Ld. The counterpart
is that lengthscales larger than L cannot be probed [200]. The idea behind finite size scaling, is to
use this ‘limitation’ as a way to extract values for critical exponents.

Complex observables – Experiments have always played a crucial role in understanding glass
formation. However, there is a gap between the observables identified as relevant by mean field
theories, and what can be technically achieved in experiments.

In mean field theory, the glass and Gardner transition are revealed by the similarity between
equilibrium configurations for the former, and identical copies of a configuration, for the latter. This
is obviously impossible in experiments, but can be realized with computers. The exact knowledge
of the positions of the particles enables the computation of almost any observable [5]. Elaborate
setups, such as the cavity construction presented in Sec. 1.4.1 can be implemented to measure the
point-to-set lengthscale in realistic models [177–180].

In the mean field theory of glasses, we discussed their free energy landscape (FEL), which
acquires an exponential number of minima at Td, and may becomes fractal at a Gardner transition.
It is not possible to ‘measure’ the FEL in simulations. Yet, one has access to the potential energy
landscape (PEL) of a system [201]. It corresponds to the 3N -dimensional potential energy surface,
composed of many minima separated by energy barriers. Contrary to the FEL, the PEL does not
depend on temperature. What is temperature dependent is the way the system explores it. In the
PEL framework, an inherent structure (IS) is defined as the minimum of the basin of attraction
of many equilibrium configurations. Starting from an equilibrium configuration, one minimizes its
potential energy (e.g. using the conjugate gradient method), to find its inherent structure [96].
One can compute its potential energy eIS , and its properties, for example vibrational modes.
One can also study the barriers separating two nearby IS. Techniques such as the Nudged Elastic
Band (NEB) provide the mean energy path between two minima, and give an estimate for the
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To quantify the performance of the swap algorithm, we
estimate the range of Tg values for each model studied in
this section and use these fitted values to construct an
Angell plot, representing the logarithm of the relaxation
times as a function of the scaled inverse temperature, Tg=T
[see Fig. 10(b)]. In practice, we use the value given by the
parabolic fit, which falls in the middle of the fitted range,
and show the corresponding uncertainty, estimated from
VFT and Arrhenius fits, with the vertical dashed lines in
Fig. 10(b). StandardMonte Carlo simulations typically stop

near T=Tg ≈ 1.3–1.5, in the vicinity of the mode-coupling
crossover. For most models, the swap algorithm performs
so well that the thermalization time at Tg remains modest,
τα=τ0 ≈ 102. This corresponds to a thermalization speedup
at Tg of 10 orders of magnitude. As mentioned before,
models with soft potentials and additive interactions are
prone to structural instability, and some of them are not
stable down to T ¼ Tg. However, for several models, we
find that thermalization and fluid metastability can be
maintained below Tg.
The discovery of such glass-forming models associated

with an efficient algorithm to thermalize them represents
the main achievement of our work.

V. MICROSCOPIC INSIGHTS INTO
THE SWAP DYNAMICS

A. Dynamics of particle diameters

The previous sections demonstrated that swap
Monte Carlo moves can enhance thermalization by several
orders of magnitude, the effect being most spectacular in
continuously polydisperse systems, for which swap moves
have a very high acceptance rate. In this section, we shed
some light on the microscopic mechanisms that are
responsible for this acceleration. We carry out this analysis
for a nonadditive polydisperse model with ϵ ¼ 0.2 intro-
duced in Sec. IV C.
Previously, it has been suggested that the swap moves

increase the particle mobility because they allow the
particles to escape the cage formed by their neighbors
[37,50] after a nonlocal swap move. This view seems
correct when one considers that particles exchange their
positions because a caged particle indeed appears to jump
instantaneously to a novel position. However, the swapped
particle is actually replaced by another particle which then
occupies the caged position itself, and it jumps to a position
where another particle is caged, too. Therefore, it is not
clear that the cage is affected at all after a swap move,
and this simple explanation cannot explain the speedup of
the dynamics.
This conclusion is more easily grasped when one

considers, as we do, that particles simply exchange their
diameters during a swap move, without changing position.
In that case, the diameter of each caged particle slowly
fluctuates in time. For continuous polydisperse systems,
these time fluctuations take the form of a random walk in
diameter space. Therefore, we conclude that it is rather the
slow wandering of the diameter of each particle that allows
the system to relax more efficiently towards equilibrium. A
naive physical explanation would be that a caged particle
with a large diameter could start diffusing by shrinking its
radius, thus being able to squeeze and escape through a
small channel. We now demonstrate that the physics is
actually more complicated and more collective than this
naive image.
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FIG. 10. (a) Relaxation times for the nonadditive model with
n ¼ 12 and ϵ ¼ 0.2 for standard and swap Monte Carlo dynam-
ics. The standard dynamics is fitted with the VFT, parabolic, and
Arrhenius laws, as shown with lines, which are used to estimate
the location of the experimental glass temperature Tg, as shown
with vertical dashed lines. For this system, the swap dynamics is
able to provide stable and thermalized configurations at temper-
atures below Tg. (b) Relaxation times obtained from standard
(open symbols) and swap (filled symbols) dynamics for various
size polydisperse models of various softness (n) and nonaddi-
tivity (ϵ) are shown in an Arrhenius form with rescaled temper-
ature Tg=T, where Tg is estimated as in (a). For all models, the
thermalization speedup near Tg is of about 10 orders of
magnitude, some models being structurally stable down to
temperatures below Tg.
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Figure 1.15 | The swap algorithm breaks the glass ceiling. Relaxation time of a continuously
polydisperse model measured with the standard MC algorithm (open points), fitted to three com-
mon functions (lines). The experimental glass transition is defined from each fit as τα/τ0 = 1012

(vertical dashed lines). The SWAP algorithm (squares) achieves thermalization at temperatures
well below the extrapolated glass transition. From Ref. [204].

corresponding energy barrier [202]. This method will be employed in Chapter 3 to explore the
complexity of the PEL of stable computer glasses.

Dynamical arrest in simulations – The two main numerical methods present advantages over
experiments, presented above. They however suffer from a serious timescale limitation. In an ex-
perimental liquid, the onset of glassy dynamics (departure from Arrhenius behavior) occurs when
τα ∼ 10−10 s, and the experimental glass transition is reached for τα ∼ 100 s. Experiments can
follow glassy slowdown at equilibrium over a time window of 12 orders of magnitude. By compari-
son, the numerical methods described above, run with the best hardware available (graphic cards
or large-scale parallelization) can access around 4−5 orders of magnitude of glassy slowdown [203].
This is more than seven orders of magnitude smaller than in experiments.

Computer supercooled liquids fall out of equilibrium at temperatures much higher than the
experimental glass transition. Glasses created by standard annealing procedure are much less
stable than their experimental counterparts (kinetic stability, but also mechanic stability). This is
a serious limitation to model supercooled liquids approaching the glass transition, and the properties
of glasses. Below, we describe a novel simulation method which allow to study supercooled liquids
down to temperatures below the extrapolated experimental glass transition.

1.4.4 Computer supercooled liquids below the experimental glass transition

The search for algorithms that speed up the thermalization of supercooled liquids led to the
development of new numerical schemes. Methods such as the Event-Chain Monte Carlo algo-
rithm [205, 206] and Parallel Tempering [207] were introduced. Despite years of research, the
best dynamical gain obtained with these techniques is at most a couple of orders of magnitude.
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This is unsatisfactory considering that computer simulations lag seven orders of magnitude behind
experiments.

The SWAP algorithm [208–210] was recently pushed to its maximal efficiency, allowing to gen-
erate supercooled liquids configurations below the experimental glass transition [204, 211]. The
standard MC displacement moves are complemented with particle-swap moves, in which two par-
ticles are randomly selected and their sizes are exchanged. The moves are accepted or rejected
following the Metropolis criterion, ensuring an equilibrium sampling of the canonical distribu-
tion [199]. The algorithm is designed to simulate poly-disperse systems (at least bidisperse), which
englobe virtually all glass-forming models. The algorithm is so efficient at sampling configura-
tional space that the crystal of bidisperse systems is found very easily [204, 212]. The development
of this method required the design of new glass-forming models, more robust against crystalliza-
tion. In this effort, non-additive continuously polydisperse systems were identified as very good
glass-formers [204, 211].

The small difference between the standard and SWAP MC methods contrasts with their ther-
malization efficiency. In Fig. 1.15, we show the relaxation time of a continuously polydisperse
system measured with standard and SWAP algorithms. While the standard method fails to reach
equilibrium at temperatures below T = 0.1 (about two weeks of CPU time), the SWAP algorithm
achieves thermalization down to T ' 0.055. This value lies below several estimates for the exper-
imental glass transition Tg ∈ [0.063− 0.083], obtained by fitting the standard dynamics to known
fitting functions and identifying the temperature at which τα = 1015 (12 orders of magnitude of
glassy slowdown).

The development of the SWAP algorithm, combined to the design of new computer models
suddenly closed the gap with experimental studies. Temperatures even below the experimental
glass transition are now numerically accessible in equilibrium conditions. The SWAP algorithm
places computer simulations at the centre of supercooled liquid and glass studies.

Deeply equilibrated configurations are crucial to test correctly mean field predictions. The
theory addresses supercooled liquids in the regime TK < T < Td. However, standard algorithms
can access temperatures T > Td at equilibrium, where Td is a ‘Mode Coupling’ crossover tem-
perature [117] (Td ' 0.1 in Fig. 1.15). In particular, the concept of metastable state applies far
better to supercooled liquids thermalized at T < Td. At these temperatures, numerical estimates
for the configurational entropy become more meaningful, as detailed in Chapter 5. The numerical
detection of the Gardner transition, presented in Chapter 3, necessitates well-thermalized samples,
in which diffusion is completely arrested. The SWAP algorithm allows to access the relevant tem-
perature regime, and test accurately the theoretical predictions detailed in Sec. 1.3.

In Chapter 4, we explore an alternative to SWAP MC, in which particle-swap MC is combined
with standard molecular dynamics [213]. This Hybrid algorithm is implemented in the LAMMPS
simulation package. We optimize and compare the efficiency of the Hybrid method with the SWAP
MC. The Hybrid algorithm is employed to generate most of the stable configurations used in the
numerical studies presented below.
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1.5 Structure of the manuscript
This work addresses the two main research directions in glassy physics. The first one aims at

revealing the fundamental mechanism at the origin of the dynamical slowdown of supercooled liq-
uids upon approaching the glass transition temperature Tg. The other research direction aims at
understanding the physical properties of glasses from their formation around Tg down to cryo-
genic temperatures, around 1 Kelvin. Compared to the first direction, the second one is much
less developed theoretically and is known for its multitude of phenomenological approaches. This
unsatisfactory situation is due to the fact that describing out-of-equilibrium and disordered solids
is a theoretical challenge.

The works presented in Chapters 2 to 6 addresses both research directions, covering the entire
temperature range, from the glass transition to very low temperatures. The manuscript is organized
as follows:

• Chapters 2 and 3 address the nature and properties of glassy solids below the glass transition
temperature. Chapter 2 presents a mean field study of the glass free energy landscape.
Chapter 3 presents numerical studies of the energy landscape of three dimensional glasses.

• Chapter 4 presents the computational method employed in all the computer studies presented
in this manuscript. This method allows to tune the stability of in silico glasses over an un-
precedented range, paving the way to the novel computer studies presented in this manuscript
(Chapters 3 and 5).

• Chapter 5 addresses the fundamental nature of the equilibrium glass transition. It explores
the thermodynamic theory of glass formation, in which the dynamical slowdown of liquids is
driven by a reduction of the number of available amorphous configurations, quantified by the
configurational entropy.
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Chapter 2

Phase diagram of glasses in large
dimensions

In this Chapter, we derive and solve the thermodynamics of realistic model glass-formers, in the
limit where the number of spatial dimensions is large, d → ∞. We describe the state following
construction and obtain the main formulae describing the thermodynamics restricted to a glass.
We then derive the phase diagram of realistic model glass formers. While it was previously ac-
cepted that glasses are stable from formation down to very low temperature, I identify and locate
two glassy phases. One is the stable, common, glassy phase, and the other is a marginally stable
phase, also called Gardner phase. The latter phase, whose mathematical description is extremely
complex, could explain a range of observations in amorphous solids, which remain unaccounted by
microscopic theory.

In Sec. 2.1, we provide an analytical derivation of the glass thermodynamics. The deriva-
tion is valid for a large class of interaction potentials and is simpler than previously published
ones [107, 121–123, 151], which were restricted to the hard sphere model. The glass free energy
is computed within the state-following formalism, using the replica method. We show that the
problem is equivalent to computing the free energy of a molecular liquid. The atoms forming a
molecule correspond to replicas of the original system. Assuming that the atoms are equivalent
(replica symmetric ansatz), and that the shape of the molecule is Gaussian, we compute the glass
free energy. In the limit d→∞, the approximations made in the derivation become exact. We ob-
tain an exact expression for the glass free energy in the limit of large dimensions. Thermodynamic
observables, such as the glass potential energy, are computed from the free energy. The limit of sta-
bility of the replica symmetric solution is analyzed to detect replica symmetry breaking transitions.

The equilibrium and state-following phase diagrams obtained for realistic glass-formers in
large dimensions are presented in the article ‘Marginally stable phases in mean-field structural
glasses’ [214]. We study the thermodynamics of Weeks-Chandler-Andersen glasses, as well as
glasses interacting via a harmonic repulsion, and an inverse power-law. These models allow to
cover physical regimes relevant to granular matter, foams, emulsions, hard and soft colloids, and
molecular glasses. We investigate how glass preparation and physical conditions influence the loca-
tion and extent of the Gardner phase. We follow the evolution of glasses prepared at various packing
fractions and temperatures, corresponding to different physical regimes and stabilities, respectively.
Our main result is that a Gardner phase is found in glasses prepared in all physical conditions. A

41



Phase diagram of glasses in large dimensions

Gardner phase is always present around the jamming transition of glasses, and takes the form of
a ‘dome’ in temperature and packing fraction. A Gardner phase is also found in the limit of large
compressions. The extent of the Gardner phase decreases with increasing glass stability.

This work presents in a unified framework the liquid phase, the simple and marginal glass
phases, as well as the jamming transition. We identify the location of the two distinct glassy
phases, and therefore complete the phase diagram for amorphous solids presented in Fig. 1.8. The
mean field results provide a solid starting point for the numerical investigation of the glass phase
in 3d models, presented in Chapter 3.
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2.1 Thermodynamics of liquids and glasses in the large-dimensional
limit

The idea of using a thermodynamic formalism to describe dynamical arrest in liquids dates back
to the work of Kirkpatrick, Thirumalai, and Wolynes [143, 215–217], and is at the root of the
Random First Order Transition approach to the glass transition [1, 2, 173]. The state following
construction, introduced in Sec. 1.3.4, is based on this idea [148, 155]. The method was adapted to
particles in d→∞ in Refs. [151, 218], and is based on the following idea. In equilibrium statistical
physics, the long time limit of dynamical observables can be computed, in the thermodynamic limit,
using a probabilistic approach that relies on the use of appropriate statistical ensembles [219, 220].
For example, in equilibrium, entropy is maximized under the constraint of constant total energy,
which leads to the Gibbs-Boltzmann distribution of the canonical ensemble [220]. By analogy, the
state following construction aims at describing metastable glass states by a probability distribution
that maximises the entropy under a minimal set of constraints.

2.1.1 Definition of the model

We consider a system of N identical atoms, modeled as point particles, enclosed in a volume
V ⊂ Rd, with number density ρ = N/V . A configuration, noted X, is specified by a set of d-
dimensional vectors X = {xi}i=1,...,N , each xi having components xiµ for µ = 1, . . . , d. We consider
pairwise interactions between the atoms, which can only depend on their distance. The total
interaction energy is

V (X) =
∑
i<j

v(|xi − yi|). (2.1)

The derivation is valid for a large class of interaction potentials v(r). In the article ‘Marginally
stable phases in mean-field structural glasses’, we show the results for three specific pair potentials.
The state of the system is a priori controlled by two parameters: its temperature T/ε, and packing
fraction ϕ = ρVdσ

d/2d, where σ is the interaction range, ε the interaction energy, and Vd the volume
of a d-dimensional ball of unit radius. In practice, we tune the interaction range σ to induce a
change of the packing fraction ϕ, at constant ρ.

2.1.2 The glass free energy

As introduced in Sec. 1.3.4, we are interested in computing the free energy of a typical glass state
Y prepared at the state point (ϕg, Tg), and followed to (ϕ, T ), for a given choice of Dr,

fg(ϕ, T |ϕg, Tg,Dr) = − T
N

∫ dY
Z [ϕg, βg]

e−βgV [Y ] logZ [ϕ, β|Y ,Dr] , (2.2)

where the Z [ϕg, βg] =
∫

dY e−βgV [Y ], is the standard configurational integral at (ϕg, βg), and
Z [ϕ, β|Y ,Dr] is a restricted configurational integral defined by

Z [ϕ, β|Y ,Dr] =
∫

dXe−βV [X]δ(D(X,Y )− Dr). (2.3)

The presence of the disordered space-dependent external potential, Y , in Eq. 2.2 prevents the
use of a virial expansion. This problem is solved by the replica method. Applying Eq. 1.11 to the
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glass free energy Eq. 2.2, we get

fg(ϕ, T |ϕg, Tg,Dr) = − lim
s→0

T

N
∂s

∫ dY
Z [ϕg, βg]

e−βgV [Y ]Z [ϕ, β|Y ,Dr]s , (2.4)

which allows to continue the computation if s is an integer. In this case, one can introduce s + 1
replicas of the original system, labelled by a = 1, . . . , s + 1, with X1 = Y , β1 = βg, ϕ1 = ϕg,
βa≥2 = β, and ϕa≥2 = ϕ. The glass free energy can be written as

fg(ϕ, T |ϕg, Tg,Dr) = − T
N

lim
s→0

1
Z [ϕg, βg]

∂sZs+1 [ϕa, βa,Dr] , (2.5)

with

Zs+1 [ϕa, βa,Dr] =
∫ (s+1∏

a=1

∫
dXae−βaV [Xa]

)(
s+1∏
a=2

∫
dXaδ(D(Xa, X1)− Dr)

)
. (2.6)

The mean-squared displacement constraint imposes that the s+1 atoms xai are close to one another,
and thus form a ‘molecule’. The replicated system is therefore a ‘molecular liquid’, and Zs+1 is the
configurational integral of this molecular liquid.

The replica method allows to rephrase the problem in order to restore translational and rota-
tional invariance, and apply standard statistical mechanics treatments. The configurational integral
of the molecular liquid is indeed invariant by global translation xai → xai + X, or global rotation.
Assuming that an analytical continuation to real s can be performed, the glass free energy Eq. 2.2
can be computed using the replicated free energy, fs+1(ϕa, βa,Dr) = −β logZs+1 [ϕa, βa,Dr] /N .
An expansion of the replicated free energy in powers of s, indeed gives

fg(ϕ, T |ϕg, Tg,Dr) = lim
s→0

∂sfs+1(ϕa, βa,Dr). (2.7)

2.1.3 The replicated free energy

We now consider a molecular liquid, made by N molecules labelled xi = {x1
i , . . . ,x

s+1
i }, where

xai is the position of atom a = 1, . . . , s + 1 in the molecule i = 1, . . . , N . A molecular liquid
configuration is noted X = {xi}i=1,...,N . We define the local molecular density ρ(x), normalized
by
∫

dxρ(x) = N . In the molecule, the atom 1 corresponds to the ‘master’ replica at state point
(ϕg, Tg), while the a = 2, . . . , s + 1 others atomes correspond to ‘slave’ replicas which evolve at
(ϕ, T ).

We consider the virial expansion of the molecular liquid to second order, which becomes exact
in the limit d→∞ [121]

− βN fs+1 =
∫

dx ρ(x) (1− log ρ(x)) + 1
2

∫
dxdy ρ(x)ρ(y)f(x− y). (2.8)

The free energy is the sum of an ideal (molecular) gas part (first term in Eq. 2.8), and interaction
part (second term). The molecular Mayer function f(x− y) is defined by

f(x− y) = e−βgv(x1−y1)
s+1∏
a=2

e−βv(xa−ya) − 1 . (2.9)

The translational invariance of the molecular liquid implies that the probability of finding a
molecule in x = {x1, . . . ,xs+1} is the same as finding the molecule in a translated configuration
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x − X ≡ {x1 − X, . . . ,xs+1 − X}, i.e. ρ(x) = ρ(x − X). By convenience, we make a change of
variables taking atom 1 as reference (X = x1), defining ua = xa − x1, for a = 1, . . . , s + 1. In
the new variables, dx = dXdu, with du =

∏s+1
a=2 dua. The displacements of atoms in a molecule,

relative to the first atom, are u = {0,u2, . . . ,us+1}. We define Π(u) = ρ(u)/ρ the normalized
probability distribution of atom displacements

∫
Π(u)du = 1. With this change of variables, the

ideal gas term in the replicated free energy becomes

− βfids+1 = 1− log ρ−
∫

du Π(u) log Π(u), (2.10)

and the interaction term

− βfints+1 = ρ

2

∫
dRdudv Π(u)Π(v)f(u− v + R) , (2.11)

where R = x1 − y1.
Rotational invariance of the molecular liquid implies that the probability distribution function

of displacements Π(u) is invariant under a global rotation of all vectors ua, and is therefore only
function of the scalar products ua ·ub. The derivation is simpler if one considers a Gaussian ansatz
for the molecular density ρ(u). We use this assumption, which is a priori unjustified, since it
becomes exact in the limit d → ∞ [121, 123]. We introduce a s × s matrix Â of scalar products,
with Aab = 〈uaµubµ〉, where 〈·〉 is the average over the probability distribution Π(u). The probability
distribution Π(u) is a d-dimensional Gaussian, parametrized by Â

ΠÂ(u) = 1[
(2π)s det Â

]d/2 exp

−1
2

d∑
µ=1

s+1∑
a,b=2

uaµA
−1
ab u

b
µ

 . (2.12)

The gaussian parametrization allows to write the ideal gas term in the free energy as

− βfids+1 = 1− log ρ+ d

2s[1 + log(2π)] + d

2 log det Â. (2.13)

The variables u and v in the interaction term (Eq. 2.11) are independently and identically dis-
tributed according to the Gaussian distribution ΠÂ(u). The difference u−v is thus Gaussian, with
covariance 2Â. Making the change of variables w = u− v,

− βf ints+1 = ρ

2

∫
dRdwΠ2Â(w)f(w + R) (2.14)

It is more convenient to use the mean-squared displacement (MSD) matrix D̂, which encodes
the MSDs between atoms in a molecule. The matrix D̂ has a simpler physical interpretation,
and is equivalent to the matrix Â. The atoms a = 2, . . . , s + 1 are fixed at a distance Dr from
atom 1, therefore 〈(uaµ)2〉 = Dr. The MSD between replicas a ≥ 2 is given by the MSD matrix,
〈(uaµ − ubµ)2〉 = Dab (for a 6= b, a, b ≥ 2), with Daa = 0. The matrix Â can be written in terms of D̂

Aab = Dr δab +
(

Dr −
Dab

2

)
(1− δab) (2.15)
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2.1.4 The replica symmetric glass free energy

Once optimized over D̂, the sum of Eqs. 2.10 and 2.11 yields the entropy of the replicated system.
If its analytic continuation to real s can be performed, the linear order in s gives the glass free
energy fg. To perform this computation, we have to make an ansatz for the matrix D̂, which
encodes the structure of the molecular liquid. In the simplest replica symmetric (RS) assumption,
all replicas a ≥ 2 are equivalent, thus Dab = D for a, b ≥ 2, a 6= b. The matrix Â can be written as

Â =
(

Dr −
D
2

)
1̂s + D

2 Is, det Â =
[(D

2 + s

(
Dr −

D
2

))(D
2

)s−1]
(2.16)

where 1̂s is a s × s matrix with elements equal to 1, and Is is the s × s identity matrix. The
eigenvalues of Â are {D /2 + s(Dr −D /2)} and {D /2} with multiplicity 1 and (s− 1), respectively.
By plugging the determinant Eq. 2.16 in the ideal gas part of the replicated free energy Eq. 2.13,
then taking the linear order in s, we obtain the ideal gas part of the replica-symmetric glass free
energy

− βf idg = d

2

{
1 + log(πD) + 2 Dr −D

D

}
(2.17)

Regarding the interaction term, the replica symmetric ansatz and the Gaussian approximation
allow to write the local molecular density as

ρ(x) = ρ

∫
dXγA1(x1 −X)

s+1∏
a=2

γA2(xa −X), (2.18)

where

γA(x) = e
−
∑

µ
xµ2
2A

(2πA)d/2
(2.19)

is a d-dimensional centered Gaussian of variance A. The first atom is constrained in a cage of size
A1, while the s others are constrained by A2. They are related to the MSDs between replicas:
A1 = Dr −D /2 and A2 = D /2. By plugging the expression of Eq. 2.18 for the local molecular
density in the interaction term Eq. 2.8, then performing adequate changes of variables (see Eq. C2
in Ref. [98]), the interaction term of the replicated free energy is equal to

− βf ints+1 = ρ

2

∫
dR

[(
γ2 Dr −D ⊗ e−βgv

)
(R)

{(
γD ⊗ e−βv

)
(R)

}s
− 1

]
, (2.20)

where ⊗ denotes a d-dimensional convolution. In practice, the d-dimensional convolutions present
in Eq. 2.20 are hard to compute. Using bipolar coordinates (Eqs. C9-C16 in Ref. [98] ), a d-
dimensional convolution reduces to a one-dimensional integral, using the modified Bessel functions
In(x). We introduce the following function:

q (D, r, d, β) ≡
(
γD ⊗ e−βv

)
(r) =

∫ ∞
0

due−βv(u)
(
u

r

) d−1
2 e−

(r−u)2
2 D

√
2πD

[
e−

ru
D

√
2πruD I d−1

2

(
ru

D

)]
(2.21)

By expressing the replicated free energy Eq. 2.20 in terms of a one-dimensional integral, then taking
the linear order in s, we obtain the interaction term of the glass free energy

− βf intg = ρ

2dVd
∫
rd−1dr q(2 Dr −D, r, d, βg) log q(D, r, d, β), (2.22)
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where Vd = πd/2/Γ(1 + d/2) is the volume of a d-dimensional sphere of radius unity. Putting
together Eqs. 2.17 and 2.22, we obtain the replica symmetric glass free energy

− βfg = d

2

(
1 + log(πD) + 2 Dr −D

D

)
+ ρ

2dVd
∫
rd−1dr q(2 Dr −D, r, d, βg) log q(D, r, d, β) (2.23)

2.1.5 Replica symmetric glass free energy in the large-dimensional limit

We are interested in the large dimensional limit of the problem. The glass free energy can be
obtained by taking d→∞ in Eq. 2.23, since the virial expansion to second order and the Gaussian
approximation are exact in this limit. We define rescaled variables in order to have a well-defined
large-dimensional limit. The relevant interactions correspond to particles at a distance r ∼ σ, with
O(1/d) fluctuations. We make the change of variables r = σ(1 + h/d). This defines ‘gaps’ h which
remain finite when d→∞.

The large dimensional limit of the function q defined in Eq. 2.21 can be computed (see Eqs.
C27-C32 of Ref. [98]). The rescaled MSD ∆ = d2 D /σ2, which has a finite value when d → ∞,
appears naturally, and

q (D, r, d, β) −−−→
d→∞

q(∆, β;h) =
∫ ∞
−∞

dy e−βv(y) e
− (y−h−∆/2)2

2∆
√

2π∆
. (2.24)

We make the change of variables from distances r to gaps h in Eq. 2.22. In particular, in the limit
d→∞,

rd−1dr ∼ rddr = σd
(

1 + h

d

)d σ
d

dh = σd+1

d
ed log(1+h/d)dh ∼ σd

d
ehdh. (2.25)

In the limit d→∞, the glass free energy Eq. 2.23 is equal to

− βfg = d

2

{
1 + 2∆r −∆

∆ + log(πσ2∆/d2) + ϕ̂g

∫ ∞
−∞

dh ehq(2∆r −∆, βg;h) log q(∆, β;h− η)
}
,

(2.26)
where we identified the rescaled packing fraction ϕ̂ = 2dϕ/d, using the definition of ϕ = ρVdσ

d/2d.
The last term η = log(ϕ̂/ϕ̂g) comes from the change of packing fraction from ϕg to ϕ. It is done
by modifying the interaction range of the constrained particles. If σg is the interaction range of
the particles in the reference system (at βg), we use σ = σg(1 + η/d) for the constrained replicas at
β. The packing fraction of the constrained replicas is therefore ϕ̂ = ϕ̂g(σ/σg)d ∼ ϕ̂geη in the large
dimensional limit.

The thermodynamic values of ∆ and ∆r correspond to a saddle point of Eq. 2.26, and are thus
solution of the set of equations

2∆r = ∆ + ϕ̂g∆2
∫ ∞
−∞

dh eh ∂

∂∆ [q(2∆r −∆, βg;h) log q(∆, β;h− η)] ,

2
∆ = −ϕ̂g

∫ ∞
−∞

dh eh
[
∂

∂∆r
q(2∆r −∆, βg;h)

]
log q(∆, β;h− η).

(2.27)

In practice, Eqs. 2.27 are solved by iteration. Starting from a guess for ∆ and ∆r (a good one
is ∆ = ∆r = ∆g solution of Eq. 2.29), one computes numerically the right hand side to obtain new
estimates. Upon iteration, the new estimates get closer to the previous ones, and the procedure
converges.
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By taking derivatives of the free energy Eq. 2.26 with respect to T, ϕ̂, one obtains the average
of thermodynamic observables. For example, the average glass energy is the derivative of the free
energy with respect to the inverse temperature,

eg = ∂(βfg)
∂β

= −dϕ̂g2

∫ ∞
−∞

dh ehqγ(2∆r −∆, βg;h) ∂
∂β

log q(∆, β;h− η). (2.28)

2.1.6 The dynamical transition

We focus on the case where the glass is prepared and studied at the same state point (ϕ̂, T ) =
(ϕ̂g, Tg). In this case, all s+1 replicas are equivalent: ∆ = ∆r ≡ ∆g, and Eqs. 2.27 are conveniently
written as

1
ϕ̂g

= Fβ(∆g) = −∆g

∫ ∞
−∞

dy ey log[q(∆g, βg; y)]∂q(∆g, βg; y)
∂∆g

. (2.29)

In practice, this equation is used to compute the dynamical transition. One can show that at all
temperatures, the function Fβ(∆) generally vanishes both for ∆ → 0 and ∆ → ∞, and has a
unique maximum in between. No solution can be found if ϕ̂g < ϕ̂d, where ϕ̂d is the dynamical
transition at temperature βg, defined by

1
ϕ̂d(βg)

= max
∆
Fβg(∆) (2.30)

The absence of a solution means that the Franz-Parisi potential has no local minimum at finite ∆r.
No stable glass phase then exists, and the system is therefore a liquid.

2.1.7 The Gardner transition

One can follow a glass prepared at (ϕ̂g, Tg) to different state points (ϕ̂, T ) using the replica
symmetric matrix ∆̂RS . However, the replica symmetric form of the matrix ∆̂ is an assumption,
and we need to check that it is a stable local minimum of the replicated free energy. To perform
this check, we need to compute the stability operator, or Hessian H, of the replicated free energy
on the RS solution at the saddle point

Ha>b;c>d = ∂2fs+1
∂∆ab∂∆cd

∣∣∣∣
∆̂=∆̂RS

. (2.31)

The replica symmetric solution is locally stable if all the eigenvalues of H are positive. Replica sym-
metry strongly constrains the form of the Hessian. Its eigenvalues can be computed explicitly, as
done in Refs. [153, 186]. Most importantly, the Hessian computed on the RS solution has three in-
dependent eigenvalues, λR, λL, λA called replicon, longitudinal, and anomalous modes, respectively.
The replicon mode is the one linked to instabilities towards replica symmetry breaking.

A practical way to compute the limit of stability of the RS solution is to derive the fullRSB
solution for the replicated free energy. We do not wish to report the complete derivation here, which
can be found in Refs. [123, 221]. In the fullRSB case, the solution is parametrized by a continuous
function ∆(x) for x ∈ [0 : 1], which is strictly decreasing: ∆̇(x) < 0. Similarly to Eqs. 2.27, the
thermodynamic solution for ∆(x) verifies an integro-differential equation. By taking the derivative
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of this equation, one obtains an expression which is proportional to the replicon eigenvalue λR.
Evaluating this expression on the RS solution, one gets

λR ∝ −1 + ϕ̂g
2 ∆2

∫ ∞
−∞

dh ehqγ(2∆r −∆, βg;h)
(
∂2

∂h2 log q(∆, β;h− η)
)2

. (2.32)

The Gardner transition is the point where the replicon λR vanishes.

In the following article, we present the phase diagrams obtained by solving numerically Eqs. 2.27,
2.28, and 2.32 for three different pair potentials.
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Marginally stable phases in mean-field
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A novel form of amorphous matter characterized by marginal stability was
recently discovered in the mean-field theory of structural glasses. Using
this approach, we provide complete phase diagrams delimiting the location
of the marginally stable glass phase for a large variety of pair interactions
and physical conditions, extensively exploring physical regimes relevant to
granular matter, foams, emulsions, hard and soft colloids, and molecular
glasses. We find that all types of glasses may become marginally stable,
but the extent of the marginally stable phase highly depends on the prepa-
ration protocol. Our results suggest that marginal phases should be ob-
servable for colloidal and non-Brownian particles near jamming, and poorly
annealed glasses. For well-annealed glasses, two distinct marginal phases
are predicted. Our study unifies previous results on marginal stability in
mean-field models, and will be useful to guide numerical simulations and ex-
periments aimed at detecting marginal stability in finite dimensional amor-
phous materials.

I Introduction

Twenty years ago, a unified phase diagram for amorphous matter [1] motivated the search for simi-
larities and differences between the properties of a broad range of materials, from granular materials
to molecular glasses [2]. It is now well-established that in the presence of thermal fluctuations, dense
assemblies of atoms, molecules, polymers, colloidal particles undergo a glass transition [3, 4] as the
temperature is decreased or the density increased. In the absence of thermal fluctuations, solidity
instead emerges by compressing particles across the jamming transition [5, 6], relevant for foams,
non-Brownian emulsions, and granular materials. These two transitions have qualitatively distinct
features.

Models of soft repulsive spheres faithfully capture this diversity [7, 8], as shown in Fig. 1. The rel-
evant adimensional control parameters are the packing fraction, ϕ, and the ratio of thermal agitation,
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Dense liquids
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Hard 
colloids Grains Emulsions

Figure 1: Schematic (temperature, packing fraction) phase diagram for soft repulsive spheres and
its experimental relevance. The dynamic glass transition is represented by the red line. Jamming
transitions are observed in the athermal limit over a protocol-dependent range of packing fractions
(grey line). Different regions of the phase diagram are relevant for a variety of amorphous materials,
indicated in boxes. In this work, we explore in which conditions these amorphous materials become
marginally stable.

kBT , to the interaction strength between particles, ε. A dense assembly of soft particles transforms
into a glass when thermal fluctuations decrease. Glasses can also be obtained by compression at
constant temperature, and in particular the limit ε→∞ at constant T corresponds to compression
of colloidal hard spheres. At large density and temperature, the particles constantly overlap and
the system behaves identically to glass-forming liquids. Intermediate densities and temperatures
describe the glass transition of soft colloids. Jamming transitions are observed in the athermal
regime kBT/ε → 0 relevant for granular materials, foams and non-Brownian emulsions. Because
this occurs deep inside the glassy phase at T = 0, jamming transitions are protocol-dependent and
occur over a continuous range of packing fractions ϕJ [9, 10, 11, 12].

The phase diagram in Fig. 1 organizes the physics of a broad variety of materials by describing
how fluids lose their ability to flow, but incorrectly suggests that the solid phase has similar prop-
erties across a broad range of physical conditions. In fact, while ordinary glasses formed by cooling
dense liquids behave roughly as crystalline solids with a high density of defects [13, 14], glasses
formed by compressing granular materials or non-Brownian emulsions across their jamming transi-
tion display unique properties distinct from ordinary solids [6, 5]. For example, they may respond
to weak stresses with very large deformations, and their low-frequency excitations are very different
from phonons [15, 16, 17]. These properties were theoretically explained by invoking marginal sta-
bility [18, 19]: because these glasses are formed by zero-temperature compression across a rigidity
transition, they have barely enough contacts to be mechanically stable. From this observation,
several anomalous properties of athermal glasses in the vicinity of jamming can be understood [20].

Theoretical calculations in the framework of the mean-field theory of the glass transition [21,
22, 23, 11, 24] have confirmed these ideas, and suggested in addition the existence of two distinct
types of amorphous solids separated by a sharp phase transition [25, 26]. One phase is the normal
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glass, and corresponds to a free energy basin that responds essentially elastically to perturbations,
as any regular solid. The second is a Gardner glass [27, 28]. The Gardner glass is marginally
stable due to full replica symmetry breaking, as in mean-field spin glasses [29]. Physically, marginal
stability implies the existence of long-ranged correlations in the vibrational dynamics [30, 31], an
excess of low-frequency modes [32, 33], unusual rheological properties [34, 35, 36], and system-
spanning responses to weak, localized perturbations, manifested for instance by diverging mechanical
susceptibilities [37, 34, 38]. The Gardner phase may thus provide an elegant route to understand
the nature of a multitude of experimental observations of glassy excitations [25, 26]. Explicit mean-
field calculations for the location of marginally stable glasses were carried out for hard [25, 26] and
soft [34, 39, 40] potentials, providing some insight about mean-field phase diagrams. Furthermore,
a way to take into account fluctuations around the mean field limit, within the nucleation theory
associated to the Random First Order Transition approach, has been proposed in [41].

Numerical simulations and experiments in finite dimensional systems were performed to explore
these theoretical ideas, yielding contrasting results. Numerical studies of three dimensional hard
sphere glasses [30, 36, 42, 43], and numerical and experimental study of two dimensional hard
disks [30, 44, 45], have revealed a rich vibrational dynamics, with diverging lengthscales, suggestive
of a Gardner phase. On the other hand, numerically cooling soft glass-formers has only revealed
sparse, localized defects [40, 46], whereas experimental studies remain inconclusive [47]. It has
also been suggested that in low dimensions localized defects could induce an apparent Gardner-like
phenomenology, without an underlying sharp phase transition [40, 48]. Overall, this recent flurry of
results suggests that distinct glassy materials may have distinct properties, depending on both their
preparation and location in the phase diagram of Fig. 1, thus calling for a systematic microscopic
investigation of marginally stable glassy phases. This is the central goal of the present work.

We use a microscopic mean-field theory to study thermal soft repulsive spheres in the limit
of infinite spatial dimensions to systematically investigate the physical properties and marginal
stability of glasses prepared in a wide range of physical conditions, covering all regimes illustrated
in Fig. 1. For a glass prepared at any given location in Fig. 1, we investigate how its properties
evolve under further compression and cooling, thus providing complete phase diagrams locating
simple and marginally stable glasses. We find that all glasses may become marginally stable, but
Gardner phases are more easily accessible for systems close to jamming (such as grains, foams,
hard and soft colloids), and for poorly annealed glasses obtained by a fast quench. The extent of
the marginally stable phase depends, in all cases, on the preparation protocol. For well-annealed
glasses at intermediate packing fractions, two distinct Gardner phases are predicted. Our study
extends and unifies previous analytical studies [26, 39, 40] and will serve as a useful theoretical
guide for systematic investigations of marginal stability in finite dimensional glasses, via numerical
simulations or experiments. In particular, we are currently completing a three dimensional numerical
study that parallels the calculations presented here [49].

The article is organized as follows. In Sec. II, we introduce the models studied in this work. In
Sec. III, we present the theoretical methods we use. In Sec. IV, we present the results for the phase
diagrams obtained for a variety of physical conditions. In Sec. V, we discuss our results and provide
some perspectives.

II Models for glassy materials

While we are ultimately interested in the phase diagram of dense particle systems for which the
spatial dimension is d = 2 or d = 3, we focus on assemblies of particles embedded in an abstract,
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but analytically tractable, space of d → ∞ dimensions. In this limit, an exact solution for the
thermodynamic properties of the liquid and glass phases can be obtained [21, 26].

We study several conventional interaction potentials for glass-forming materials, that allow us
to interpolate between the various physically relevant limits shown in Fig. 1. In particular, it is
useful to consider the following harmonic sphere model:

vHARM(r) =
ε

2

(
1− r

σ

)2
θ (σ − r) , (1)

where r is the inter-particle distance, σ the diameter of particles, ε the repulsion strength and θ(r)
the Heaviside function. The harmonic sphere model was first introduced to study the jamming
transition [50], and later studied extensively at finite temperature [7]. Harmonic spheres become
equivalent to hard spheres when ε→∞.

To study the large density limit relevant for dense liquids, harmonic spheres are not useful, as
their extreme softness gives rise to exotic phenomena that we do not wish to discuss here. Instead,
it is more relevant to analyze the Weeks-Chandler-Andersen (WCA) potential,

vWCA(r) = ε

[
1 +

(σ
r

)4d
− 2

(σ
r

)2d
]
θ(σ − r) , (2)

because it resembles the harmonic potential around the cutoff r ∼ σ, but behaves as a Lennard-
Jones potential at smaller inter-particle distance. Our analysis shows that the WCA model yields
results qualitatively similar to the harmonic model at moderate densities, and behaves as the inverse
power law (IPL) potential

vIPL(r) = ε(σ/r)4d , (3)

in the large density limit. Therefore we decided to concentrate on the two models in Eqs. (1, 3)
to report our results. Technically, the harmonic potential is easier to handle, as one can go one
step further analytically than for WCA, which simplifies the numerical resolution of the equations
presented below. The WCA model, on the other hand, is numerically very convenient for finite-
d studies, which justifies our effort to study it as well. While the expression of the harmonic
potential is the same regardless of spatial dimension, we have extended the standard definitions of
the WCA and IPL models in d = 3 to arbitrary dimension d. This is done because thermodynamic
stability and the existence of the thermodynamic limit, a prerequisite for performing the theoretical
development described below, require the potential to decay faster than r−d in dimension d [51].

We consider the thermodynamic limit for N particles in a volume V , both going to infinity
at fixed number density ρ = N/V . When d = ∞, we can consider monodisperse particles, as
crystallization is no longer the worrying issue it is in finite dimensions [52, 53]. Our adimensional
control parameters are the packing fraction ϕ = NVd(σ/2)d/V , defined as the fraction of volume
covered by particles of diameter σ (Vd is the volume of a d-dimensional unit sphere), and the scaled
temperature T/ε (in the following, we will take kB = 1). To obtain a non-trivial phase diagram in
the limit d→∞, the packing fraction has to be rescaled as ϕ̂ = 2dϕ/d. Note that in the case of the
IPL model, the form of the interaction potential leads to a unique control parameter Γ = ϕ̂/T 1/4.
We also define rescaled gaps between particles h = d(r/σ − 1), and rescaled potentials v̄(h) such
that limd→∞ v(r) = v̄(h):

v̄HARM(h) =
ε

2
h2θ(−h) ,

v̄IPL(h) = e−4h .
(4)
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We will be particularly interested in mean-squared displacements (MSD) between configurations.
In finite dimensions, they are usually defined as D(X,Y ) = 1/N

∑
i |xi − yi|2, where X and Y

represent two configurations. Finite values for the MSD in infinite dimensions are obtained by
defining ∆(X,Y ) = d2 D(X,Y )/σ2.

In the following section, we summarize the formalism that allows us to compute the thermody-
namic properties and the phase diagram for the above models.

III Theoretical methods

The general strategy of our work is devised to mimic the following experimental protocol. During
the gradual cooling or compression of a glass-forming liquid, the equilibrium relaxation time τα of
the system increases very sharply. For a given protocol, there comes a moment where the system
falls out of equilibrium; this represents the experimental glass transition, at state point (Tg, ϕ̂g).
After this moment, the system follows a ‘restricted’ equilibrium, where the amorphous structure
frozen at the glass transition is adiabatically followed at different temperature and density, (T, ϕ̂).
Our analytical strategy follows this protocol closely. We draw an equilibrium but dynamically
arrested configuration at (Tg, ϕ̂g), and follow its thermodynamics when brought adiabatically to
another state point (T, ϕ̂) within the same glass basin.

III.1 Glass free energy

The state-following protocol described above is possible if the relaxation time of the initial state
is extremely large [54, 55, 56, 57, 26]. In infinite dimensions, the equilibrium relaxation time
diverges at the dynamic glass transition Td(ϕ̂), which is of the mode-coupling type [58, 59, 26]. Our
construction, which is briefly summarized in the following, is thus devised to follow glasses created
below the dynamical transition [57, 34].

Let us consider an equilibrium configuration Y , extracted from the Boltzmann distribution at
(Tg, ϕ̂g), which falls into the dynamically arrested region Tg < Td(ϕ̂g). To construct the ther-
modynamics restricted to the glass state Y , we consider a sub-region of phase space probed by
configurations X constrained to remain close to Y . The configuration X can be at a different state
point (T, ϕ̂), but its mean-squared distance to Y is fixed to a finite value ∆(X,Y ) = ∆r. The free
energy fY of the glass state selected by Y and brought to (T, ϕ̂) can be expressed in terms of a
restricted configuration integral [57]

Z [T, ϕ̂|Y,∆r] =

∫
dXe−βV [X]δ(∆r −∆(X,Y )) ,

fY (T, ϕ̂|Y,∆r) = − T
N

logZ [T, ϕ̂|Y,∆r] ,

(5)

where V (X) is the total potential energy of the glass X. The glass free energy fY in Eq. (5)
depends explicitly on the initial glass Y . In the thermodynamic limit, its typical value fg is given
by averaging over all equilibrium states Y

fg(T, ϕ̂|Tg, ϕ̂g,∆r) =− T

N

∫
dY

Z [Tg, ϕ̂g]
e−βgV [Y ]

× logZ [T, ϕ̂|Y,∆r]

(6)
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where Z [Tg, ϕ̂g] is the standard configurational integral at (Tg, ϕ̂g). The free energy has to be
computed for the parameter ∆r verifying ∂∆rfg = 0 [57]. Note that the density dependence of the
free energy is encoded by the interaction length scale σ of the potential, which can be changed to
induce a change in packing fraction.

Performing the disorder average in Eq. (6) is challenging. Translational invariance, necessary to
use saddle-point and perturbative methods, is broken by the presence of disorder. To compute the
glass free-energy in Eq. (6) we use the replica method, and introduce (s+1) identical replicas of the
original atomic system to undertake the computation [54, 57, 26]. The ‘master’ replica represents
the initial glass at (Tg, ϕ̂g), while the s others ‘slave’ replicas represent the glass at (T, ϕ̂). The glass
free-energy can then be expressed in terms of the MSD between the different replicas. The MSD
between any slave replica and the master replica are parametrized by ∆r. We make the simplest
assumption, called replica symmetric, and consider that all slave replicas are equivalent [57], at a
distance ∆ from each other. At the end of the computation, we take the analytic continuation
s→ 0 and obtain the replica symmetric glass free energy

− 2

d
βfg =

2∆r

∆
+ log(π∆/d2) + ϕ̂g

∫ ∞

−∞
dhP (h)f(h) , (7)

defining for simplicity η = log(ϕ̂/ϕ̂g),

q(∆, β;h) =

∫ ∞

−∞
dy e−βv̄(y) e

− (y−h−∆/2)2

2∆√
2π∆

, (8)

and

P (h) = eh q(2∆r −∆, βg;h) ,

f(h) = log q(∆, β;h− η) .
(9)

Compressing and decompressing a glass corresponds to η > 0 and η < 0, respectively. The
glass free energy should be computed with the thermodynamic values for ∆ and ∆r, determined by
setting to zero the derivatives of fg with respect to these parameters, which provides two implicit
equations for ∆ and ∆r:

2∆r = ∆ + ϕ̂g∆
2

∫ ∞

−∞
dh

∂

∂∆
[P (h)f(h)] ,

2

∆
= −ϕ̂g

∫ ∞

−∞
dh f(h)

∂

∂∆r
P (h) .

(10)

III.2 Dynamic glass transition

Our method focuses on glasses prepared at (Tg, ϕ̂g), below the dynamical transition. Our first task
is thus to compute the dynamical transition line, Td = Td(ϕ̂) for the models presented in Sec. II.
To do so, let us consider the special case (Tg, ϕ̂g) = (T, ϕ̂) in the above construction. In that case,
∆ = ∆r ≡ ∆g is solution of fg in Eq. (10) if the glass MSD ∆g verifies

1

ϕ̂
= −∆g

∫ ∞

−∞
dh eh log q(∆g, β;h)

∂q(∆g, β;h)

∂∆g

≡ Fβ(∆g) .

(11)
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Figure 2: Equilibrium mean-field phase diagram for harmonic spheres. The dynamical transition
Td (red line) separates liquids that flow (above) from dynamically arrested ones (below). We select
equilibrium glasses in the dynamically arrested region, for example g1, ..., g4, and follow each glass
adiabatically in temperature and packing fraction. The corresponding state-following phase dia-
grams are presented Fig. 5(a-d). Glasses equilibrated above the line TJ (dashed line) are jammed
once minimized to T = 0, while glasses selected below the line are unjammed at T = 0. The
state-following phase diagrams of glasses prepared at ϕ̂g = 13 (vertical dashed line) are presented
in Figs. 3-4.

For the models considered here, the function Fβ(∆) is positive, vanishes both for ∆ → 0 and
∆ → ∞ and has an absolute maximum in between. This means that Eq. (11) has a solution at
temperature 1/β only if 1/ϕ̂ is smaller or equal to the maximum of Fβ with respect to ∆. Glassy
states at T thus exist only at packing fractions higher than ϕ̂d, defined by

1/ϕ̂d = max
∆
Fβ(∆) . (12)

We numerically solve Eq. (12) for all temperatures and find the dynamical transition line ϕ̂d(T ),
or equivalently Td(ϕ̂). The result is represented for the harmonic potential in Fig. 2. The line
separates liquids that flow from dynamically arrested ones. The qualitative behavior of Td(ϕ̂) in
the WCA model is similar to that of harmonic spheres presented in Fig. 2. In both cases, the
dynamical transition temperature is an increasing function of ϕ̂, and is defined for ϕ̂ > 4.8067,
which corresponds to the dynamical transition for hard spheres [11]. In the large density limit, the
WCA model behaves as the inverse power law potential, and the dynamical transition scales as
Td ∼ ϕ̂4. The coefficient of proportionality is 1/Γ4

d, where Γd = 4.304 is given by the dynamical
transition of IPL glasses.

III.3 Adiabatically following the glass properties

We focus on glasses prepared at (Tg, ϕ̂g) in the dynamically arrested phase. We study their ther-
modynamic properties when adiabatically brought to temperature and packing fraction (T, ϕ̂). In

52



Article: Marginally stable phases in mean-field structural glasses

particular, we compute the average potential energy per particle êg, given by the derivative of fg in
Eq. (7) with respect to the inverse temperature

êg =
1

d

∂(βfg)

∂β
= − ϕ̂g

2

∫ ∞

−∞
dhP (h)

∂

∂β
f(h) . (13)

The energy is to be computed using the thermodynamic values for ∆,∆r, which solve Eqs. (10).
We employ the following strategy to numerically solve the equations, find the values of ∆ and

∆r at each state point, and consequently compute the glass potential energy. First, we compute
the MSD ∆g of the glass at (Tg, ϕ̂g), by numerically solving Eq. (11). Starting at (Tg, ϕ̂g) with the
initial condition ∆ = ∆r = ∆g, we gradually change the temperature and/or packing fraction by
small steps towards (T, ϕ̂). At the beginning of each step, we use the values ∆,∆r of the previous
step as initial guesses. We then solve iteratively Eqs. (10) by computing the right hand side of
the equations to obtain new estimates of ∆ and ∆r until convergence is reached. We repeat this
procedure until the final state (T, ϕ̂) is reached.

III.4 Gardner transition

The glass free energy fg defined in Eq. (7) is derived assuming that the symmetry under per-
mutations of replicas remains unbroken. At each state point, we must check the validity of this
assumption. In practice, we check that the replica symmetric solution is a stable local minimum of
the free energy. The replica symmetric solution becomes locally unstable against replica symmetry
breaking when one of the eigenvalues of the stability operator of the free energy changes sign [29].
This so-called replicon eigenvalue can be expressed in terms of ∆,∆r as follows [60]

λR = 1− ϕ̂g
2

∆2

∫ ∞

−∞
dhP (h)f ′′(h)2 . (14)

At each state point, the converged values for ∆,∆r are used to compute the replicon eigenvalue. In
the replica symmetric, or simple glass phase, the replicon is positive. The replicon might become
negative upon cooling or compressing a glass, signaling its transformation to a replica-symmetry
broken glass. We show that in most cases, the simple glass transforms into a marginally stable
glass, characterized by full replica symmetry breaking (fullRSB). This is a Gardner transition, in
analogy to a similar phase transition found at low temperature in some spin glasses [28, 27].

In the marginally stable phase a complex, full replica symmetry breaking, solution should be
used to derive accurately the thermodynamics of the glass [60]. Such solution is parametrized by
a function ∆(x), for x ∈ [0, 1], associated to the distribution of mean-squared distances between
states. While computing the full function ∆(x) requires a rather heavy numerical procedure [60], one
can estimate its shape close to the transition where λR = 0, by a perturbative calculation [61, 62].
One gets

∆(x) ∼





∆(λ)− ε∆̇(λ) x < λ− ε ,
∆(λ) + ∆̇(λ)(x− λ) λ− ε < x < λ+ ε ,

∆(λ) + ε∆̇(λ) x > λ+ ε .

(15)

Here, λ is called the breaking point or MCT parameter. It is related to the mean field dynamical
critical exponents of the transition [63, 64, 25, 65] and, presumably, to the universality class of
the transition beyond mean field theory [66]. At the transition point, ε → 0, and the constant
RS solution ∆(x) = ∆(λ) = ∆ is recovered. Because ∆(x) must be monotonically decreasing
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for x ∈ [0, 1], a consistent fullRSB solution requires λ ∈ [0, 1] and ∆̇(λ) < 0. The perturbative
calculation gives [61, 62],

λ =
ϕ̂g
∫∞
−∞ dhP (h)f ′′′(h)2

4
∆3 + 2ϕ̂g

∫∞
−∞ dhP (h)f ′′(h)3

,

∆̇(λ) =
4

∆3 + 2
∫∞
−∞ dhP (h)f ′′(h)3

12λ2

∆4 −
∫∞
−∞ dhP (h)A(h)

,

with

A(h) = f ′′′′(h)2 − 12λf ′′(h)f ′′′(h)2 + 6λ2f ′′(h)4 ,

(16)

which should be evaluated at the transition point. We systematically compute the value of the
breaking point λ and slope ∆̇(λ) at the point where λR = 0 in order to characterize the type of
symmetry breaking transition. If λ ∈ [0, 1] and ∆̇(λ) < 0 it is a Gardner transition. If instead
λ ∈ [0, 1] but ∆̇(λ) > 0, the transition is likely to be continuous towards a non-marginal 1RSB
phase [62].

In the following, we will show results for the boundary between simple and replica-symmetry
broken phases (1RSB and fullRSB), without further solving the thermodynamics of the glass inside
the replica-symmetry broken phase. Note that here we are mostly interested in the location of the
marginally stable fullRSB glass phase.

III.5 Spinodal transition

A glass prepared at (Tg, ϕ̂g) can also be followed upon heating (T > Tg), or in decompression
(ϕ̂ < ϕ̂g, equivalently η < 0). In that case, the glass energy becomes lower than the one of the
liquid, until a spinodal transition is reached at (Tsp, ϕ̂sp). In practice, the spinodal transition is found
when the solution for ∆,∆r disappears through a bifurcation. This spinodal transition physically
corresponds to the melting of the glass into the liquid. At the spinodal transition thermodynamic
quantities display a square-root singularity, for instance êg ∼

√
Tsp − T .

Note that the replica symmetric solution also displays an unphysical spinodal transition in the
region where it is unstable against fullRSB [57, 40]. This spinodal is unphysical because, for example,
one finds that a glass might become unstable and melt upon cooling, which is physically inconsistent.
The correct computation of the stability limit in the region where the replica symmetric solution
is unstable should be done by solving the fullRSB equations, which goes beyond the scope of this
work. In the phase diagrams we will show in the following, we will not draw the replica symmetric
spinodal in the region where the replica solution is unstable.

III.6 Jamming transition

The harmonic and WCA potentials Eqs. (1, 2) define a physical size for the particles. Dense
assemblies of particles interacting via these two potentials will therefore have a jamming transition
at T = 0 and some packing fraction. For each studied glass, we find the location of its corresponding
jamming transition point at the replica-symmetric level. To do so, we monitor the potential energy
êg of the glass, Eq. (13), down to T = 0. Depending on its value at T = 0, we either compress (if
êg(T = 0) = 0) or decompress (if êg(T = 0) > 0) the zero-temperature packing until we reach the
packing fraction ϕ̂J at which the energy changes from a finite value to zero. The jamming transition
of the initial glass occurs at (T = 0, ϕ̂J), or equivalently at (T = 0, ηJ).
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Figure 3: Energy per particle ê of the equilibrium liquid and several glasses selected at ϕ̂g = 13
(vertical dashed line in Fig. 2), as a function of temperature T for constant ϕ̂ = ϕ̂g. The energy
of the liquid is given by the thin black line, on which lies the dynamical transition at Td = 0.562
(black square). The energy of simple glasses created at Tg < Td (Tg = 0.5, 0.4, 0.3, 0.2, 0.1, from
top to bottom) are represented by green lines. Upon cooling, these glasses may undergo a Gardner
transition (bullets) to a marginally stable glassy phase, in which the equation of state must be
computed solving the fullRSB equations (not shown). When heated, the glasses remain stable up
to a temperature Tsp (triangles) at which the glass melts into the liquid.

We stress that the location of the jamming transition depends on the specific choice of the state
point (Tg, ϕ̂g) at which the glass was prepared in the phase diagram of Fig. 2. It is useful to define an
additional line TJ(ϕ̂g) in the phase diagram to rationalize the results in Sec. IV. This line separates
glasses into two classes: if Tg > TJ(ϕ̂g), the state is jammed at T = 0 and êg(T = 0) > 0, while if
Tg < TJ(ϕ̂g), the state is unjammed at T = 0 and êg(T = 0) = 0. We compute this line by taking
analytically the zero-temperature limit of Eqs. (10-13), and solving them numerically for all initial
equilibrium glasses.

The resulting line TJ(ϕ̂g) for harmonic glasses is represented in Fig. 2. This line is qualitatively
similar for WCA glasses. In both models, TJ is a decreasing function of ϕ̂: starting from better
annealed glasses (lower Tg) shifts the jamming transition of the glass to higher packing fractions.
This feature is also observed in the phase diagram of infinite dimensional hard sphere glasses. The
line TJ should in principle extend to lower packing fractions and reach Td. This is not the case in
Fig. 2, as glasses prepared in this region present an extended marginal phase at finite temperature
(for example, see Fig. 3), and the replica symmetric solution is lost before reaching T = 0. Using a
fullRSB solution, we would find that this line extends smoothly at lower densities until hitting the
dynamical transition line.

IV State-following phase diagrams

We now present how glasses prepared in a wide range of conditions evolve when subject to cool-
ing/heating or compression/decompression, or a combination of both. We are particularly interested
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in finding the boundaries of the marginally stable phase. In Secs. IV.1 to IV.3, we present results
for the harmonic sphere model. Equilibrium glasses at (Tg, ϕ̂g) are chosen in the region delimited
by the dynamical transition in Fig. 2. For each initial glass, we construct a two-dimensional state-
following phase diagram, presented in terms of T and η. Results for the inverse power law are
presented in Sec. IV.4: in this case, the representation is easier because there is a single control
parameter Γ = ϕ̂/T 1/4. As stated above, the WCA potential would yield results similar to har-
monic spheres for densities close to jamming, but similar to the inverse power law potential at large
densities. We will present selected state-following results that highlight the main features of these
phase diagrams, and propose a representation which summarizes the most important findings (see
Fig. 6).

IV.1 Cooling and heating glasses

We first focus on heating and cooling glasses prepared at an intermediate packing fraction, ϕ̂g = 13,
and several temperatures Tg. These equilibrium initial states are selected along the vertical dashed
line displayed in the phase diagram in Fig. 2.

We present the results in terms of potential energy per particle ê as a function of temperature
in Fig. 3, with the density being kept constant at its original value, ϕ̂ = ϕ̂g. The energy of the
equilibrium liquid is computed, along with the dynamical transition at temperature Td = 0.562. We
select glasses within a large range of glass stabilities, prepared at Tg = 0.5, 0.4, 0.3, 0.2, 0.1. We
then follow their energy as a function of temperature, and report the corresponding glass equations
of state in Fig. 3 (colored lines). Note that all the glasses presented in Fig. 3 have a strictly positive
potential energy at zero temperature. Indeed, they have all been prepared at temperatures Tg
higher than TJ(ϕ̂g = 13) = 0.013.

Upon cooling, the simple glass may destabilize when the replicon vanishes. The slope ∆̇(λ) is
formally positive for Tg > T †g ' 0.524, indicating that glasses prepared near the dynamical transition
T †g < Tg < Td undergo a continuous one step replica-symmetry breaking (1RSB) transition towards a
non-marginal phase. We find instead that for glasses prepared at Tg < T †g , such as those presented
in Fig. 3, the slope ∆̇(λ) is negative at the transition. The simple glass thus transforms into a
marginally stable glass at a Gardner transition, reported with bullets in Fig. 3. The breaking point
λ computed with Eq. (16) at the Gardner transition equals λ = 0.315, 0.159, 0.068, 0.01 for Tg = 0.5,
0.4, 0.3, 0.2, respectively. Note that λ→ 0 when the Gardner transition temperature TG → 0, while
∆̇(λ) → −∞ when Tg → T †g from below. We observe that the glass is marginally stable over a
large temperature range when prepared at higher Tg. The extent of the marginally stable region
diminishes for better annealed glasses (decreasing Tg). The Gardner transition temperature TG
of a given glass decreases with decreasing Tg, so that better annealed glasses remain stable down
to lower temperatures. For the most stable glass reported in Fig. 3, prepared at Tg = 0.1, the
glass remains stable down to zero temperature, and no marginally stable phase is observed when
cooling. When glasses are instead heated, their energy follows the glass equation of state and
remains smaller than the energy of the liquid up to the spinodal transition Tsp at which the glass
melts into the liquid. The temperature range over which the glass remains stable increases when the
glass transition temperature Tg decreases, which is the experimental hallmark of increasing glass
stability [67, 68, 69].

Overall, increasing the degree of annealing of the glass extends the region of stability of the
simple glass phase, pushing the marginal phase to lower (possibly vanishing) temperatures and the
spinodal transition to higher temperatures.
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Figure 4: Glasses prepared at ϕ̂g = 13, Tg = 0.55, 0.52, 0.47, 0.4 (top to bottom) are followed in
temperature T and packing fraction ϕ̂, expressed as η = log(ϕ̂/ϕ̂g). The dynamical transition is
indicated with a square. For each glass, we show the limits of stability of the simple glass. The
simple glass loses it stability and melts at the glass spinodal (dashed grey). The simple glass also
destabilizes at the Gardner transition (solid blue), or at a continuous transition towards a 1RSB
phase (dashed blue). Below the Gardner transition line, the glass is marginally stable.

IV.2 Temperature-density glass phase diagram

The results of thermal quenches shown in Fig. 3 give only a partial view of the state-following phase
diagrams, because density is not varied. We now study how the marginally stable phase extends
both in temperature and packing fraction. Specifically, we present how glass stability modifies the
extent and nature of the marginally stable phase. We compute state-following phase diagrams for
glasses prepared at ϕ̂g = 13 and different annealing, Tg = 0.55, 0.52, 0.47, 0.4. For each glass,
we compute the Gardner transition line TG(η) at which the glass becomes marginally stable, and
we report it as a blue line in Fig. 4. As in Fig. 3, less annealed glasses first transform to a 1RSB
glass, which we indicate with a blue dashed line. We expect the 1RSB glass to transform to a
marginally stable fullRSB glass at lower temperature. For each Tg, we can also compute the replica
symmetric spinodal where the glass melts into the liquid, also reported in Fig. 4 as a grey dashed
line. For a given Tg, the region delimited by the solid and dashed lines defines the simple (replica
symmetric) glass region. At temperatures below the blue line, the marginal (fullRSB) glass phase
exists. This phase is delimited by the blue line, and by fullRSB spinodal lines that continue the grey
line at lower temperatures; unfortunately, these lines can only be computed by solving the fullRSB
equations, which goes beyond the scope of this work. We thus interrupt the spinodal grey line when
it crosses the Gardner line, but the reader should keep in mind that this line should be continued
at lower temperature to properly delimit the marginal glass phase. Glasses prepared exactly at the
dynamical transition, Tg = Td, are unstable towards RSB everywhere in the glassy phase. We see
in Fig. 4 that the unstable phase of glasses prepared slightly below Td (top curve corresponding
to Tg = 0.55) still extends over a large region of the state-following phase diagram. As the glass
preparation temperature decreases, the unstable phase becomes everywhere marginally stable, and
its extension diminishes. This observation is consistent with the results of the previous subsection,
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Figure 5: Mean-field state-following phase diagrams for four different starting harmonic glasses:
(a) g1, (b) g2, (c) g3, (d) g4, whose location in the equilibrium phase diagram is shown Fig. 1.
The region of stability of the simple glass phase is delimited by the spinodal (dashed grey line)
and Gardner transition line (full blue line). Above the spinodal, the glass melts into the liquid.
Below the Gardner transition line, the glass is marginally stable (shaded blue region). The jamming
transition of the glasses takes place at T = 0, and ηJ indicated by an arrow.
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but Fig. 4 reveals a new, more subtle, phenomenon. The shape of the Gardner transition line evolves
qualitatively as Tg decreases. While the Gardner transition line TG(η) of the less stable glasses (top
curves in Fig. 4) increases monotonically with η, it becomes non-monotonic for lower Tg. For very
well annealed glasses, such as Tg = 0.4, the line even forms two disconnected regions. The marginal
phase then comprises a ‘dome’ around the jamming transition occurring at ηJ = log(ϕ̂J/ϕ̂g), and a
second region located at high compression η, as also observed in [39]. The Gardner transition line
which defines the latter region is qualitatively similar to the one found for the less stable glasses,
but it is shifted to much higher packing fractions.

We argue that these two distinct marginally stable phases have a different character. The
Gardner phase surrounding the jamming transition is similar to the one found by compressing hard
sphere glasses. The presence of a Gardner phase is crucial for an accurate mean-field description of
jamming. The marginally stable phase at high compression appears as a remanent of the marginality
which exists near the dynamical transition. It is always present, and increasing the glass stability
only shifts that phase to higher density. Finally, these two distinct phases would also be present for
the WCA pair potential over a range of intermediate densities, because WCA particles and harmonic
spheres have the same behavior in this regime. However, WCA particles behave qualitatively
differently at large densities, as described below in Sec. IV.4 where the inverse power law potential
is analyzed.

IV.3 Interplay between jamming and Gardner phase

We have studied the state-following phase diagrams of many initial glasses prepared in a variety of
conditions (Tg, ϕ̂g). We find that the phenomenon described in the previous subsection is generi-
cally observed for glasses prepared in all regions of the glass phase. For well-annealed glasses, the
marginally stable phase always splits into two distinct regions. We focus on four representative
well-annealed glasses g1, ..., g4, prepared at state points marked by black squares in Fig. 2. These
glasses are stable enough that the Gardner phase is separated into two distinct regions.

We present in Fig. 5(a-d) the state-following phase diagram for each initial glass g1, ..., g4. We
first determine the location of the jamming transition (T = 0, ϕ̂J) for each initial glass. The value
ηJ = log(ϕ̂J/ϕ̂g) is indicated in Fig. 5(a-d). We then focus on the limit of stability of the simple
glass phase. For all four glasses, we draw the corresponding Gardner transition lines separating
the two types of glasses, which separates into a dome around jamming and a marginal phase at
high compression. We have checked that the simple glass always destabilizes to a marginally stable
(fullRSB) glass, as the slope ∆̇(λ) is always negative. The parameter λ is finite at the left end of
the dome (corresponding to the hard sphere Gardner transition [60]), and decreases along the dome
to reach λ = 0 at its right end, corresponding to a zero-temperature soft sphere Gardner transition.
It then increases again from λ = 0 at zero temperature, along the higher-density Gardner transition
line. The difference between the four diagrams is the relative location of all these elements.

The glasses g1 and g2 are prepared below the line TJ . Their jamming transition is therefore
found by compressing the glass (ηJ > 0) at T = 0. In addition, |ηg2

J | < |η
g1

J | because g2 is prepared
closer to the line TJ in Fig. 2. Glasses g3 and g4 are prepared above TJ , and their jamming transition
takes place when decompressing them (ηJ < 0) at T = 0. Moreover, |ηg4

J | > |η
g3

J | because g3 is
prepared closer to TJ in Fig. 2.

For the glass g1, the dome surrounding jamming only appears for η > 0, and this glass does
not undergo a Gardner transition as it is cooled down to zero temperature at constant density.
By contrast, the denser glass g2 is located above the dome of marginality, and that glass can
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Figure 6: Equilibrium mean-field phase diagram of harmonic spheres, as in Fig. 2. We add the
transition lines TX (thin lines) which delimit the glasses that become unstable upon cooling (shaded
region), such as g2, and g3, or not, as for g1 and g4.

undergo a Gardner transition simply by cooling. A similar qualitative difference is observed for
the glasses g3 and g4, both prepared above the TJ . The glass g3 will become marginal if cooled at
constant packing fraction, while the glass g4 will remain stable down to its ground state. Despite
these differences, all these glasses can nevertheless become marginal by a combination of cooling
and compression/decompression over a broad range of state points. Finally, all these glasses also
become marginal when compressed to large packing fractions far above jamming.

The phase diagrams found in Fig. 5 suggest the existence of two types of behaviors. Some
glasses undergo a Gardner transition as they are cooled, while some glasses do not. This distinction
depends both on the initial temperature Tg of the glass, and on its initial density ϕ̂g. To distinguish
between these two types of glasses, we define a line TX(ϕ̂g) which delimits in the (Tg, ϕ̂g) phase
diagram. Our results for TX are reported in Fig. 6. Glasses prepared in the shaded part of this phase
diagram, like g2 and g3 undergo a Gardner transition to a marginally stable phase upon cooling at
constant density. The other glasses, like g1 and g4 do not and remain stable glasses down to T = 0.
The corresponding phase diagram presented in Fig. 6 is rather complex, exhibiting non-monotonic
re-entrant lines TX . The mean-field phase diagram of soft repulsive spheres is therefore not a trivial
extension of the one of hard spheres. Figure 6 shows that a Gardner phase is relevant for hard
sphere glasses, for soft particles prepared not too far from either the dynamical transition Td and
the temperature TJ , which suggests two distinct possible physical origins for the Gardner phase.

IV.4 Dense liquid regime

We now focus on the dense liquid regime modeled by the IPL potential. This also corresponds
to the large density limit of the WCA model, where only the repulsive part of the Lennard-Jones
interaction is physically relevant. We follow the strategy and representation adopted in Sec. IV.2
for the harmonic spheres.

The thermodynamic state of IPL glasses only depends on the combination Γ = ϕ̂/T 1/4. The
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complete phase diagram for the IPL model can therefore be completely understood by fixing for
instance the packing fraction and changing the temperature of the glass. For convenience, we choose
ϕ̂g = 4.304, for which the dynamical transition takes place at Td = 1. We consider glasses with
different stabilities, prepared at Tg < Td. Despite the one-dimensional nature of the phase diagram,
we show results for IPL glasses using the same representation as for harmonic spheres, using both
T and η, to allow for a more direct comparison of the two types of models. By definition, all lines
in this diagram exactly obey the relation T ∝ e4η.

We find that glasses prepared at Tg < T †g ' 0.92 transforms into a marginally stable glass when
cooled. Instead, glasses prepared in the range T †g < Tg < Td first transform into a 1RSB glass.
As for harmonic spheres, the slope ∆̇(λ) is negative for Tg < T †g , diverges upon approaching T †g
from below, and is formally positive above it. The Gardner transition lines for glasses prepared at
Tg = 0.9, 0.8, 0.7, and 0.6 are presented in Fig. 7. They have the form TG(η) = TG(η = 0)e4η, where
TG(η = 0) is the Gardner transition temperature obtained for a simple cooling of the glass. The
breaking point λ at the Gardner transition is equal to λ = 0.407, 0.283, 0.168, 0.042 for Tg = 0.9,
0.8, 0.7, and 0.6 respectively. As for harmonic spheres, λ → 0 when TG vanishes. The marginally
stable phase is pushed to larger densities and lower temperatures (in fact, to larger Γ) as the glass
stability increases. In this model, however, particles do not possess a physical size (the potential
has no cutoff at a finite distance), and hence the jamming transition cannot be observed. As a
consequence, the ‘domes’ of marginal stability found around the jamming transition in Figs. 4-5
for harmonic spheres are absent for the IPL model. The behavior of the Gardner transition lines
at high η with decreasing Tg is similar in the IPL and WCA models. The WCA potential instead
behaves as harmonic spheres near jamming and is thus characterized by domes around jamming.

In this dense liquid regime, glasses prepared at Tg < 0.567 remain stable down to their ground
state at T = 0, as reported before [40]. The most stable glass for which we report the Gardner tran-
sition line in Fig. 7 is Tg = 0.6. Below this value, glasses remain stable in the entire phase diagram
and never undergo a transition to a marginally stable phase, even at arbitrarily large compressions.
This is consistent with the high density/temperature limit found in the harmonic phase diagram
Fig. 6, where only glasses prepared in the vicinity of the dynamical transition become marginally
stable upon cooling (shaded region). However, harmonic spheres are qualitatively distinct from both
WCA and IPL potential regarding compression of very stable glasses: whereas harmonic spheres
always reach marginal states upon compression at constant temperature, very stable WCA and IPL
glasses do not. Note also that for harmonic spheres, the Gardner and spinodal lines meet at high
density, so that the glass always melts upon large enough compression, which is not the case of the
WCA and IPL models.

V Discussion and perspectives

In this work, we have obtained the complete mean-field phase diagrams of several glass-forming
models. In particular, we provided detailed information regarding the location of the marginally
stable glass phases for a variety of pair interactions and physical conditions, extensively explor-
ing physical regimes relevant to granular materials, foams, emulsions, hard and soft colloids, and
molecular glasses. We find that all types of glasses may become marginally stable upon cooling or
compression, but the extent of marginal phases strongly depends on the preparation protocol and
the chosen model. We find that increasing the glass stability systematically reduces the extent of
marginality. For well-annealed glasses, we find that marginality emerges in two distinct regions,
either around the jamming transition or at high compression. Our results suggest that marginal
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Figure 7: Dense liquid regime analyzed using the IPL potential. Glasses prepared at ϕ̂g = 4.304
(Td = 1), for various Tg = 0.9, 0.8, 0.7, 0.6 are followed in the (T, η) plane. For each glass, we
represent the state-following Gardner transition line TG(η) (full lines) and the spinodal (dashed
lines). All lines obey T ∼ e4η. The marginal phase shifts to large density and lower temperatures
as Tg decreases, and disappears altogether for Tg < 0.567.

phases should be easily observable for colloidal and non-Brownian particles near jamming, or poorly
annealed glasses.

Our study unifies previous results on marginal stability in mean-field models [25, 26, 39, 40].
Already in mean-field theory, marginal stability emerges under distinct physical conditions in dif-
ferent microscopic models. This provides a way to reconcile apparently contradictory numerical
and experimental studies aimed at detecting Gardner phases in finite dimensional glasses, where
its existence is still debated [70, 71]. In particular, the evidence for marginally stable phases re-
ported for 2d and 3d hard spheres glasses under compression contrasts with its absence in 2d and
3d numerical models of dense liquids upon cooling. Our analysis shows that already at the mean-
field level these two types of systems behave differently. In addition, while the critical properties
around the jamming transition remain unchanged from d = ∞ down to d = 2 [72, 73], the nature
of the mean-field dynamical transition is highly altered by finite dimensional fluctuations [74]. For
instance, our results predict that highly compressed dense liquids should be marginally stable (see
also [41]), a protocol that was never tested in finite dimensional studies.

Our results will be useful to guide future numerical simulations and experiments aimed at
detecting marginally stable phases in finite dimensional glasses. We find that mean-field Gardner
phases are not restricted to exist in the immediate vicinity of jamming, and could be more broadly
relevant to a wide class of materials. We are currently numerically investigating, along the lines
of this theoretical work, the evolution of the Gardner transition while continuously interpolating
between regimes relevant to dense hard sphere glasses and dense liquids, using a WCA potential [49].

Our results open a number of additional perspectives for future work. One finding is that soft
sphere glasses can undergo a zero-temperature Gardner transition, as reported in Fig. 5. A conve-
nient protocol to observe this transition is suggested in Fig. 5d for the glass g4. It can be quenched
at T = 0, where it is jammed and in the simple glass phase. It is therefore a stable harmonic energy
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minimum. Under decompression at T = 0, this state undergoes a Gardner transition before un-
jamming. The signature of this zero-temperature Gardner transition, if it exists in 2d or 3d, would
be particularly dramatic: the Hessian would develop delocalized soft modes [32], and the system
would start responding by intermittent avalanches [35] to an applied strain. A divergent correlation
length would also develop in the contact network [75]. The absence of thermal fluctuations should
make the study of this transition much easier than in the thermal case.

While the nature of the mean-field Gardner transition is certainly affected in finite dimen-
sions [70], the existence of extended marginally stable phases should give rise to interesting new
physics in structural glasses. As happens in spin glasses, even if the Gardner phase transition is
avoided in physical dimensions [48], it may still be the case that interesting physical phenomena,
such as aging and non-linear dynamics, remain relevant to describe the behavior of structural glasses.
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Chapter 3

Numerical exploration of the glass
phase in three-dimensional models

The mean field theory predicts that glasses prepared in various physical conditions are become
marginally stable at low temperature or high compression. This opens the possibility for a unified
study of low-temperature glassy anomalies. The theory predicts in particular that glasses charac-
terized by long-ranged interactions, which model dense atomic glasses, are marginally stable at low
temperature. The excess of low-lying excitations associated to a Gardner phase could provide a
new explanation, based on first-principles, for the violation of Debye theory in atomic glasses.

The investigation of Gardner phases in 3d glasses is motivated by numerical evidence for a
Gardner phase in three-dimensional hard sphere glasses [193]. These encouraging results suggest
that mean field predictions may survive down in 3d. In this Chapter, we provide an extensive
exploration of the glass phase in 3d models. The aim is to determine whether or not a Gardner
phase is found, as universally as in mean field, in 3d glasses.

In the first article, ‘Absence of marginal stability in a structural glass’ [222], we compare mean
field and numerical results for a glass-forming model with soft, long-ranged repulsive interactions
V (r) ∝ 1/r12. This study is the first numerical investigation of a Gardner transition upon cooling
in a model which does not possess a jamming transition. The aim was to determine whether a
Gardner transition can take place far from jamming in 3d glasses.

The mean field phase diagram of the model is first discussed. It is obtained by solving the
equations derived in Chapter 2. At the mean field level, soft glasses become marginally stable upon
cooling even in the absence of a jamming transition. We find that the presence of a Gardner phase
is not universal: only glasses prepared in the range 0.5 Td . Tg ≤ Td enter a Gardner phase at low
temperature. More stable glasses, prepared at lower Tg remain stable down to T = 0. The physical
relevance of glasses prepared in equilibrium at Tg . 0.5 Td, remains questionable. Thermalization
at such temperatures is challenging both in computer simulations and experiments.

We study the same model in 3d by means of molecular dynamics simulations. Stable glasses
are produced with the swap algorithm in the range 0.62 Td ≤ Tg < Td. In order to probe the
landscape of glasses, we create ‘clones’ of them (same initial positions, different velocities). The
clones are quenched independently to a lower temperature T . We measure the mean-squared
distance (MSD) between the particles in different clones, ∆AB, and the standard mean-squared
displacement of particles within a clone ∆. We focus in particular on their long-time limit as a
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function of temperature. We find that for all glasses there exists a crossover temperature T ?, such
that ∆AB = ∆ for T > T ?, and ∆AB > ∆ for T < T ?, at long times. Ergodicity is lost in the glass
at low temperature: the clones fall into dynamically inaccessible minima at T < T ?. This loss of
ergodicity inside a glass is consistent with the mean field picture of a Gardner transition.

However, the loss of ergodicity is not accompanied by further evidence for a Gardner transition.
No slowing down in vibrational dynamics is detected as T ? is approached. We measure a spin-glass
susceptibility χAB, which quantifies the number of correlated particles in the vibrational dynamics.
The susceptibility is of order one at all times and temperatures, signaling uncorrelated dynamics.
The absence of growing timescale and lengthscale around T ? is observed for all the glasses studied
0.62 Td ≤ Tg < Td. This is the largest glass preparation range currently accessible. Above Td,
activated events destabilize the glass, making the search for a Gardner transition intricate. The
lower bound for Tg is set by the efficiency of the swap algorithm.

We investigate at the particle level the origin of the loss of ergodicity, and find that it is due to
localized defects. A small fraction of particles can take at least two nearby positions. At T . Tg, the
particles can explore all available minima, but become trapped in one of them at lower temperature.
The crossover temperature T ? is related to the energy barrier between the nearby minima. The
localized nature of the defects explains the absence of a growing lengthscale: only a few particles
are more mobile ; and timescale: the MSD ∆ is dominated by the behavior of the majority of
particles, which is featureless. As a conclusion, 3d soft repulsive glasses do not undergo a Gardner
transition to a marginally stable phase at low temperature. An important effort is being devoted to
identifying the consequences of localized, or ‘quasi-localized’ defects for the dynamics, vibrational
density of states, and rheology of glasses.

The results of this study are in stark contrast with those of 3d hard sphere glasses [222]. This
discrepancy was confirmed by subsequent studies on hard spheres [223, 224] and soft particles [225].
The same glass preparation protocol, and similar observables were employed in all studies. The
existence of a Gardner phase in finite-dimensional glasses is not universal. As predicted by non
perturbative RG studies, glass-forming models may or may not possess a Gardner transition in 3d.
This work points out the need for a systematic exploration of the glassy phase in 3d, in order to
reconcile the existence, and absence, of marginal stability in glasses with hard, respectively soft
interactions.

The results of such a systematic exploration are presented in the second article, ‘Nature of
defects and excitations in structural glasses’ [226]. We explore the glassy phase of the 3d Weeks-
Chandler-Andersen model. This study parallels the work of the article ‘Marginally stable phases
in mean-field structural glasses’ of Chapter 2. The WCA model allows to continuously interpolate
between the hard-sphere regime, recovered in the limit T = 0, and the dense liquid regime, found
at high packing fraction ϕ and temperature. We study glasses prepared at various state points
(ϕg, Tg), corresponding to different physical regimes and glass stabilities.

The loss of ergodicity at low temperature is found in all glasses. This suggests that all glasses
are characterized by a rough energy landscape, composed by many minima. This loss of ergodicity
may or may not be accompanied by a growing lengthscale, dynamic heterogeneity and aging effects,
depending on the density regime. Our main finding is that the nature of the energy landscape
depends strongly on the density regime and evolves continuously from the jamming regime (hard-
sphere behavior), to larger densities and temperatures (soft potential behavior).

At high densities, in the regime relevant for molecular and atomic glasses, the landscape is rela-
tively simple, and characterized by few minima. The dynamical behavior of the glass is dictated by
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highly localized defects, which correspond to a few particles hopping between nearby configurations.
By contrast, at lower densities corresponding to the vicinity of the zero-temperature jamming tran-
sition, relevant for granular materials, the landscape is very rough and has a hierarchical structure.
We find barriers with a broad range of energy scales, and a degree of localization that spans very
localized to highly extended defects. This confirms the two previous numerical studies.

Most interestingly, in the intermediate regime of densities, relevant for soft colloidal particles
and emulsions, the landscape is characterized by both features. We find localized defects associated
to high energy barriers, and are responsible for ergodicity breaking inside the glass. The freezing of
these defects, which involve a few particles, defines a small number of sub-basins. Each sub-basin,
however, possesses a complex structure at lower energy scales, with extended defects associated to
low barriers that appear similar to the ones found in the vicinity of jamming.

We provide the first numerical evidence for a Gardner transition in thermal soft glasses in 3d,
which extends the hard-sphere results to thermal systems. When present, the Gardner phase forms
a ‘dome’ in temperature and packing fraction around the jamming transition. While the Gardner
and jamming critical regions (see Sec. 1.2.3, Fig. 1.9) have a similar shape, the marginally stable
region is much more extended than that of jamming criticality, and contains the latter.

We are successful in finding in which physical conditions 3d glasses are marginally stable. This
opens the possibility to explore the low-temperature physics and dynamics of structural glasses
characterized by complex landscapes.

In the third article, ‘Rejuvenation and Memory Effects in a Structural Glass’ [227], we take
advantage of our systematic exploration of the glassy phase to study the nonequilibrium dynamics
of glasses evolving in a hierarchical landscape. We perform a temperature cycle protocol, similarly
to spin-glass studies. We study WCA glasses prepared at intermediate density, for which a Gardner
phase was found at low temperature. The high-temperature fluid is suddenly cooled to T1 in the
glass phase, where it ages for a long time t1. The glass is then cooled to a lower temperature
T2 < T1. For sufficiently low T2, aging dynamics restarts. This nontrivial ‘rejuvenation’ effect is
due to the hierarchical structure of the glass landscape. The glass is aged for t2 = t1 at T2, before
being heated back to T1. At T1, the glass has kept a ‘memory’ of its state, and aging dynamics
proceeds as if nothing had happened at T2.

Rejuvenation and memory effects were used in the past to compare and classify different classes
of glasses. We demonstrate that in some conditions, structural glasses such as colloidal and gran-
ular glasses, behave like spin-glasses rather than molecular glasses. Our three numerical studies
rationalize the absence of memory and rejuvenation effects in atomic and molecular glasses. Their
behavior is dominated by the presence of a few localized defects, and not a hierarchical distribution
of energy barriers corresponding to extended defects.

In the last article of this Chapter, ‘Reduction of tunneling two-level systems in ultrastable com-
puter glasses’ [228], we investigate the classical and quantum tunneling properties of the localized
defects identified in the work ‘Absence of marginal stability in a structural glass’.

Since the 70s, it is known that glasses universally present anomalous transport properties at
low temperatures, typically around 1 K. While Debye’s theory for crystalline solids predicts that
the specific heat scales as T 3, it is found to scale as T in many glasses [48]. This implies that
phonons are not the only type of excitations in glasses at very low temperature. Shortly after
the publication of these experimental observations, a phenomenological model was put forward
to rationalise them [51]. Since then, it is broadly accepted that due to disorder, there exists
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some localized defects, or two-level systems (TLS), which can tunnel quantum mechanically at
low temperature. One cannot ‘observe’ TLS in glasses, which makes our understanding of these
excitations very poor. Our study is motivated by the fact that glasses prepared via physical vapor
deposition at temperature 0.85 Tg, do not show the so-called ‘universal’ anomalies [69]. There is
evidence that these vapor deposited (VD) glasses lie very deep in the energy landscape [229]. There
is additional evidence that VD glasses are anisotropic. The current debate among experimentalists
is whether the suppression of TLS is due to the anisotropy of the glasses, or them having very low
enthalpy.

We provide fresh insight into these old and new problems. We use the method presented
in Chapter 4 to prepare in silico glasses in an unprecedentedly wide range of stabilities. This
amounts to tuning the quench rate used during glass preparation. We focus in particular on three
glass stabilities, referred to as hyper-quenched, liquid-cooled, and ultrastable.

We develop a method to identify nearby minima in the potential energy landscape, or ‘double-
well potentials’ (DWP). We study the classical parameters of the DWPs, in particular the energy
barrier, the asymmetry, the number of particles involved in the barrier crossing. We then analyze
the quantum properties of the DWP, by solving the 1d Schrödinger equation for the minimum
energy path connecting two minima. We compute the quantum splitting δE of the DWPs, its
probability distribution, and identify those active below 1 K, which are two-level systems (TLS).
We show that the density of TLS decreases with glass stability, as found experimentally. Since
the computer glasses are isotropic, we conclude that the density of TLS is directly connected to
how deep the glass lies in the energy landscape. The ‘universality’ of glassy anomalies would stem
from the similarity of liquid cooling protocols, and would therefore not be a universal feature of
disordered solids.

73



Article

Absence of marginal stability in a
structural glass
C. Scalliet, L. Berthier and F. Zamponi, Physical Review Letters 119 (20), 205501 (2017).

Marginally stable solids have peculiar physical properties that were first
analyzed in the context of the jamming transition. We theoretically inves-
tigate the existence of marginal stability in a prototypical model for struc-
tural glass-formers, combining analytical calculations in infinite dimensions
to computer simulations in three dimensions. While mean-field theory pre-
dicts the existence of a Gardner phase transition towards a marginally sta-
ble glass phase at low temperatures, simulations show no hint of diverging
timescales or lengthscales, but reveal instead the presence of sparse localized
defects. Our results suggest that the Gardner transition is deeply affected
by finite dimensional fluctuations, and raise issues about the relevance of
marginal stability in structural glasses far away from jamming.

Introduction – Many types of fluids (molecular, colloidal, metallic) transform into amorphous
glasses [1, 2]. In the glass phase, they present thermodynamic [3], transport [4], vibrational [5]
and mechanical [6] properties that are not observed in crystals. These “low-temperature anomalies”
are observed in a wide range of systems with very different particle types or interactions, and
several theoretical approaches were developed to understand them [7, 4, 8, 9, 10], making specific
assumptions about the nature of the excitations responsible for the anomalies.

A different proposal recently emerged from the convergence of two lines of research, based on the
idea that collective excitations associated to marginal stability could be the key concept underlying
these properties. First, it was realized that systems close to a jamming transition are marginally
stable, in the sense that the number of mechanical interactions in the system is precisely tuned [11].
It was later proposed that marginal stability persists away from jamming [12, 13, 14]. Second,
an extension of the random first order transition theory [15, 16, 17] to amorphous hard spheres
in large dimensions was obtained [18]. It predicts a Gardner phase transition [19, 20] between
a normal glass phase and a marginally stable one characterized by an excess of low-frequency
modes [21] and unusual rheological properties [22, 23, 24]. The marginal stability of the Gardner
phase could provide a universal explanation for glass anomalies [25, 18]. Marginal stability implies
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that the system responds in a strong and system-spanning way to a weak, localized perturbation [12],
implying the existence of delocalized soft modes [21], and diverging susceptibilities [26, 22].

These recent results provide new opportunities to explain the properties of amorphous materials,
motivating ongoing efforts to understand whether marginal stability holds generally in these materi-
als. Hard [27, 28, 29] and soft [14] spheres very close to the jamming transition have been analyzed,
showing that marginal stability and the Gardner transition may be relevant in colloidal and granular
glasses. However, molecular and metallic glasses are usually modeled by longer-ranged, continuous
pair interactions for which no jamming transition takes place [1, 2]. In this context, much less is
known about the role of marginal stability [30], and the existence of a Gardner phase has not been
established. Therefore, it is not known whether marginal stability can be used to understand the
low-temperature anomalies in generic structural glasses.

To address this important question, we combined theoretical and numerical analysis of the
low-temperature vibrational properties of a standard model for atomic glasses. At the mean-field
level, a marginally stable Gardner phase is predicted, which is then conceptually unrelated to
jamming. However, our numerical simulations of the same model in three dimensions contrast with
these predictions. We find no sign of a phase transition within the entire glass phase. We detect
instead sparse localized defects at low temperature, but they do not give rise to growing timescales
and lengthscales that would accompany the emergence of marginal stability at a Gardner phase
transition.

Mean-field theory – We consider a monodisperse system of d-dimensional particles interacting
through a continuous pair potential v(r) = ε(σ/r)4d. This is the repulsive part of the Lennard-
Jones potential, generalized to an arbitrary dimension d. The exponent for the inverse power law
is larger than d to ensure that the virial coefficients remain finite in any dimension. We use σ and
ε as our unit length and energy, respectively. The state of the system is uniquely controlled by
Γ = ϕ̂/T 1/4, where T is the temperature and ϕ̂ = ρVd2

d/d is the rescaled packing fraction (ρ is
the number density, and Vd the volume of a d-dimensional sphere of diameter unity). We fix the
packing fraction ϕ̂ = 1 and vary the temperature, thus exploring the entire phase diagram.

In the limit d → ∞, the thermodynamic properties of the liquid and glass can be computed
exactly [15, 18]. In this limit, the system exhibits a sharp dynamical transition of the mode-coupling
type [31, 18] at a temperature Td at which the relaxation time of the liquid diverges. Below Td,
the system is trapped in one of the exponentially-many minima of the free-energy landscape. We
compute the properties of a typical equilibrium liquid at a temperature Tg ≤ Td. As temperature
decreases, the glass is confined near the state selected at Tg in a “restricted” equilibrium, and thus
follows an equation of state different from the liquid. We compute exactly the free energy of this
glass fg(T, Tg; ∆,∆r) at the replica symmetric level [32] thanks to a state-following construction [33,
32, 18]. It depends on two parameters: ∆ is the long-time limit of the mean-squared displacement
within the followed glass state, and ∆r is the relative mean-squared displacement between the
original equilibrium configuration at Tg and the one followed to T . The free energy fg is stationary
with respect to ∆ and ∆r. The average pressure and energy of glasses are obtained by taking
derivatives of fg with respect to density and temperature, respectively.

We solve the resulting set of coupled integro-differential equations given in Ref. [32] to obtain
the phase diagram in Fig. 1a. First, we compute the potential energy E of the equilibrium liquid
and the dynamical transition temperature, Td = 0.002914. We then compute the energy of glasses
prepared at different Tg ≤ Td as a function of temperature. A Gardner transition is detected when
the replica symmetric solution becomes unstable [32], signaling the transformation of the simple
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Figure 1: (a) Mean-field phase diagram. Energy of the equilibrium liquid (black line), and dynam-
ical transition temperature Td (black square). Various glasses prepared at Tg < Td are followed out
of equilibrium (full lines). When Tg & 0.5Td, these glasses undergo a Gardner transition (bullets)
into marginally stable glasses (dashed lines). (b) Numerical phase diagram with equivalent repre-
sentations of the liquid, dynamic transition and glass lines. Bullets locate the temperature crossover
below which localized excitations appear, but do not correspond to a Gardner transition. In both
panels, axes are rescaled by the value at Td: Ed = E(Td).

glass into a marginally stable one. The low-temperature Gardner phase is described by breaking
the replica symmetry [20, 34], and the transition belongs to the same universality class of the spin-
glass transition in a magnetic field [35, 36]. The presence of a Gardner transition is in general
not a universal result [35, 37]. In our model, over a large temperature window 0.5 . Tg/Td < 1,
a marginally stable Gardner phase exists, while for Tg . 0.5Td no Gardner transition is found.
Because our model does not possess a jamming transition, our results show that mean-field theory
predicts that marginal stability is not restricted to the vicinity of jamming, but should be broadly
relevant for generic structural glasses with continuous interactions.

Numerical simulations – There is no clear consensus on the influence of finite dimensional
fluctuations on the Gardner transition [38, 39, 40, 36, 41, 42]. Contradictory results were reported
in numerical works. The existence of a transition was suggested in d = 4 [39], but opposite claims
were also made [38, 41]. A renormalization group approach [42] found a fixed point in all dimensions
d ≥ 3, while other works found different results [43, 36]. Thus, we must confront our theoretical
predictions to a direct numerical investigation of the 3d version of the above model. Because the
putative transition occurs deep inside the glass phase, it is crucial to prepare well-thermalized
glasses, such that the structural relaxation time is larger than the duration of the simulation. This
is now possible thanks to the development of an efficient swap Monte Carlo technique [44, 45, 46].

We simulate a continuously-polydisperse system composed of N = 1500 particles at number
density ρ = 1. We perform selected simulations with N = 12000 to analyze finite size effects.
Particles interact via the repulsive pair potential v(rij) = ε(σij/rij)

12 + F (rij), where F (rij)
guarantees the continuity of the potential up to the second derivative at the numerical cutoff distance
rcut = 1.25 σij , beyond which v = 0 [46]. The particle diameters are drawn from the normalized
continuous distribution P (σm ≤ σ ≤ σM ) ∼ 1/σ3. The size ratio of σm/σM = 0.45 was optimized
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Figure 2: (a) Mean-squared displacement ∆(t, tw) and mean-squared distance ∆AB(t) as a function
of t − tw and t for Tg = 0.062 and T = 10−4 rapidly converge to their long-time limits (dashed
lines). (b) Long-time limits of ∆∞ and ∆∞AB as a function of temperature, for different Tg. Both
quantities differ below T ∗(Tg), indicated by vertical segments.

to provide an excellent glass-forming ability. Similarly, we use a non-additive interaction rule for the
cross diameters σij =

σi+σj
2 (1− η|σi − σj |), with η = 0.2. Length, time and energy are respectively

expressed in units of σ =
∫
σP (σ)dσ,

√
ε/mσ2 and ε. The mode-coupling crossover temperature

Td ≈ 0.1 is determined by fitting the relaxation time τ measured with standard dynamics to
τ ∼ (T − Td)−γ [46]. Using swap Monte Carlo, equilibrium can be ensured (using standard criteria
[46]) down to T ≈ 0.6Td.

To numerically mimic the state following scheme, swap Monte Carlo is used to produce Ns = 50
independent equilibrium configurations at each Tg (0.062, 0.07, 0.075, 0.082, 0.092). We then
generate Nth = 10 copies of each configuration, that differ only by the initial velocities of particles
(two such copies are referred to as A and B). Each of the Ns ×Nth samples is simulated at Tg in
the NV E ensemble during a time tq, depending on Tg (tq = 1000 for Tg = 0.062, 0.07; tq = 100 for
Tg = 0.075; tq = 0 for Tg = 0.085). The time tq is chosen such that particles in different copies
have time to explore their cages without diffusing. After tq, the glass is instantaneously cooled to a
temperature T < Tg with a Berendsen thermostat (coupling parameter τT = 10) [47]. Waiting times
tw are measured since the quench. We find that after tw ≈ 100, the temperature stabilizes to the
desired value. For the highest Tg = 0.092 studied, diffusion is not totally suppressed at equilibrium.
Glasses were first cooled down to T = 0.07 with a cooling rate γ = 10−7 before making copies. We
then used the same protocol as for Tg = 0.07 to obtain the data.

The Gardner transition is a second-order phase transition accompanied by diverging timescales
and lengthscales characterizing vibrational dynamics. The transition signals profound changes in
the structure of the landscape and the emergence of marginal stability. Mean-squared displacements
(MSD) represent therefore the central observables for such investigation [48, 27]:

∆(t, tw) =
1

N ′

N ′∑

i=1

〈|ri(t+ tw)− ri(tw)|2〉 ,

∆AB(t) =
1

N ′

N ′∑

i=1

〈|rAi (t)− rBi (t)|2〉 ,
(1)
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Figure 3: (a): The susceptibility χAB for different Tg raises mildly above the floor level (dashed line)
across T ∗ (vertical segments). The error bars are computed using the jackknife method. (b): The
van-Hove function of relative displacements has a narrow Gaussian core of width given by ∆∞ (solid
blue), and exponential tails (solid red) at Tg = 0.062 and T = 10−4. (c) Corresponding snapshot
with N = 12000 showing the few particles having displacements outside the Gaussian range (red
spheres) among a majority of particles undergoing small amplitude Gaussian vibrations (blue dots).

where the brackets indicate averages over thermal fluctuations and disorder. They respectively
represent the standard MSD and the relative MSD between two copies of the same glass. Since
smaller particles may escape their cage more easily, we concentrate on the N ′ = N/2 larger particles.

The typical behavior of the MSDs after a quench is shown in Fig. 2a. Both quantities converge to
their long-time limits, ∆∞AB, ∆∞ after a time of order 100 (set by the thermostat). No sign of slower
relaxation or aging behavior is detected at any state point, which indicates that the time dependence
of the observables is not pertinent. The absence of slow relaxation contrasts dramatically with hard
sphere simulations [27], and directly reveals the absence of marginal stability throughout the glass
phase.

We gather the results for ∆∞AB and ∆∞ in Fig. 2b. The standard MSD changes linearly with
T , as expected. The behavior of the relative distance is qualitatively the same for all Tg. The
equality ∆∞AB ≈ ∆∞ holds at high enough T , meaning that the structure of the basin is relatively
simple. There is a crossover temperature T ∗(Tg) (vertical segments), below which ∆∞AB > ∆∞. The
distance between two copies is then much larger than the vibrations they can perform individually,
suggesting that the copies get quenched in distinct minima. This splitting of MSDs was observed
in hard spheres [27, 28] and identified as a Gardner transition. We report in Fig. 1b the crossover
temperatures and the glass energy. The similarity between the two phase diagrams in Fig. 1 is
obvious.

The absence of slow relaxation in Fig. 2b reveals the lack of a growing timescale. To address
lengthscales, we study the global fluctuations of the relative MSD. The variance of these fluctuations
defines the susceptibility χAB = N [〈∆̃2

AB〉−〈∆̃AB〉2]/[〈∆i 2
AB 〉−〈∆i

AB〉2], where ∆̃AB is the plateau
value of the relative MSD for a given pair AB, and ∆i

AB its single particle version. The normal-
ization in χAB ensures that χAB = 1 for spatially uncorrelated motion and that χAB is a direct
measure of the correlation volume. If the crossover at T ∗ corresponded to a Gardner transition,
the susceptibility would diverge near T ∗. The results in Fig. 3a are very similar for all Tg values:
the susceptibility increases very weakly as temperature decreases. Within our error bars, there is
actually very little global fluctuations above the floor level. This directly demonstrates that spatial
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correlations between particle motion remain microscopic across the crossover T ∗, which is thus not
accompanied by a growing correlation length. This is consistent with the absence of slow dynamics
in Fig. 2a. A similar value of χAB was observed in larger systems of N = 12000 particles at specific
state points. We studied the spatial correlation function for the relative MSD [27], of which the
volume integral is χAB, and did not find hints of a growing length scale at any temperature. We
conclude that T ∗ does not coincide with the emergence of a marginally stable phase.

To understand the origin of the crossover observed in Fig. 2b, we resolve the vibrational dynam-
ics at the particle scale. We measure the distribution of relative particle displacements, P (δxiAB),
where δxiAB = xiA − xiB is the relative motion of particle i between copies A and B along the
x-direction. We average over the three directions of space. The van-Hove function is nearly Gaus-
sian when T ∗ < T < Tg with a width controlled by ∆∞. Close to T ∗ and below, the distribution
remains Gaussian in its core, but exhibits tails that are well-fitted by an exponential, as shown in
Fig. 3b. We evaluate the statistical weight of the particles contributing to the tails by integrating
the exponential fit. It varies between 1% and 3% for all state points and typically increases with
Tg. This corresponds to a small subset of particles that get frozen in slightly distinct positions
below T ∗ in two copies. The error bars for χAB are large because the number of particles in the
tails is small, and fluctuates significantly from one pair AB to another. We have checked that
these mobile particles encompass all particles, not only small ones that are more mobile. To gather
spatial information on these few mobile particles, we select particles with a relative displacement
δxiAB outside of the Gaussian core of the distribution, and visualize them in snapshots. A typical
snapshot obtained for N = 12000 is shown in Fig. 3c. We represent the vast majority of particles
with Gaussian displacements as small points and highlight particles contributing to the tails with
larger red spheres. Strikingly, these mobile particles are clustered into sparse localized defects.
When Tg increases, the number of mobile particles as well as their characteristic displacement ∆i

AB

increase weakly. This directly accounts for the shift of T ∗ with Tg. These few localized clusters
thus dominate the behavior of the relative displacement ∆∞AB which is averaged over particles, and
are responsible for its separation from ∆∞ in Fig. 2b. Our key conclusion is that the emergence of
these localized clusters at T ∗ does not correspond to a Gardner phase transition, and glasses below
T ∗ are not marginally stable.

Discussion – In our system, the marginal stability described within mean-field approaches is
strongly suppressed by finite-dimensional fluctuations. Our results differ dramatically from previ-
ous work on hard sphere systems [27, 28]. This surprising lack of universality contrasts with the
universality of glass formation [2]. One possible explanation for this difference is that structural
glasses may generically become marginal only when pushed towards specific “critical” transitions,
such as jamming [49]. The jamming transition appears robust down to 2d, with the same critical
properties as in d = ∞ [50]. This could explain why a Gardner transition is observed in finite-
dimensional hard sphere glasses near jamming, whereas glass-formers with continuous interactions
reach non-marginal inherent structures at zero temperature. After this work was completed, two
other works appeared reporting consistent findings [51, 52].

Our results raise two types of questions. First, the presence of a marginally stable glass phase
seems highly dependent on the details of the particle interactions and on dimensionality. To better
understand the nature of the Gardner transition, one should investigate better the crossover between
continuous and discontinuous interactions, using for instance well-chosen particle interactions [53,
54]. One should also investigate the crossover towards non-mean-field behavior by using either
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dimensionality [18] or the interaction range [55, 48] as tuning parameters. Second, it would be
interesting to connect the present results with other observations of localized defects [10], such as
soft localized modes controlling the low-frequency part of the vibrational spectrum in amorphous
solids [56, 57], localized defects controlling relaxation in supercooled liquids [58, 59, 60, 61], or the
shear-transformation-zones [62, 63, 64, 65] controlling the mechanical behavior of amorphous solids.
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Nature of defects and excitations in
structural glasses
C. Scalliet, L. Berthier and F. Zamponi, Nature Communications 10, 5102 (2019).

The nature of defects in amorphous materials, analogous to vacancies
and dislocations in crystals, remains elusive. Here we explore their na-
ture in a three-dimensional microscopic model glass-former which describes
granular, colloidal, atomic and molecular glasses by changing the temper-
ature and density. We find that all glasses evolve in a very rough energy
landscape, with a hierarchy of barrier sizes corresponding to both localized
and delocalized excitations. Collective excitations dominate in the jamming
regime relevant for granular and colloidal glasses. By moving gradually to
larger densities describing atomic and molecular glasses, the system crosses
over to a regime dominated by localized defects and relatively simpler land-
scapes. We quantify the energy and temperature scales associated to these
defects and their evolution with density. Our result pave the way to a
systematic study of low-temperature physics in a broad range of physical
conditions and glassy materials.

I Introduction

Amorphous solids may be prepared via two distinct routes. Atomic and molecular glasses are
obtained by crossing a glass transition, by cooling a dense liquid at constant pressure, or by a com-
pression at constant temperature [1]. Disordered assemblies of grains, droplets and large colloids
solidify by crossing a jamming transition upon compression from a fluid state [2]. In a seminal
work, Liu and Nagel [3] proposed a unified phase diagram for glass and jamming transitions. Subse-
quent work investigated amorphous solidification by interpolating continuously between these two
limits [4], to understand similarities and differences between them.

Zero-temperature amorphous solids are minima of the many-body interaction potential, and
their low-temperature properties are determined by the structure of the potential energy landscape
around these minima [5, 6]. The low-frequency vibrational modes around a minimum define the
excitations of the solid (analogous to phonons in a crystal), and the structure of energy barriers
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separating nearby energy minima define the defects (analogous to vacancies and dislocations in a
crystal). The nature of excitations and defects can be different in systems undergoing jamming or
glass transitions.

Understanding the nature of excitations and defects in amorphous solids is one of the major
goals of condensed matter physics, because these features are relevant for mechanical, thermal and
transport properties [7, 6], such as specific heat and thermal conductivity [8, 9], sound attenua-
tion [10], energy dissipation [11] (with important technological consequences, e.g. for gravitational
wave detection [12]), solid elasticity and plasticity [13, 14, 15, 16, 17].

In dense atomic glasses, typically modeled by simple Lennard-Jones (LJ) interaction potentials,
low-frequency excitations are phonon-like (with peculiar properties) [18, 19, 20, 21], and defects
are localized, with a few particles jumping between two local minima and slightly perturbing their
neighbors, giving rise to two-level systems that play an important role in the low-temperature
thermal properties of glasses [22, 7]. This phenomenology has been numerically confirmed in simple
LJ-like glass models [6, 23, 24].

A different situation holds near jamming where particles interact essentially via short-range re-
pulsive forces and mechanical stability is controlled by particle contacts. The minimal number of
contacts required for stability is the isostatic number, which is exactly reached at the jamming tran-
sition. In the vicinity of the transition, the solid is marginally stable [2, 25]: a small perturbation
can remove a few contacts and destabilize the entire solid [26, 27]. This geometrical feature gives
rise to low-frequency collective excitations that are extremely different from phonons [28, 21, 29].
The energy landscape features a large number of minima [30], separated by low barriers. The corre-
sponding defects are thus extended and involve collective particle motion, as numerically observed
in simulation of Hard Sphere (HS) glasses [31, 32].

The mean-field theory of the glass transition has attempted to describe this phenomenology,
coming to two important conclusions [30]. First, glass and jamming transitions are distinct phase
transitions, where solidity emerges at thermal equilibrium (glass transition) or at zero temperature
(jamming transition). Second, for repulsive particles, the jamming transition is buried deep inside
a glass phase, which is split in two distinct phases, containing either trivial excitations (‘simple
glass’), or collective ones (‘marginal glass’). Mean field theory predicts that a sharp Gardner phase
transition separates these two glass phases [30]. These mean field results, however, conflict with
several finite dimensional studies. First, the nature of the Gardner transition in three dimensions is
not fully understood [33]. Second, the quasi-localised excitations [20, 21] and localized defects [23,
34] numerically observed in glassy systems are not described by mean-field theory.

In summary, the two extreme cases of LJ-like and HS glasses, which have been thoroughly
investigated by numerical simulations, together with the insight coming from mean field theory,
highlight the conceptually distinct nature of excitations and defects in glassy and jammed states.
Yet, many questions are currently open. Are extended, marginally stable excitations restricted to
HS glasses [35]? How do excitations and defects evolve between the jamming and glass regimes?
What is the region where marginal stability influences glass properties? Do localized and collective
excitations coexist in some regime?

We address this broad set of questions by introducing two main technical tools. First, we simu-
late a three-dimensional system of particles interacting via the Weeks-Chandler-Andersen (WCA)
potential [36]. Varying a physical control parameter, i.e. the density, allows to capture all relevant
glassy regimes. At high density, the WCA potential becomes equivalent to a Lennard-Jones poten-
tial, widely used for atomic glasses. At lower density, the finite range of the WCA potential makes
it suitable to study jamming. Second, we perform a systematic investigation of the distribution of
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minima and barriers in the potential energy landscape, by means of a state-of-the-art reaction path
finding protocol.

Our analysis leads to two main findings. First, the HS phenomenology extends in a wide
region of the phase diagram of the soft WCA system, centered around the jamming transition.
Marginal stability, and its associated collective excitations and defects, is then relevant not only for
hard colloids, but also for softer systems such as foams and emulsions. Second, marginal stability
can coexist with localized defects over a wide range of physical conditions. Collective modes are
typically associated to low-energy barriers, whereas localized modes correspond to the motion of a
few particles in a rigid elastic matrix, controlled by higher energy barriers. The two phenomena
are thus controlled by different energy and temperature scales that we quantify numerically. In the
vicinity of jamming, all defects are collective. At intermediate density, collective defects exist only
under a characteristic temperature ‘dome’, as predicted by mean-field theory [17, 37], while localized
defects dominate at higher temperatures. At high density, collective defects disappear. Our results
thus establish the extent of the region in which marginal stability impacts glass physics, and open
the way for a systematic study of low-temperature glass physics (including quantum effects) across
the whole range of experimentally relevant conditions.

II Results

II.1 Equilibrium phase diagram

We first discuss the packing fraction, ϕ, and temperature, T , equilibrium phase diagram of the
three-dimensional polydisperse, non-additive WCA model we simulate (see Sec. IV for technical
details). We focus in particular on the determination of the fluid region, and its boundary, the glass
transition, below which physical dynamics fail to reach equilibrium.

For each packing fraction, we study the temperature evolution of the relaxation time τα of density
correlations in the equilibrium fluid, using molecular dynamics (MD) simulations. The relaxation
time is measured through the self-intermediate scattering function Fs(k, t), by the condition Fs(k =
7.0, t = τα) = e−1, and it follows an Arrhenius law at high temperature, while deviations from the
Arrhenius law appear below an onset temperature T0, where τα(T = T0) ≡ τ0. Standard algorithms
such as MD fail to reach equilibrium below Td, defined by τα(T = Td) = 104τ0. We refer to Td as
the “computer glass transition”. Glasses prepared at the computer glass transition lie much higher
in the energy landscape than any experimental glass, which are created after up to twelve decades
of glassy dynamical slowdown.

In order to bypass the computer glass transition and access deeper glassy minima, relevant
to describe real materials, we use a hybrid swap Monte Carlo algorithm [38]. This unphysical
dynamical scheme, which accelerates greatly equilibrium sampling [39, 40], achieves thermalization
down to temperatures around 0.6Td almost independently of the packing fraction.

In Fig. 1 we indicate by circles the state points for which equilibrium is reached, either by MD or
swap. The state points below the computer glass transition line Td(ϕ) have been fully equilibrated
by swap. In this article, we present results for glasses prepared well below the computer glass
transition, highlighted by red squares in Fig. 1. They lie along a line Tg ≈ 0.65 Td of similar
glass stabilities, which corresponds roughly to the experimental glass transition temperature. The
latter is defined by τα = 1012τ0, and estimated by extrapolating the physical relaxation time with
a parabolic law. These glasses lie so deep in the landscape that when their physical dynamics is
simulated with MD, diffusion is suppressed over accessible timescales, and only vibrations around

82



Article: Nature of defects and excitations in structural glasses

Figure 1: Equilibrium phase diagram of the WCA model. The red line corresponds to the
computer glass transition, below which conventional molecular dynamics simulations fail to reach
equilibrium over accessible time scales. State points are studied in equilibrium conditions with the
hybrid swap method (circles). After energy minimization, their potential energy is either zero (open
circles, unjammed), or positive (full circles, jammed). The equilibrium glassy states analyzed in
more detail are indicated with red squares.

the initial equilibrated configuration are observed. The landscape picture of a well-defined glassy
basin, from which the system does not escape, is thus relevant. The nature of the glassy basin,
either smooth, rough, etc., determines the physical properties of the material. In this work, we
study how the properties of glassy basins are affected by varying density.

More precisely, our strategy is to prepare equilibrium configurations at various state points
(ϕg, Tg) using hybrid swap, in order to select a glass basin, which we then follow out of equilibrium
using ordinary MD simulations across the phase diagram (ϕ, T ). We determine how the properties
of a given glass depend on the preparation state (ϕg, Tg), which encodes its degree of stability, and
the state point (ϕ, T ) at which it is studied. The glass properties depend both on initial and final
state points. To each initial glass selected in the plane of Fig. 1, corresponds a two-dimensional
state following phase diagram [17, 37]. This makes a representation of the complete phase diagram
difficult. Instead, we focus on a few well-chosen initial glasses, and follow their evolution with both
ϕ and T .

In order to connect the glassy physics to that of the jamming transition occurring at zero
temperature, we use a conjugate gradient method to minimize all equilibrated state points in Fig. 1
to their inherent structure [5, 6]. The potential being purely repulsive with a finite interaction range,
the potential energy of the inherent structures can be either positive (indicating that some particles
overlap), or zero (no overlap). We call “jammed” the former and “unjammed” the latter inherent
structures, and the jamming transition separates the two regimes [2]. In Fig. 1, open (full) circles
reach unjammed (jammed) inherent structures under minimization. Depending on the preparation
of the glass basin, in our model the jamming transition can occur over a range of packing fractions
ϕJ ∈ [0.78 − 0.84]. The lower value is found when minimizing random configurations, while the
higher bound corresponds to the jamming transition of deeply thermalized samples. Note that the
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unusually high values of ϕJ (for a 3d system) stem from both polydispersity and non-additivite
interactions of our mixture (see Methods).

II.2 Ergodicity breaking inside a glassy minimum

Configurations prepared by hybrid swap at a state point (ϕg, Tg) are equilibrated, but their dynam-
ics, when simulated by MD, is arrested, and no diffusion is observed. Yet, at long times, molecular
dynamics ergodically samples the glass basin selected by the initial configuration. We now study
how this ergodicity is broken when temperature and packing fraction are changed. Let us stress
that we are looking at an ergodicity breaking transition inside the glass, i.e. within the vibrational
dynamics [30, 31], which is very different from the more familiar ergodicity breaking transition
occurring in the diffusive dynamics when quickly cooling the liquid into the glass phase.

Ergodicity breaking inside glassy minima can be detected using the isoconfigurational ensem-
ble [41]. We prepare nc identical clones of each equilibrium configuration, initialized with inde-
pendent velocities. Their dynamical evolution is studied at a new state point (ϕ, T ) with MD. We
measure ∆AB(tw), the mean-squared displacement (MSD) between two clones after a time tw spent
at the new state point, and ∆(tw, tw + τ), the MSD of particles between time tw and tw + τ , in a
single clone. Both quantities are averaged over clones and initial glasses (see Methods for details).
The full time and waiting-time dependence of these quantities is studied below. Here we focus on
their long time behavior. In the temperature regime studied, diffusion is suppressed and the MSDs
typically show a plateau at long times, which we characterize by their value at tw = 8192, τ = 104.
If the glass basin is sampled ergodically, the average distance between two clones must coincide with
the average displacement performed by one clone, and ∆ and ∆AB should coincide [31]. Ergodicity
breaking inside the glass is indicated by a strict inequality ∆ < ∆AB in the long time limit.

We first consider the glasses prepared at (ϕg, Tg) = (0.84, 0.029), (0.85, 0.0353), (0.87, 0.053),
(0.9, 0.09), (0.95, 0.16), (1, 0.26) shown in Fig. 1. These glasses are subjected to constant-density
temperature quenches. The long-time limits of ∆ and ∆AB after the quenches are presented in
Fig. 2. For all glasses, ∆ = ∆AB around Tg and slightly below. At lower temperatures however, we
find that ∆AB is systematically greater than ∆. This means that the particles in different clones are
further apart than what thermal fluctuations allow them to explore. The different clones become
confined in distinct minima, which are dynamically inaccessible at low temperature: ergodicity is
lost inside the glass. This ergodicity breaking transition inside the glass is conceptually different
from the usual ergodicity breaking transition observed as the fluid transforms into a glass. The latter
corresponds to the freezing of translational degrees of freedom while the phenomena discussed here
corresponds to the freezing of vibrational degrees of freedom [31].

To better characterize this loss of ergodicity, we empirically define the temperature TG at which
the two MSD separate as ∆AB = 1.06∆ (both values taken at tw = 8192, τ = 104). The arrows in
Fig. 2 indicate the value TG for each glass studied.

We can also follow glasses both in temperature and packing fraction. We focus on two extreme
regimes: (ϕg, Tg) = (0.85, 0.0353) and (1, 0.26), see Fig. 1. The glasses are brought instantaneously
to a new state point (ϕ, T ), where the long-time limit of the MSDs is measured. Using the same
criterion as above, we now look for the line TG(ϕ) at which ergodicity is broken. We report in
Fig. 3 the TG line for the two initial glasses. Despite differences in the protocols, all the resulting
ergodicity breaking temperatures TG(ϕ) behave qualitatively similarly and grow monotonically from
zero above ϕ ≈ 0.81. Hence, ergodicity within a glass basin is highly sensitive to the final state
(ϕ, T ) to which the glass is brought, and the preparation history of the glass seems to simply set
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Figure 2: Loss of ergodicity at low temperature. Glasses prepared at various (ϕg, Tg) and
comparable stabilities are quenched to T at fixed packing fraction. The long-time limit (tw = 8192,
τ = 104) of the mean-squared displacement ∆ (open symbols) and mean-squared distance ∆AB

(closed symbols) are shown as a function of the quench temperature. For each ϕg, a vertical arrow
indicates the temperature TG at which the two MSD separate, signaling loss of ergodicity inside the
glass basin.

the overall scale of the barriers inside the glass. Consequently, we can use isochoric temperature
quenches or compression/cooling protocols interchangeably.

The phase diagram in Fig. 3 suggests the following picture. At temperatures slightly below the
preparation state (ϕg, Tg), thermal fluctuations enable an ergodic sampling of the restricted portion
of phase space defining a glass basin. When temperature is lowered, the clones retain the same
particle arrangement, defined by the initial equilibrium configuration, but may fall into different
sub-basins. The sub-basins may differ by the positions of a few particles, or the whole system, as
discussed extensively below. The barrier crossing between the different sub-basins is associated to a
temperature-dependent timescale. Ergodicity is lost when this timescale becomes much larger than
the simulation time and clones then explore separate regions of phase space.

II.3 Collective and heterogeneous dynamics

In order to reveal the mechanism behind ergodicity breaking and the corresponding growing timescale,
we investigate the existence of a growing lengthscale associated to microscopic vibrational dynamics.
We use a dynamical susceptibility χAB(tw), which provides an estimate of the number of correlated
particles in the vibrational dynamics at time tw. Its definition, given in Sec. IV, ensures χAB ' 1
for uncorrelated dynamics.

We present in Fig. 4 the time evolution of χAB(tw) after quenching a glass prepared at (ϕg, Tg) =
(0.85, 0.0353) down to various temperatures T . For quenches slightly below Tg, the value of χAB
remains of order unity at all times. The dynamics is ergodic and spatially uncorrelated. The
susceptibility increases gradually in time and in amplitude with decreasing the target temperature.
For quenches at very low temperature, the initial growth of the susceptibility with time is abrupt,
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Figure 3: Loss of ergodicity for various glasses. Glasses are prepared in equilibrium conditions
with the swap method at (ϕg, Tg) = (0.85, 0.0353) and (1, 0.26) (red squares), below the computer
glass transition (red line). The glasses are rapidly brought to another state point (ϕ, T ) in the phase
diagram. We compare the long-time limit of the mean-squared displacement and the mean-squared
distance between clones of the glass at the new state point. Both values are equal around (ϕg, Tg)
where the glass basin is sampled ergodically. Ergodicity inside the glass is broken below TG(ϕ).
The ergodicity breaking line TG(ϕ) depends on glass preparation, encoded in (ϕg, Tg). We find that
the lines TG(ϕ) for different glass preparations have the same qualitative behavior.

but slows down dramatically at larger times. The value χAB(tw = 104) is thus non-monotonic with
T . While this behavior resembles qualitatively that reported in hard sphere glasses [31, 32] and
3d spin glass models in an external field [42], to our knowledge, this is the first numerical evidence
for a growing correlation lengthscale associated with vibrational dynamics in a model relevant to
describe bulk thermal systems with soft interactions. The non-monotonicity can be interpreted as a
competition between the emergence of an increasingly complex landscape, which tends to increase
the susceptibility, and the dynamic slowdown due to the reduction of thermal fluctuations, which
makes the exploration of that landscape more difficult at small T .

We now determine the extent of the region in which the physics is governed by a complex
landscape and spatially correlated dynamics. As in Sec. II.2, we follow glasses initially prepared
at (ϕg, Tg) = (0.85, 0.0353) to state points (ϕ, T ), at which we measure the susceptibility χAB,
in particular its long-time value χAB(tw = 104). In Fig. 5, we present iso-χAB(tw = 104) lines
which connect the state points at which the susceptibility reaches a value of 8, 12, or 16. The
lines have a similar ‘dome’ shape, and delimit a region of the phase diagram which shrinks, both
in temperature and packing fraction, as χAB increases. In this region of the phase diagram, the
vibrational dynamics of the glass is slow, correlated in space, and heterogeneous. In Sec. II.5, we
characterize the structure of glassy minima in this region, and confirm that it has a highly complex
organization.

We locate the jamming transition (ϕJ , T = 0) of the same glasses by slow decompression,
followed by a gradual cooling of the system to T = 0. We find ϕJ ' 0.8404(5), indicated by an
arrow in Fig. 5. Interestingly, the jamming transition is located inside the dome where the dynamics
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Figure 4: Growing susceptibility after a temperature quench. Glasses prepared at (ϕg, Tg) =
(0.85, 0.0353) are rapidly quenched to temperature T . From bottom to top, T = 0.0353, 0.005, 0.003,
0.002, 0.0015, 0.001, 7× 10−4, 5× 10−4, 10−4, 2× 10−5. The susceptibility χAB, which quantifies
the number of particles moving collectively, increases with time after quenches at T < 0.002.
The value at long time χAB(tw ' 104) increases with decreasing T , until a reverse of trend at
T < 5 × 10−4. The non-monotonicity stems from the competition between the emergence of an
increasingly complex landscape, which increases the susceptibility, and the dynamic slowdown due to
the reduction of thermal fluctuations, which makes the exploration of that landscape more difficult
at small temperature.

is governed by a complex landscape. We find a qualitatively similar behavior for glasses prepared
at ϕg = 1, Tg = 0.26. As a result of our extensive exploration of all glassy regimes, we find that the
emergence of an incredibly complex landscape at finite temperature, revealed by a growth of the
dynamical susceptibility, always takes place close to the jamming transition in the phase diagram.
Both phenomena are however distinct, since the ‘dome’ delimited by the iso-χAB lines extends up
to temperature orders of magnitude larger than that of jamming criticality [43].

An important observation is that the loss of ergodicity and the increase of lengthscale do not
coincide for all densities. In particular, for ϕ & 0.875 the line TG(ϕ) is located at higher temperature
than the iso-χAB lines. We conclude that the loss of ergodicity may have a different origin in different
regions of the phase diagram. At lower densities, the loss of ergodicity is accompanied by a growth
of χAB, i.e. increasingly collective excitations. At higher packing fraction, the loss of ergodicity is
not accompanied by a growing lengthscale, suggesting that it stems from localized defects. These
results show that marginal stability, and its associated extended excitations, is not restricted to
hard spheres, but can also be found for soft thermal systems in a region around jamming, which is
our first important result.

II.4 Time-evolution of the mean-squared displacement

We investigate the time-evolution of the MSD ∆, and show that the vibrational dynamics becomes
increasingly slow as it becomes more collective. We examine the dynamics of the glass at state
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Figure 5: Ergodicity breaking versus collective dynamics. Glasses prepared at (ϕg, Tg) =
(0.85, 0.0353) (red square), below the computer glass transition (red line), are followed in the ϕ−T
phase diagram. We indicate the iso-χAB(tw = 104) lines at which the dynamical susceptibility
reaches 8, 12 and 16. The dynamics is increasingly collective in the dome delineated by theses lines.
Ergodicity breaking, observed at the line TG(ϕ), may be due to collective defects (low ϕ), or not
(high ϕ). The jamming transition ϕJ of the glass, indicated by an arrow, takes place under the
dome where dynamics is collective. We show in Fig. 6 the microscopic dynamics after bringing the
glass (red square) to three state points (blue stars) at which ergodicity is lost, and the dynamics is
more or less collective (labelled a, b, c from left to right).

points below the ergodicity breaking line TG(ϕ). We concentrate on three state points indicated
by blue stars in Fig. 5. At these points, ∆AB/∆ takes a similar value, making their comparison
meaningful.

We show in Fig. 6 the time evolution of the MSD ∆ as a function of the waiting time tw
after the quench. We observe very different behavior depending on the target state point. The
microscopic dynamics exhibits a strong waiting-time dependence after a quench into the ‘dome’ (a).
This represents a novel type of aging, different from more mundane aging effects observed after
rapidly cooling a liquid below the glass transition. In our work, the glass is first equilibrated below
the computer glass transition (which kills all diffusive processes), before being quenched to a lower
temperature. The aging effect observed in Fig. 6 are related to the vibrational dynamics within
a glass basin, whose bottom is so rough that relaxation processes involved after the quench are
non-trivial, and have not reached steady state after a time tw = 8192. Quenches further away from
the dome, to ϕ = 0.9, T = 0.0025 (b), at which χAB ' 4, lead to the same effects, but the amplitude
of the decrease of ∆ with waiting time is diminished than for (a). Compressions to higher density
ϕ = 1, T = 0.004 (c), where the dynamics is not collective, lead to stationary dynamics. This
suggests that the glassy basin has a simpler structure at this state point. We explored compressions
to ϕ = 1 and temperatures ranging from TG to very low temperature, and never observed any aging
effects. We conclude that aging dynamics is a direct signature of the collective excitations taking
place inside the glass [44]. We will confirm this picture in Figs. 7 and 8 below.
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Figure 6: Microscopic dynamics after quenching a glass. Mean-squared displacement of
glasses prepared in equilibrium at (ϕg, Tg) = (0.85, 0.0353) then rapidly quenched to (a) ϕ =
0.85, T = 7× 10−4; (b) ϕ = 0.9, T = 0.0025; (c) ϕ = 1, T = 0.004. For each set of curves, the time
tw spent at low temperature increases from top to bottom: tw = 8, 16, 32, ..., 4096, 8192. The three
state points (a-c) are shown in Fig. 5 (blue stars). Strong aging effects are observed in (a), mild
aging in (b) and no aging in (c). The aging effect evidenced here takes place after further cooling
dynamically arrested glasses. This effect is different from the common aging effect observed after
rapidly cooling a liquid into the glass phase.

II.5 Defects: from extended near jamming to localized in dense liquids

The phase diagram in Fig. 5, together with the aging results in Sec. II.4, suggest the following
picture. At low densities, ϕ ∼ 0.85, the relaxation processes responsible for the loss of ergodicity are
collective and extended, which naturally explains the growth of χAB and collective aging dynamics
observed at low temperature. At high densities, ϕ ∼ 1.1, these processes are localized and do not
give rise to an increasing χAB or to aging dynamics. The crossover between these two extremes
takes place around ϕ ∼ 0.95 by a mechanism in which the barriers associated to extended defects are
pushed towards lower energies, while localized defects with higher energy barriers appear. Ergodicity
breaking and susceptibility growth are observed on these different temperature scales, since the
former is caused by the localized defects, and the latter by extended ones.

To confirm this physical picture, we analyze the energy landscape of glasses prepared at (ϕg, Tg) =
(0.85, 0.0353), (0.95, 0.16) and (1.1, 0.46). For each state point, we select randomly one equilibrium
configuration, which defines a glassy basin. In order to characterize its structure, we run simu-
lations in the isoconfigurational ensemble. We create nc = 100 clones of each initial equilibrium
configuration. The clones are cooled to T = 0.0005, 0.005, and 0.0005, respectively. Our results
do not depend on this choice of temperature. After a simulation time of tw = 104, each clone is
brought to its inherent structure (IS), where its potential energy EIS is measured. Different clones
may or may not end up in the same inherent structure, depending on the complexity of the land-
scape. In each glass, we analyze all pairs AB of clones after minimization. We compute: (i) the
mean-squared distance ∆0

AB between clones in their IS, (ii) the participation ratio PAB which indi-
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Figure 7: Crossover from simple to hierarchical landscapes in glasses prepared at ϕg = 1.1
(top row), 0.95 (middle), 0.85 (bottom). The potential energy landscape of glasses is sampled by
nc = 100 independent clones. We characterize the landscape by several observables O, presented
as matrices OAB, where A and B denote different clones, minimized to their inherent structure.
We show the real-space distance ∆0

AB (a,e,i), participation ratio PAB (b,f,j), and potential energy
barrier VAB (c,g,k) between all pairs of clones. The potential energy EIS of the clones in their
inherent structure is presented in (d,h,l). The clones indexes are ordered by running a hierarchical
clustering algorithm on the matrix VAB. For each glass preparation ϕg, all observables are presented
with the same clone ordering.

90



Article: Nature of defects and excitations in structural glasses

cates how many particles dominate the displacement field between the two IS, and (iii) the energy
barrier VAB between the two IS (see Sec. IV.4 for technical details). To the best of our knowledge,
such a complete study of the distribution of minima and barriers inside a glass basin has not been
previously reported in the literature.

Representative results for the four observables (∆0
AB, PAB, VAB, EIS), and three glasses are

presented in Fig. 7. The observables defined for pairs of clones are presented as square matrices.
The clones are reordered to reveal a possible hierarchical structure of the landscape. In practice, this
clustering is performed on the matrix of energy barriers VAB (see Sec. IV.4), and is kept identical for
all observables. The clustering allows to visualize easily the topology of the glass energy landscape
(Fig. 7: c,g,k), and to follow its evolution with the glass preparation density.

We first describe Fig. 7 (a-d), which correspond to the glass prepared at high density ϕg = 1.1.
We identify mainly two clusters of clones in (a,c): one cluster contains only a few clones (top
left), and the other contains the majority of clones. The clones inside a single cluster are close to
one another (a), have similar energies (d), and are separated by low energy barriers (c). The two
clusters are separated by a large energy barrier (c). The glass basin has little structure: it consists
in two sub-basins separated by a high barrier. Each sub-basin contains a small number of IS (d).
Whereas the distance between the sub-basins is relatively large (a), they differ only by the position
of a few particles, as shown by the maximum participation ratio PAB = 6 (b). The defects inside
this glass are simple: a few particles hop from one sub-basin to another. These localized defects
control the separation of ∆AB and ∆ which arises at a temperature TG set by the large barrier VAB
between the two clusters. Because they are simple and highly localized, these defects cannot give
rise to aging dynamics (Fig. 6), or a growing susceptibility χAB. Localized defects are crucial to
understand the low-temperature thermal properties of glasses [8, 22, 7]. In light of the remarkable
ability of the swap algorithm to create glasses with quench rates comparable to those found in vapor
deposition studies, it would be interesting to analyze how the classical and quantum properties of
these localized defects depend on glass preparation [45].

We then analyze in Fig. 7 (i-l) the other extreme of a glass prepared at ϕg = 0.85. In this case,
the landscape is instead very rough and extremely complex. The glass basin is characterized by
a large number of distinct minima (l), separated by barriers of all sizes (k). The clustering in (k)
suggests that the landscape is organized hierarchically. Contrary to the glass at ϕg = 1.1, there is
little correlation between the energy barrier separating two minima (k) and the distance between
them (i). There is however a good correlation between the distance (i) and participation ratio (j)
matrices: extended excitations typically correspond to larger displacements. In summary, the glassy
minimum contains barriers of all sizes and of all nature, from localized to extended. This explains
why in this glass, the separation of ∆AB and ∆ around TG is concomitant with the growth of the
susceptibility (Fig. 5) and the emergence of rejuvenation effects (Fig. 6(a)). To the best of our
knowledge, this is the first time that such effects are reported in a model for thermal soft particles,
relevant for dense colloidal suspensions, and emulsions.

We complete the above picture by providing a microscopic description of how defects transform
from localized to extended as packing fraction decreases. Several scenarios could explain this trans-
formation. The density of defects could remain the same, but individual defects become gradually
extended. Alternatively, more and more localized defects could appear, and eventually percolate to
form extended defects. We show in Figs. 7(e-h) that both types of defects and excitations coexist in
the intermediate regime of densities, ϕg = 0.95. As for ϕg = 1.1, the glassy minimum is separated
into a few sub-minima separated by large barriers. The barriers inside each sub-minimum are much
smaller (g-h). Yet, the number of distinct minima inside each cluster is quite large (h). Strikingly,
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Figure 8: Coexistence of localized and extended defects in glasses. Snapshots of particle
displacements between pairs of inherent structures of the same glass for (a) ϕg = 1.1; (b,c,d)
ϕg = 0.95; (e,f,g,h) ϕg = 0.85. (a) ϕg = 1.1: localized defect, high energy barrier; ϕg = 0.95:
(b) localized, small barrier, (c) localized, high barrier, (d) delocalized, low barrier; ϕg = 0.85: (e)
localized, small barrier; (f) localized, high barrier; (g) delocalized, small barrier; (h) delocalized,
high barrier. Particle size and color are proportional to the particle displacement, normalized to
the largest displacement in the sample.
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while the large energy barriers (g) have a low participation ratio (f), the barriers found inside the
sub-basins can be very collective, as for ϕg = 0.85. The landscape is clearly organized around two
main energy scales: the scale TG, at which ergodicity is lost due to the highest energy barriers
associated to localized defects, which explains why neither a significant growth in the susceptibility,
nor aging dynamics are observed around this temperature scale; and a lower scale, associated to
extended defects, which controls the growth of χAB and the emergence of aging, Fig. 6(b). We
believe that this coexistence of extended and localized excitations, which is our second important
result, will be manifested in the physical properties of the corresponding glasses, e.g. in transport
properties [8], in the response to localized probes [7], and in the aging/rejuvenation dynamics after
a sudden temperature change [44].

We accompany these conclusions with real-space snapshots illustrating the difference between
distinct inherent structures in Fig. 8 resolved at the particle scale. For ϕg = 1.1, we show the
localized defect responsible for the loss of ergodicity (a). Two particles move between two local
minima, and the surrounding particles move slightly due to the elasticity of the solid. For ϕg = 0.95,
localized excitations can correspond to a low (b) or high (c) energy barrier. Delocalized excitations
only correspond to the bottom of the landscape, i.e. to small barriers (d). For ϕg = 0.85, we find
localized (e,f) and delocalized (g,h) excitations, which are either associated to small barriers (e,g)
or high energy barriers (f,h) demonstrating the variety and increasing complexity of the potential
energy landscape when moving closer to the jamming transition.

III Discussion

We study the nature of excitations and defects through extensive simulations of a three-dimensional
WCA glass former. Our main finding is that the nature of the energy landscape can be sensitively
tuned by changing density. At high densities, in the regime relevant for molecular and atomic glasses,
the landscape is rather simple, characterized by few minima. The dynamical behavior of the glass
is dictated by highly localized defects, which correspond to a few particles hopping between nearby
configurations. This corresponds to the standard picture of two-level systems in glasses [22, 7]. By
contrast, at lower densities, relevant for granular materials, soft and hard colloidal suspensions, the
landscape is very rough and has a hierarchical structure. There exist barriers over a broad range of
energy scales, with a degree of localization that spans very localized and highly extended defects.
This first result extends to finite temperatures earlier results about the marginality associated to
athermal jamming [28, 2, 25, 29]. Most interestingly, in the intermediate regime of densities, relevant
for soft colloidal particles and emulsions, the landscape is characterized by both features. Localized
defects dominate at higher temperature, and are responsible for ergodicity breaking inside the glass.
The freezing of these defects, which involve a few particles, defines a small number of sub-basins.
Each sub-basin, however, possesses a complex structure at lower energy scales, with extended defects
associated to low barriers that appear similar to the ones found at lower densities. This second result
leads us to predict that soft colloidal glasses and emulsions should be characterized by a complex
hierarchical landscape, giving rise to interesting new physics, such as ergodicity breaking transitions,
aging in the glass, rejuvenation and memory effects [44].

We showed that in all physical regimes, low-temperature glasses evolve inside an energy basin
composed of a potentially large number of sub-minima. This sub-structure gives rise to a new type
of ergodicity breaking transition in glasses at low temperature. The ergodicity breaking transition
may or may not be accompanied by a growing lengthscale, dynamic heterogeneity and aging effects,
depending on the preparation density of the glass. One can thus expect a variety of behaviors in
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distinct materials, depending on their location in the phase diagram analyzed in our work. Our study
paves the way to a complete numerical and experimental characterization of the low-temperature
behavior of glasses, including in the quantum regime where tunneling properties are likely to be
strongly influenced by the spatial nature of defects.
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IV Supplementary Information - Methods

IV.1 Model

We study a three-dimensional Weeks-Chandler-Andersen (WCA) model of soft repulsive parti-
cles [36]. The pair interaction between particles i and j reads

V =





4ε

[(
σij
rij

)12
−
(
σij
rij

)6]
+ 1 , rij < 21/6σij

0 otherwise.
(1)

The potential and its first derivative are smooth at the cutoff distance σ̄ij = 21/6σij . We use
a non-additive polydisperse mixture to stabilize the homogeneous fluid against fractionation or
crystallization [40], σij = 1

2(σi + σj) (1− 0.2|σi − σj |). Although the potential is non-additive, the
quantity σ̄i = 21/6σi acts as an effective particle diameter. The σi are distributed continuously with
the distribution P (σm ≤ σ ≤ σM ) ∼ 1/σ3, with a size ratio σm/σM = 0.45, and 〈σ〉 =

∫
P (σ)dσ =

1. The polydispersity of the system is 23%. We study systems of N = 1000 particles of mass m,
in a box of linear size L and volume V = L3. The relevant control parameters are the temperature
T and the packing fraction ϕ, defined as ϕ = π/(6V )

∑
i σ̄

3
i =

√
2π/(6V )

∑
i σ

3
i . The effect of

polydispersity and non-additivity is to shift all packing fractions to higher values. For example the
jamming transition of random packings is equal to ϕJ ' 0.78 in our model, instead of 0.64 for
monodisperse 3d packings with additive interactions. Energies, lengths and times are respectively
expressed in units of ε,

√
ε/m〈σ〉2, and 〈σ〉.

IV.2 Preparation protocols

We employ a two-step protocol. First, we generate equilibrated configurations at various state points
(ϕg, Tg), for which the physical dynamics is completely arrested on accessible time scales (see Fig. 1)
but where thermalization can be achieved using a hybrid swap Monte Carlo technique [40]. For the
hybrid swap, we use the implementation of Ref. [38]. For each state point (ϕg, Tg), we first generate
ng = 200 independent equilibrium configurations. Second, we use these very stable equilibrium
configurations as input for molecular dynamics (MD) simulations. The equations of motion are
solved with an integration timestep dt = 0.0035. The temperature of the system is imposed by a
Berendsen thermostat with a timescale τB = 1.0. We consider thermodynamic conditions where
particle diffusion is fully arrested, so that simulations always remain confined within a single glass
basin, selected by the initial configuration. In addition, we produce nc = 20 clones for each of the
ng initial configurations (we use nc = 100 in Sec. II.5). Clones share the same initial positions,
but are given initial velocities randomly sampled from the appropriate Maxwell distribution. Each
configuration is then studied at various (ϕ, T ) by instantaneously changing the control parameters.
This two-step process emulates the ‘state following’ construction employed in mean-field analytical
studies [46, 47], that we have recently applied to the WCA model [37]. This protocol is also a fair
numerical implementation of an experimental protocol where glasses are produced by cooling, and
the glassy state frozen at the experimental glass transition temperature is then studied at various
state points within the glass phase.
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IV.3 Observables for ergodicity breaking in the glass basin

From a given initial equilibrated configuration at (ϕg, Tg), we run nc independent MD simulations
using the clones as initial conditions. At the beginning of the simulation, the control parameters
(ϕ, T ) are changed instantaneously. It takes a time t ∼ 10 for the kinetic temperature to reach
the desired value. The origin for waiting times tw = 0 is defined as the time at which the kinetic
temperature, averaged over a time t = 1, reaches the imposed value. We focus on two measures
of distance: the mean-squared displacement (MSD) ∆AB between the same particles in different
clones of a glass,

∆AB(tw) =
1

Nb

Nb∑

i=1

〈|rAi (tw)− rBi (tw)|2〉 , (2)

and the MSD ∆, which quantifies the dynamics of the particles within a single clone,

∆(tw, tw + τ) =
1

Nb

Nb∑

i=1

〈|ri(tw + τ)− ri(tw)|2〉 . (3)

Here, ri is the coordinate of particle i, and rAi and rBi the positions of particle i in two different
clones, which are generically referred to as A and B. The average is made using the Nb = N/2
particles having the largest diameter. We find that smaller particles are more mobile and sometimes
dominate the average. The brackets indicate an average both on disorder (using the ng = 200
independent initial configurations), and thermal history (using the nc = 20 clones for each glass).
In the case of ∆AB, the thermal average is performed over the nc(nc − 1)/2 pairs of clones.

We define the susceptibility associated to the global fluctuations of the mean-squared distance
between clones [31, 23],

χAB = Nb
〈∆2

AB〉 − 〈∆AB〉2
〈∆i 2

AB 〉 − 〈∆i
AB〉2

, (4)

where ∆AB is defined in Eq. (2), and ∆i
AB represents its single-particle version. The time dependence

in Eq. (4) is omitted to ease the reading, but just as ∆AB, χAB(tw) is a time-dependent observable.
The normalization in χAB ensures that χAB = 1 for spatially uncorrelated dynamics. Using this
definition, χAB is also a direct measure of a correlation volume, and it is the direct analogue of a
spin-glass susceptibility.

IV.4 Exploration of the potential energy landscape

To explore the energy landscape associated to a given initial equilibrium configuration we first
create nc = 100 clones. The clones are cooled to a lower temperature: T = 0.0005, 0.005, and
0.0005, for the glasses prepared at ϕg = 1.1, 0.95, 0.85, respectively. We simulate the dynamics
of these systems at these low temperatures T during a total time tw = 104. At the end of the
simulation, the configuration is minimized using a conjugate gradient algorithm to bring each clone
to its inherent structure (IS). We measure the potential energy EIS of each IS found inside each
glass basin.

We then compare all pairs of IS found inside each glass. We compute the distance between two
IS, taking into account all N particles:

∆0
AB =

1

N

∑

i

|rA,0i − rB,0i |2, (5)
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where rA,0i is the position of particle i in the IS of clone A. In order to have a more refined
information on how many particles contribute to the value of ∆AB, we compute a participation
ratio

PAB =

[∑
µ,i(δr

µ,i
AB)2

]2

∑
µ,i(δr

µ,i
AB)4

, (6)

where δrµ,iAB = µA,0i −µ
B,0
i (µ = x, y, z). The sum runs over all N particles. With this definition, the

participation ratio directly estimates the number of particles which dominate the difference between
pairs of IS.

For each pair of IS, we estimate an energy barrier using the nudge elastic band (NEB) method [48].
Note that this approximate method only provides an upper bound for the lowest energy barrier sep-
arating the two energy minima. We use 40 intermediate images of the system, initialized by linear
interpolation between two IS. We relax the chain of images using the potential energy Eq. (1) in
directions transverse to the chain, and elastic springs in the parallel direction. We use a climbing
version of the method [49], which ensures that one image is at the saddle point. The energy barrier
VAB is the energy difference between the saddle point and the lowest energy minimum.

We find that for ϕ . 0.9, the NEB method does not converge properly. The reason is that
at low temperature in this density regime, the particles behave more and more like hard sphere
particles, for which the potential energy cost of overlapping particles diverges. In some cases,
the linear interpolation creates strongly overlapping particles, and a singularity in the potential
energy of the chain of images. To work around this problem, we first perform a NEB minimization
using a harmonic repulsion between particles, instead of WCA. The harmonic potential used is
V = 18 × 22/3(rij/σij − 21/6)2 if rij < 21/6σij and zero otherwise. The WCA and this harmonic
potential have the same first two derivatives at the cutoff. Both potentials behave similarly at small
overlaps, but the harmonic one does not create diverging potential energies due to particle overlaps.
The initial NEB minimization run with harmonic repulsion converges smoothly at all densities,
and removes spurious particle overlaps. The relaxed chain of images is then minimized with the
NEB method using the original WCA potential. We have checked that both methods (WCA versus
harmonic + WCA) yield similar results at high densities ϕg = 1.1 and ϕg = 0.95. This validates
the two-step NEB minimization using the combination of harmonic and WCA interactions that we
implement at ϕg = 0.85.

The hierarchical clustering is performed on the barrier matrix VAB using the linkage function
of the ‘hierarchical clustering’ python package, which is an agglomerative algorithm [50]. Initially,
each clone starts in its own cluster. The clusters are gradually merged until they form one large
cluster. The merging rule is defined by giving: a distance between individual clones (here, the
energy barrier VAB), and a ‘linkage criterion’ which defines the distance between clusters. At each
step, clusters with the smallest distance are merged. We find empirically that an ‘average’ linkage
(the distance between clusters is the average of the energy barriers on all pairs) gives a good enough
clustering.

The snapshots shown in Fig. 8 highlight the displacement of particles between two IS. The
particle positions are those of one IS, and the size and color code for the particles is proportional
to the displacement |rA,0i − rB,0i | between the IS. The particle with largest displacement is set to a
diameter 1. This allows to compare visually snapshots of systems for which the displacement may
vary by orders of magnitude. The snapshots should therefore be read in parallel with Figs. 7(a,e,i),
which provide the scale for particle displacements in each case.
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Rejuvenation and Memory Effects in a
Structural Glass
C. Scalliet and L. Berthier, Phys. Rev. Lett. 122 (25), 255502 (2019) – Editor’s Suggestion.

We show numerically that a three-dimensional model for structural glass
displays aging, rejuvenation and memory effects when subjected to a tem-
perature cycle. These effects indicate that the free energy landscape of
structural glasses may possess the complex hierarchical structure that char-
acterizes materials such as spin and polymer glasses. We use the theoretical
concept of marginal stability to interpret our results, and explain in which
physical conditions a complex aging dynamics can emerge in dense super-
cooled liquids, paving the way for future experimental studies of complex
aging dynamics in colloidal and granular glasses.

The behavior of many disordered materials is dominated by their failure to reach equilibrium,
leading to extremely slow relaxations, non-linear responses, and time-dependent behavior. This ag-
ing behavior is observed in a broad variety of condensed-matter systems as microscopically distinct
as polymers [1], spin glasses [2], molecular glasses [3, 4], colloidal gels [5, 6], disordered ferro-
electrics [7, 8], and crumpled paper sheets [9]. The widespread occurrence of aging phenomena is
theoretically understood as a general consequence of frustration leading to a complex free-energy
landscape [10, 11].

Specific experimental protocols, such as temperature cycles, are used to better characterize
the nonequilibrium dynamics of glasses [2, 12]. Temperature cycles within the glass phase were
first performed in spin glasses, revealing spectacular dynamical effects [13, 14, 15, 16, 17, 18].
Aging is reinitialized after a second downward jump in temperature (rejuvenation), but when the
first temperature is restored, the system recalls the state reached before that jump (memory).
However, when similar protocols are applied to molecular glasses, such as glycerol, no rejuvenation
is observed [3], although some memory can be found [19, 20, 21]. Both effects were however reported
in gelatin gels [22]. Aging is a simple consequence of long relaxation timescales, but rejuvenation
and memory effects require a specific, hierarchical organization of the free-energy landscape [23, 24,
25, 26]. This is exactly realized in mean field models for spin-glasses [27, 28, 29], and can directly
be confirmed in spin-glass simulations [30, 31, 32, 33].

Recently, the mean-field theory for structural glasses predicted the existence of marginally stable
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Figure 1: Aging, rejuvenation and memory in a structural glass subjected to a temperature
cycle. We show the time evolution of χ(tw, ω = 10−5) in each step of the cycle, delimited by
vertical dashed lines. Aging is observed as the liquid is quenched into the glass phase (circles). The
glass rejuvenates as it is cooled further (squares), but retains perfect memory when heated back
(triangles). In the inset, the intermediate step is removed to better demonstrate the memory effect.

glass phases characterized by a hierarchical free energy landscape, with strong similarities with spin
glasses [34, 35]. Although the existence of a sharp phase transition between normal and marginally
stable glass phases remains debated in finite dimensions [36, 37, 38, 39], the theory makes crisp
predictions regarding the physical conditions where the glassy landscape becomes hierarchical [40,
41, 42, 43]. There are numerical evidences that a complex aging dynamics emerges in the hard sphere
model [44, 45, 46], but simulations of model atomic glasses [47, 48] did not find those signatures.

We numerically study the nonequilibrium dynamics of soft repulsive spheres in d = 3. This choice
is motivated by both theoretical results in the mean-field limit [43] and by a numerical exploration
of the complete temperature/density phase diagram to detect the state points where marginal
stability can be expected to become physically relevant [49]. By carefully choosing the state points
where signs of marginal stability can be observed [49] to perform the present temperature cycles, we
successfully observe rejuvenation and memory effects in our model for structural glasses. Our central
result is presented in Fig. 1, where we adopt the same representation as in experiments, showing the
evolution of a dynamic susceptibility χ(tw, ω) (Eq. 3) during the cycle. A high-temperature liquid is
rapidly cooled to T1 in the glass phase. Aging dynamics is signaled by a slowly decreasing χ (circles).
The glass is aged for a given time before being cooled to a lower temperature T2. The glass then
rejuvenates, since a strong restart of the aging dynamics takes place at T2 (squares). When the glass
is reheated to T1 (triangles), it recovers memory of the initial aging (Fig. 1, inset), despite the strong
rejuvenation in the intermediate step. We attribute these effects to the hierarchical landscape of
structural glasses in a marginally stable phase.

Model and methods – We study a three-dimensional glass former composed of N = 3000
continuously polydisperse particles. Two particles i and j at positions ri and rj interact via the
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Figure 2: Protocol: Sketch of the temperature cycle, where T1 and T2 are both in the glass phase
while T0 is in the fluid.

Weeks-Chandler-Andersen (WCA) potential [50]

v(rij) = 4ε
[
(σij/rij)

12 − (σij/rij)
6
]

+ 1 , (1)

only if they are at a distance rij = |ri − rj | < 21/6σij , with a non-additive interaction rule σij =
σi+σj

2 (1− 0.2|σi − σj |). The potential and forces are continuous at the physical cut-off distance.
For each particle, σi is drawn from the normalized distribution P (σm ≤ σ ≤ σM ) ∼ 1/σ3, where
σm = 0.73 and σM = 1.62. This model is chosen for its excellent glass-forming ability when
simulated either with molecular dynamics, or particle-swap dynamics [51], and represents a canonical
model for dense supercooled liquids [52].

The aging dynamics is studied with molecular dynamics (MD). The simulations are performed
with a time discretization dt = 0.003, within a cubic box of linear size L, using periodic boundary
conditions. The temperature is controlled by a Berendsen thermostat with damping parameter
τB = 1 [53]. We reset the total momentum to zero every 106 MD steps. Lengths, times and
energies are expressed in units of σ =

∫
σP (σ)dσ,

√
ε/mσ2 and ε, respectively. The state of the

system is determined by temperature T , and packing fraction ϕ = π/(3
√

2L3)
∑

i σ
3
i . For this non-

additive polydisperse mixture, the jamming transition occurs near ϕJ ∼ 0.78. Here, we focus on a
fixed packing fraction ϕ = 0.85, and discuss later this choice. At this density, the onset of glassy
dynamics is near Tonset = 0.2, and at Tc = 0.07 the dynamics has slowed down by a factor 104,
below which conventional MD simulations do not reach equilibrium. In addition, we use a hybrid
Swap Monte Carlo method [54] to prepare equilibrated configurations deep in the glass phase, down
to T = 0.035 ∼ Tc/2, to better analyze rejuvenation effects.

Protocol and observables – We investigate the nonequilibrium dynamics of glasses during a
temperature cycle sketched in Fig. 2. In the first step, an equilibrium liquid at T0 = 0.36 is quenched
rapidly (with a rate of 3.10−3) to T1 = 0.0353 < Tc. The liquid falls out of equilibrium and slowly
ages for a duration t1. In the second step, the aged glass is rapidly cooled to a lower temperature
T2 < T1. It stays there during a time t2 = t1, after which the system is heated back to T1. We
measure the mean-squared displacement (MSD):

∆(tw, tw + τ) =
1

N

N∑

i=1

〈|ri(tw + τ)− ri(tw)|2〉 , (2)

where tw is the waiting time after a temperature change. This protocol is repeated using 200
independent equilibrium liquids. The brackets in Eq. (2) represent an average over these independent
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Figure 3: Aging of the mean-squared displacement after a quench from the liquid T0 = 0.36 to
the glass phase T1 = 0.0353. Each curve corresponds to a given waiting time tw after the quench,
and reveals a slower motion in older systems.

runs. To make a connection with experiments, we define a dynamic susceptibility [30]

χ(tw, ω) =
∆(tw, tw + ω−1)

T
, (3)

which plays a role analogous to the ac magnetic or dielectric susceptibility at frequency ω in ex-
periments. This quantity also conveniently compares results at different temperatures, since typical
displacements are scaled by T , which is the natural scale for particle motion. Note that our choice
does not affect the time dependence, in which rejuvenation and memory effects are encoded.

We shall study the role of temperature T2 on the non-equilibrium dynamics of glasses during
a temperature cycle as well as the influence of time t1 spent at temperature T1. In particular, we
can easily study the limiting case t1 → ∞, which corresponds to reaching equilibrium at T1 by
generating equilibrium configurations at this temperature using the Swap Monte Carlo method.
These very stable glasses would be inaccessible by conventional MD.

Aging – Let us focus on the first step of the temperature cycle, where liquids thermalized at
T0 = 0.36 are rapidly cooled to low temperature, T1 = 0.0353 < Tc. The waiting time tw measures
the time spent at T1. The resulting MSD is presented in Fig. 3, each curve corresponding to a given
waiting time tw. The curves share a similar trend. The MSD increases quadratically at small times
τ , before crossing over to a plateau value during a time that depends on tw, and eventually departs
from this plateau at larger times. In terms of microscopic dynamics, this corresponds to a short-time
ballistic motion, transient trapping within an amorphous cage of neighboring particles, and eventual
rearrangement of the cage. Diffusive behavior is not observed within the accessible timescale and
particles actually move very little, as the MSD is typically one tenth of particle diameter or less.
At the largest tw = 411 ' 4.106, the MSD plateaus over 4 orders of magnitude in time, meaning
that the amorphous structure of the glass remains frozen over very long times. We observe a clear
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Figure 4: Rejuvenation effect, or restart of aging dynamics, as glasses aged for (a) t1 = 1.2 106

and (b) t1 =∞ (equilibrium) at T1 = 0.0353 are cooled down to T2 = 0.0005.

waiting-time dependence in the dynamics in Fig. 3. The dynamics becomes slower with the age tw
of the system, a typical property of aging systems [55, 56]. This slowing down implies that the large
τ -data obey a sub-aging τ/tµw scaling (we find µ ' 0.9), widely known and observed in glasses of
various materials [1, 10, 57].

Aging can be seen as a consequence of the rugged nature of the landscape of glasses. This
corresponds to the thermally-activated crossing of barriers, which leads the system to slowly relax
towards lower energy states, where it stays for longer times [10]. The common wisdom in structural
glasses is to view these glassy states as energy minima with no (or simple) internal structure [58],
suggesting that no interesting dynamic effect should take place by further cooling the glass. We
now present results challenging this view.

Rejuvenation – We consider the second step of the cycle. The glasses aged during a time t1
at temperature T1 are suddenly cooled to T2 < T1. To investigate the influence of T2, we present
data for T2 = 0.01 and T2 = 0.0005. We also consider glasses of two different ages, t1 = 1.2 106

(corresponding to tw ' 410 in Fig. 3) and t1 =∞, the latter being obtained using the hybrid Swap
method. As before, we measure the MSD, with tw now being the time spent at T2.

We start with a large temperature jump to T2 = 0.0005, and report data for t1 = 1.2 106 and
t1 = ∞ in Fig. 4(a-b). In both panels, a strongly aging dynamics is observed, similar to the one
observed in the first step in Fig. 3. The MSD evolves continuously over 5 orders of magnitude in
time, with strong waiting-time dependence and a variation of one order of magnitude in amplitude.
Such strong aging effects would not be observed if the system simply had to readjust, over a fast
timescale, to the new imposed temperature. Remarkably, these strong effects survive in Fig. 4(b)
for t1 = ∞. This implies that the aging dynamics at T2 is not simply the continuation of the one
at T1, but that new slow processes emerge at low temperature. This is precisely the rejuvenation
effect first reported in spin glasses, since very old glasses (up to t1 = ∞) behave as young glasses
at lower temperatures.

Rejuvenation is not observed if T2 is too high. We show in Fig. 5 the results of cooling from
T1 = 0.0353 and t1 =∞ down to T2 = 0.01. Here, the dynamics does not depend on tw, signaling
the absence of aging. The frozen amorphous structure adjusts over a microscopic timescale at the
new temperature T2, and this process is not slowed down by free energy barriers. This is again
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Figure 5: No rejuvenation if T2 is too large. Here, glasses aged for t1 = ∞ at T1 = 0.0353 are
cooled down to T2 = 0.01.

similar to observations in spin glasses [26, 30].

Memory – We complete the thermal cycle by heating the glass aged for t2 = 1.4 106 ' t1 at
T2 = 0.0005 back to T1 = 0.0353. The MSD measured after the heating is shown in Fig. 6, along
with the MSD at the last tw of the first step of the cycle. After going back to T1, the relaxation
dynamics is the direct continuation of the aging which took place in the first step. Despite the strong
rejuvenation effect observed at T2 in the intermediate step, the glass has kept a perfect memory of
its age at temperature T1. The aging dynamics then continues as if the second step had not taken
place at all. This is the memory effect [2, 12].

We gather all these results in Fig. 1 by reporting the time evolution of χ(tw, ω = 10−5), defined
in Eq. (3), during the complete temperature cycle. Aging in the first part of the cycle corresponds
to a slow decay of χ(tw, ω), while rejuvenation corresponds to a strong restart of a similar aging.
Memory is very clear as the third step appears to be the direct continuation of the first one, as
emphasized in the inset where the second step is removed. The aging dynamics in the third step
proceeds as a simple continuation of the first. This figure mirrors similar results obtained in spin
glass materials [2, 30, 32, 59]. The simultaneous observation of both rejuvenation and memory
effects is highly non-trivial, and confirms the idea that the landscape inside glassy minima can be
rugged and hierarchical in systems of soft repulsive particles that describe structural glasses [43, 49].

Separation of lengthscales – We have studied the probability distribution function (pdf) of
single particle displacements in the three steps of the temperature protocol. At each temperature, we
measure the pdf of ∆r2 = |r(tw +τ)−r(tw)|2 towards the end of the step, for tw = 220 and τ = 105.
These distributions give additional information on the typical scale of particle displacements at each
temperature (the average value is plotted in Figs. 3-6), and, more importantly on the heterogeneity
of the particle displacements.

Results for the three steps are reported in Fig. 7. We observe that the pdf of displacements
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T0 → T1, tw = 106

T2 = 0.0005 → T1
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Figure 6: Memory effect after heating the glass from T2 = 0.0353 (age t2 = 1.4 106) back to
T1 = 0.0353. We report the MSD after heating for tw = 32 and tw = 2.106 (lines). The glass has
kept memory of its state at temperature T1, as the dynamics smoothly continues that of the first
cycle shown for tw = 106 (circles).

during aging is broad but relatively featureless, indicating that all particles are involved in the
aging dynamics. A similar shape is obtained during the rejuvenation, but at a much smaller scale.
This indicates that the aging dynamics in the second step is again due to very collective particle
motion involving the entire system, but it involves displacements on much smaller lengthscales. This
explains why memory of the first step is retained, as the structure obtained at the end of the first
step is essentially unperturbed during the second step. Dynamics is hierarchical both in timescales
and in lengthscales [26, 57].

Discussion – We have shown that subjecting a three-dimensional model for structural glasses
to a temperature cycle reveals rich non-equilibrium dynamical effects, such as rejuvenation and
memory effects that were first observed in spin glasses, but not in molecular glasses. Are these
effects ubiquitous? Varying more broadly the parameters reported in this work, we find that for
ϕ = 0.85 and T1 = 0.0353, only quenches below T2 ≈ 0.001 will lead to rejuvenation effects in
the dynamics. We also analyzed the density dependence of these effects and found that no such
rejuvenation effect can be found for packing fractions beyond ϕ ≈ 0.9. These findings are consistent
with a systematic search for marginally stable glassy phases in the present numerical model [49],
which suggest that soft repulsive spheres at packing fractions relevant to describe soft colloids and
granular materials are characterized by a complex free energy landscape, which should thus give rise
to rejuvenation and memory effects, whereas this physics is absent in the regime describing dense
supercooled liquids [47, 48]. These conclusions are broadly consistent with mean-field analysis [43],
and can explain the absence of rejuvenation reported for glycerol [3], and should guide future
experimental studies of the dynamics of glassy materials.
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Figure 7: Hierarchy of lengthscales in the probability distribution function of particle displace-
ments ∆r2 during aging (circle), rejuvenation (square), and memory (triangle) for tw = 220 and
τ = 105. All particles contribute collectively to each step, but at a different scales.
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Depletion of two-level systems in
ultrastable computer-generated glasses
D. Khomenko∗, C. Scalliet∗, L. Berthier, F. Zamponi, D. Reichman, preprint arXiv: 1910.11168,
under review at Physical Review Letters.

Amorphous solids exhibit quasi-universal low-temperature thermal anoma-
lies whose origin has been ascribed to a distribution of localized tunneling
defects. Using an advanced Monte Carlo procedure, we create in silico glasses
spanning from hyperquenched to vapor-deposited ultrastable glasses. Using
a multidimensional path-finding protocol, we locate tunneling defects with
energy splittings smaller than kBTQ, with TQ the temperature below which
quantum effects are relevant (TQ ≈ 1K in most experiments). We find that
the evolution of the energy landscape with the quench rate, as well as the
manner in which the landscape is explored, conspire to deplete the density
of tunneling defects in well-annealed glasses, as observed in recent experi-
ments. We systematically explore the real-space nature of tunneling defects,
finding that they are mostly localized to the participation of a few atoms,
but are occasionally dramatically delocalized.

I Introduction

The theory of low-temperature properties of perfect crystals stands as one of the most profound
early tests of the power of quantum statistical mechanics. In particular, Debye’s seminal calculation
of the observed T 3 behavior of the low-temperature specific heat highlighted the importance of long
wavelength phonons as low energy excitations in ordered solids [1]. Given that the wavelength
of populated phonon modes in the temperature range T ∼ 1K is significantly longer than the
interparticle distance in a typical solid, it came as a major surprise in 1971 when Zeller and Pohl [2]
measured large deviations from the expected Debye behavior of the specific heat and the thermal
conductivity of vitreous silica and other selenium and germanium-based glasses. An explanation for
this puzzling behavior was almost immediately put forward by Anderson, Halperin and Varma [3]

∗These authors contributed equally to the work
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and by Phillips [4]. They posited that, due to the disorder intrinsic to amorphous solids, the energy
landscape of a glass contains many local minima. Rare, nearly degenerate, adjacent local minima
support tunneling defects or two-level systems (TLS) with energy splittings of the order of 1K,
which provide a large excess contribution to the specific heat and a new mode of scattering that
determines the thermal conductivity. In the subsequent decades, the generic behavior described by
Zeller and Pohl has been observed in numerous other amorphous materials, and the TLS theory
has withstood essentially all experimental tests [5, 6, 7, 8, 9]. Despite this great progress in our
understanding, the microscopic real-space structure of the tunneling defects remains debated, as do
the factors that determine the density and distribution of TLS in amorphous solids [10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22].

A powerful platform for addressing the aforementioned issues is the use of computer simulation
to prepare amorphous materials in silico and to interrogate the simulated energy landscape for TLS
ab initio [23]. Such a program was initiated in the pioneering work of Heuer and Silbey nearly three
decades ago [24, 25, 26, 27]. Limited by the computational power and the algorithms available at
the time, they created model glasses formed with cooling rates roughly nine orders of magnitude
larger that those found in the laboratory setting, and were able to locate only a handful of TLS with
the requisite tunnel splittings, necessitating uncontrolled extrapolations. In the subsequent years
the situation has incrementally improved [28, 29, 30], although until very recently the algorithmic
ability to simulate amorphous materials which are cooled in an experimentally realistic fashion has
remained completely out of reach. This obstacle has greatly limited the ability to microscopically
understand the universal anomalous thermal behavior of low-temperature amorphous solids from a
computational viewpoint.

In this work we leverage the remarkable ability of the swap Monte Carlo algorithm to produce
in silico amorphous materials with fictive temperatures that range from those found in typical
experiments to the significantly slower rates found in recent vapor deposition studies [31]. We find
a dramatic depletion of active TLS (those with a tunnel splitting ∼ 1K) as a function of decreasing
quench rate, just as found in recent experiments [32, 33, 34, 35, 36, 37]. Use of a state-of-the-art
reaction path-finding protocol [38, 39] allows us to efficiently locate double-well potentials in the
multi-dimensional potential energy landscape, yielding a direct sampling of active tunneling states
with sufficient statistics to avoid any extrapolation. This sampling enables the determination of
the degree of localization associated with individual TLS, and hence provides a detailed, real-space
understanding of how atoms participate in tunneling motion and how the thermal exploration of the
energy landscape in well-annealed amorphous materials determines the effective density of tunneling
centers.

II Glass preparation

Past work on the local landscape of low temperature glasses has focused on simple models for
real systems such as NiP [24] and silica [29, 30]. Here we study a polydisperse mixture of particles
interacting through an inverse power law potential [31]. Our choice is motivated by the fact that the
peculiar low-temperature behavior of glasses was observed in a variety of materials, and should not
depend on the particular form of the interactions between atoms or molecules. Given the vast palette
of existing glass-forming models, our particular model was chosen to enable the thermalization of
the system on the computer in a manner that makes direct connection to experiments. We thus
choose a system for which swap Monte Carlo is maximally efficient [31].

We provide minimal details on the system and measures of equilibration in the main text;
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(a)

(b)

(c)

Figure 1: (a) Glasses are prepared at equilibrium (black line) at temperatures Tf =
0.092, 0.07, 0.062 (bullets), ranging from hyperquenched to ultrastable. Their potential energy is
followed after rapid temperature changes (colored lines). (b) One-dimensional sketch of the poten-
tial energy landscape. Molecular dynamics simulations performed at TMD = 0.04 are employed to
detect double-well potentials (blue). (c) Zoom of one double well potential V (ξ) detected in a glass
prepared at Tf = 0.062. The classical asymmetry ∆E, activation energy Va, and energy barrier
V = Va −∆E/2 are illustrated, as well as the energy levels E1 and E2 of the ground state doublet,
obtained by solving the 1d Schrödinger equation.
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additional information may be found in the Appendix. We simulate a non-additive polydisperse
mixture of N = 1500 particles of mass m0. Two particles i and j separated by a distance rij interact
via the potential

v(rij) = ε

(
σij
rij

)12

+ εF (rij/σij) (1)

only if rij < rcut = 1.25σij , σij being the non-additive interaction length scale. The function F
is a fourth-order polynomial which guarantees the continuity of the potential up to the second
derivative at rcut. We characterize the physical classical dynamics of the model using molecular
dynamics (MD) with energies and lengths expressed in units of ε and the average diameter σ,
respectively. Times measured during MD simulations are expressed in units of

√
ε/m0σ2. In these

units, the number density is ρ = 1. The relaxation time τα of the equilibrium fluid is measured
from the self-intermediate scattering function Fs(k = 7.0, τα) = e−1. The onset of glassy dynamics,
signaled by deviations from Arrhenius behavior of τα, takes place at To = 0.18, where τα(To) ≡ τo,
while the mode-coupling crossover temperature is located at TMCT = 0.104 [31].

We analyze in silico glasses by preparing fully equilibrated configurations, using the swap Monte
Carlo algorithm, at various preparation temperatures Tf , which are then rapidly cooled to lower
temperatures using regular molecular dynamics. Therefore, Tf represents the “temperature at which
the glass would find itself in equilibrium if suddenly brought to it from its given state,” which is
precisely the definition of the fictive temperature given by Tool [40]. The temperature Tf char-
acterizes the degree of stability of the computer glasses, see Fig. 1(a). In experiments, Tf would
be determined by the cooling rate [41, 42], or by the substrate temperature in a vapor deposition
experiment [43, 44, 45, 46, 47]. To maximise the analysed range of glass stabilities, we present
results for poorly annealed (or, hyperquenched) glasses (Tf = 0.092, slightly below TMCT with
log(τα/τo) = 4.9), liquid-cooled experimental glasses (Tf = 0.07 ' Tg, with log(τα/τo) = 10.7), and
ultrastable vapor-deposited glasses (Tf = 0.062, with log(τα/τo) = 14.8). To obtain statistically
significant results, we analyze Ng independent samples (Ng = 200, 50, 15 for increasing Tf ).

III Landscape exploration

Our goal is to identify transitions between nearby minima, or double well potentials (DWPs) of
the potential energy landscape (PEL) of our glassy configurations. Detailed information may be
found in the Appendix. Briefly, starting from the configurations equilibrated at Tf , we run MD
simulations at a temperature TMD = 0.04, which is sufficiently low to confine each glass in a single
metabasin but is high enough that the system can rapidly visit many distinct minima (or, inherent
structures) within the metabasin [23], see Fig. 1(b).

By repeatedly sampling inherent structures during MD trajectories, we obtain a library of visited
local minima. We then identify pairs of minima that are dynamically connected. For each of the Ng

starting configurations, we use the isoconfigurational ensemble [48], and run up to 200 simulations
starting from the same initial configuration with randomly assigned velocities. The number of
isoconfigurational runs, as well as their duration, needs to be large enough for the probability
distributions of the inherent structures potential energy P (Ei), and the number of transitions P (Tij),
to converge to stationary results. While we reach convergence of the probability distributions, we do
not sample all potential energy minima and transitions, and their absolute numbers keep increasing
with time. We however obtain a significant amount of them, namely 13252, 26898, 848698 minima
for Tf = 0.062, 0.07, 0.092, respectively. As shown below, these numbers are large enough to directly
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Figure 2: Probability distribution functions of DWP parameters as a function of glass preparation
temperature Tf : (a) asymmetry ∆E, (b) energy barrier V , (c) distance d normalized by

√
PR,

which characterizes the typical individual displacement of particles that participate actively in a
double-well transition, and (d) participation ratio PR. Lines are a guide for the eye.

determine the density of tunneling TLS, which is our main goal.
We select transitions between adjacent minima as described in the Appendix, for which we

compute the minimum energy paths connecting them using a climbing image Nudged Elastic Band
(NEB) algorithm [38, 39], which ensures that one of the images lies at the saddle point and provides
a smooth potential energy profile. In most cases, double wells are obtained. Occasionally, especially
for Tf = 0.092, the energy profile contains intermediate minima. In such cases, we apply an iterative
method to split multiple wells into distinct DWPs, which are then analyzed similarly to the other
ones.

We parametrize the minimum energy path of a DWP by ξ such that ξ = 0 and ξ = 1 correspond
to the locations of the two minima (we arbitrarily choose ξ = 0 for the deepest minimum), see
Fig. 1(c). A DWP is characterized by its asymmetry ∆E = V (1) − V (0), its energy barrier V =
Va−∆E/2, where Va is the activation energy, and by the distance d between minima. The distance
is calculated along the reaction coordinate given by the NEB, as the sum of Euclidean distances
between images of the system: d2 =

∑
i,µ d

2
i,µ, where di,µ is the displacement of particle i in

direction µ = x, y, z. The number of particles participating in the transition is characterized by the
participation ratio, defined as PR = (

∑
i,µ d

2
i,µ)2/(

∑
i,µ d

4
i,µ).

The statistics of the classical DWP parameters are shown in Fig. 2. The probability distribution
function (pdf) for each quantity is given for different preparation temperatures Tf . The pdfs for
Tf = 0.062 and 0.07 agree quantitatively, within noise, while we observe an evolution of the pdfs
from Tf ≤ 0.07 to Tf = 0.092. In particular, the pdfs of asymmetries and energy barriers are almost
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Figure 3: Cumulative distribution of energy splitting from hyperquenched to ultrastable glasses
(top to bottom curve). The two values of m̃0 are chosen for comparison with real materials. The
plateau at small δE affords a direct determination of the TLS density n0, which is suppressed by
two orders of magnitude as glass preparation is varied.

exponential in all glasses, although the relevant TLS will typically not be found in those tails. The
mild dependence of these tails may stem from the fact that the sampling temperature TMD sets
a limit on the DWPs that can be detected, independently of Tf (see Appendixfor the effect of
TMD). The pdfs of distances (not shown) and participation ratios vary more significantly between
Tf ≤ 0.07 and Tf = 0.092. Since d ∝

√
PR, an increase of PR will affect the distribution of d. To

eliminate this effect we present the pdf of d/
√
PR instead of d. This quantity can be interpreted

as an average displacement of the particles that participate in the transition. On average, the
number of particles involved in DWPs is larger in poorly annealed glasses, while the displacements
of individual particles remain comparable. To our knowledge, a dependence on the quench rate of
the classical parameters of DWPs has not been reported before.

IV Density of two-level systems

At sufficiently low temperatures, thermal activation over the energy barrier V is suppressed, but
quantum tunneling becomes important [49]. For all subsequent analysis, we reduce our problem
to a one dimensional (1d) effective Schrödinger equation along the reaction coordinate. Following
Vineyard [50], the effective mass remains m0, with a reaction coordinate x ∈ [0, d]. Using the
normalized variable ξ = x/d, and scaling energies by ε, we obtain

− ~2

2m0d2ε
∂2ξΨ(ξ) + V (ξ)Ψ(ξ) = EΨ(ξ), (2)

where the “quantumness” of the problem is controlled by the adimensional mass m̃0 = m0σ
2ε/~2 (see

Fig. 3). In general, the Laplacian should take into account curvature effects, which are neglected
here for simplicity. Additionally, the potential V (ξ) obtained from the NEB is defined only for
ξ ∈ [0, 1]. An extrapolation outside this interval is needed to solve Eq. (2), see the Appendix.
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We solve Eq. (2) for all DWPs analyzed in Fig. 2. In particular, we compute the first two energy
levels of the double well, E1 and E2, and define the tunnel splitting E. ≡ E2−E1. As an illustration,
we show in Fig. 1(c) the two energy levels and the tunnel splitting of a DWP. The tunnel splitting
E. is the relevant parameter when it comes to low-temperature properties. When T is low, the
transitions that occur by quantum tunneling have a tunnel splitting E. ∼ T [6]. These particular
DWPs are called tunneling two-level systems (TLS).

We characterize the distribution of TLS using a cumulative distribution of tunnel splittings n(E. ),
defined as the number of DWPs with tunnel splitting smaller than E. , normalized by the number
of particles N in the glass, and the number of independent analyzed samples Ng. In TLS theory,
n(δE) can be expanded as n(E. ) ' n0E. +O(E. 2) for small tunnel splittings, and the specific heat at
low temperature is linear with T , with n0 entering the prefactor [3, 6].

In order to estimate the density n0 of TLS and to analyze its dependence on glass stability,
we plot n(E. )/E. as a function of tunnel splitting in Fig. 3. The curves have a similar shape,
indicating a saturation to a plateau value, n0, at low tunnel splittings. The existence of a plateau
in these curves demonstrates our ability to directly estimate the density of TLS n0 without any
extrapolation or uncontrolled hypothesis. The key physical result is that the TLS density n0 (as
estimated for example by the values of the curves for E. in the range 10−3 − 10−4) decreases by
two orders of magnitude when exploring glasses from the hyperquenched to the ultrastable regime.
We find almost no TLS with splitting E. < 10−4 in the most stable glasses. To our knowledge, this
constitutes the first numerical evidence for a significant suppression of TLS with increasing glass
stability.

V Microscopic nature of TLS

(a) (b)

Figure 4: Snapshots of TLS with low tunnel splitting E. for Tf = 0.092 and m̃0 = 30000. (a)
PR ≈ 126 with δE = 8.9 × 10−5. (b) PR ≈ 1.6 and similarly low δE = 5.4 × 10−5. The size and
color of particles are proportional to their displacement between the initial and final configurations
of the TLS, normalized to the highest displacement.

How many particles are involved in the tunneling motion of a TLS? [28, 29, 30] To establish
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an accurate picture, we analyzed how the participation ratio PR of transitions correlates with
the tunnel splitting E. . We focus on the low-temperature active TLS with tunnel splittings E. ∼
10−3−10−4, and find that the participation ratio can vary from 1 to 200 (see the Appendix). Higher
participation ratios (PR ∼ 200) are found for hyperquenched glasses, while the most collective TLS
found in ultrastable glasses have PR ∼ 30. Our study thus provides a systematic numerical evidence
that TLS are typically very localized, but active TLS are occasionally associated with collective
excitations. We provide two snapshots in Fig. 4, corresponding to a collective TLS (left) and a very
localized TLS (right) identified in a hyperquenched glass.

VI Discussion

Our detailed analysis of tunneling TLS in a simple computer model demonstrates their importance
to understand low-temperature glass anomalies. We show that the density n0 of TLS directly
controls the linear temperature dependence of the specific heat at low temperatures. Several recent
works advocated the idea that quantized low-frequency harmonic modes alone could explain this
behavior [10, 51, 52, 18, 53, 54, 55]. These soft modes are known for our glasses [56], but we find that
their contribution to the low-temperature specific heat is subdominant (see Appendix), suggesting
that the specific heat of structural glasses is dominated by tunneling TLS, as originally proposed
in [3, 6].

To relate our data to experiments we must convert our simulation units into physical units.
The temperature scale below which quantum effects become important is obtained by comparing
the thermal wavelength to the interparticle distance: TQ = 2π~2

m0σ2kB
. We thus consider DWPs with

E. < kBTQ as low-temperature active TLS, and their total number for N particles and Ng glass
samples is nactive = NNgn(E. = kBTQ).

A detailed analysis for experimental comparisons may be found in the Appendix. Let us first
consider Argon parameters: σ = 3.4×10−10m, ε/4 = 1.65×10−21J,m0 = 6×10−26kg [57]. This gives
Tg ∼ 32K, TQ ∼ 0.73K, and m̃0 ∼ 4000. For this m̃0, our values of n0 can be estimated from Fig. 3,
within statistical noise, as nsim0 ∼ 4, 0.4, 0.04 for Tf=0.092, 0.07, 0.062, which gives nexp0 ∼ 1049,
1048, 1047 J−1m−3. Active TLS have E. < kBTQ = 0.0015ε and we find nactive = 1008, 291, 61 such
TLS for Tg = 0.092, 0.07, 0.062 respectively. A second choice would be to use Nickel as a reference
material as motivated by NiP metallic glasses [24], where σ = 2.21 × 10−10m, ε = 6.14 × 10−20J,
m0 = 1.02 × 10−25kg [58]. In this case, we have Tg ∼ 298K, TQ ∼ 0.9K, and m̃0 ∼ 30000. For
this value of m̃0, from Fig. 3 we find nsim0 ∼ 60, 6, 0.6 for Tf = 0.092, 0.07, 0.062, which gives
nexp0 ∼ 1050, 1049, 1048 J−1m−3. Active TLS have δE < kBTQ = 0.0002ε and we find nactive = 248,
46, 28 such TLS for Tg = 0.092, 0.07, 0.062 respectively.

Experimentally, a typical value of n0 ∼ 1046J−1m−3 is reported [6, 7]. Our corresponding
estimate for Tf = 0.07 is larger by a factor of ∼ 102 for Argon and ∼ 103 for Nickel. This
discrepancy may be explained by the fact that we include in our estimates all DWPs detected at
temperature TMD = 0.04 � TQ, while in the real experiment the glass is brought directly to TQ
and only a small fraction of DWPs that lie at the very bottom of the energy metabasin is observed.
In fact, it is well known that n0 ∼ log(τ) where τ is the observation time at TQ [6]. This behavior
should exist up to a natural cutoff corresponding to the timescale of complete exploration of the
energy landscape. Our exploration protocol at TMD � TQ should then correspond to artificially
setting the value of τ larger than this natural cutoff.

Despite this, the reduction of n0 by two orders of magnitude when moving from hyperquenched
to ultrastable glasses is very robust and in very good agreement with recent experimental results [34,
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37]. Our results also demonstrate that glass ultrastability (rather than the potentially anisotropic
vapor-deposition process) is responsible for the depletion of TLS.
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I Supplementary information - Model

We study a three-dimensional, non-additive, continuously polydisperse mixture of particles interact-
ing via the pair potential Eq. (1). The particle diameters σi are drawn from the normalized distri-
bution P (0.73 < σ < 1.62) ∼ 1/σ3, with average diameter 〈σ〉 =

∫
P (σ)dσ = 1 (simply denoted as

σ in the main text). We employ a non-additive cross-diameter σij = 0.5(σi + σj) (1− 0.2|σi − σj |).
This model is efficiently simulated with the swap Monte Carlo algorithm. The choice of particle
dispersity and non-additivity make the homogeneous fluid robust against fractionation and crystal-
lization at all temperatures numerically explorable [31]. As in the main text, classical quantities
are given in units of ε, σ,m0.

We characterize the dynamic slowdown of the supercooled liquid using molecular dynamics
(MD) simulations. The temperature evolution of the relaxation time τα provides three temperatures
relevant to this work. The onset of glassy dynamics, signaled by deviations from Arrhenius behavior,
takes place at To = 0.18, where τα(To) = τo. The mode-coupling crossover temperature TMCT =
0.104 is measured by fitting the relaxation time data to τα ∼ (T − TMCT )−γ in a limited window
of relatively high temperatures. At TMCT , the dynamics is four orders of magnitude slower than
at the onset temperature, τα(TMCT ) ' 104τo. We take the mode-coupling crossover temperature
TMCT as a proxy for the computer glass transition, below which standard MD fail to equilibrate the
homogeneous fluid. The experimental glass transition Tg = 0.067 is located by fitting the relaxation
time data to a parabolic law, using τα(Tg) = 1012τo [31].

This glass-forming model is efficiently simulated at equilibrium with the swap Monte Carlo al-
gorithm. Supercooled liquid configurations can be generated down to T = 0.062, i.e. below the
experimental glass transition Tg. In this work, we focus on configurations prepared in equilibrium
conditions at temperatures Tf = 0.092, 0.07, 0.062. For the two lowest Tf values, standard MD dy-
namics initialized from an equilibrium configuration is completely arrested: no diffusion is observed
and the system is trapped within a glass metabasin. For the higher Tf = 0.092, some diffusion is
observed in equilibrium; but if the system is rapidly cooled at lower temperatures, once again no
diffusion is observed and a glass state is obtained. Borrowing from experimental conventions [40],
we call this the “fictive temperature” of the glasses, as discussed in the main text.

II Supplementary information - Landscape exploration

The amorphous configurations generated at Tf are first thermalized to TMD = 0.04 using a Berend-
sen thermostat. At this temperature, no diffusion is observed for all glasses. The system is then
simulated in the NVE ensemble, using an integration time step of dt = 0.01. Configurations along
the MD trajectory are frequently minimized using a conjugate gradient algorithm, bringing them
to their inherent structure (IS), i.e. the nearest local minimum in the potential energy landscape
(PEL). We minimize the MD trajectory every 20, 10, 5 time steps for Tf = 0.062, 0.07, 0.092. The
high frequency of minimization is chosen to identify nearby local minima, separated by an energy
barrier.

From the MD simulations, we obtain a time series of inherent structures. We are interested
in transitions between two different inherent structures, identified by comparing two consecutive
minima. We recorded 70970, 130859, and 1593359 transitions between inherent structures, for Tf =
0.062, 0.07, 0.092 respectively. We wish to characterize the potential energy barriers corresponding
to the transitions. This analysis is computationally costly. Given the large number of transitions
detected, we chose to analyze transitions detected at least 4 times, regardless of the direction of the
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Figure S1: Probability distribution of the potential energy barriers V sampled at temperatures
TMD = 0.01 and 0.04.

transition (A → B, or B → A). The number of transitions analyzed is equal to 14195, 23535, and
117361, for Tf = 0.062, 0.07, 0.092 respectively.

In order to investigate the influence of the temperature TMD on the characteristics of the double
well potentials identified, we present in Fig. S1 the probability distribution function of potential
energy barriers identified with TMD = 0.01, and 0.04 (used in the main text). The sampling
temperature TMD influences the tail of the distribution only, which decays as exp(−V/TMD). We
conclude that the sampling of relevant TLS is not affected by a variation of TMD within a reasonable
interval.

III Supplementary information - Tunnel splitting

For each analyzed transition, the Nudged Elastic Band (NEB) algorithm outputs a one-dimensional
potential defined for the reduced coordinate ξ, between the two minima only. We run the algorithm
using 40 images of the system. We need to extrapolate the potential in order to obtain a full double
well potential. We tested various extrapolation schemes, such as parabolic fitting of the minima,
and mirroring around each minima, defining V (−ξ) = V (ξ) for ξ < ξa and V (2 − ξ) = V (ξ) for
ξ > ξa, where ξa is the coordinate of the potential maximum: V (ξa) = V (0) +Va. In the main text,
we used a linear extrapolation of the reaction path obtained with the NEB. Let us denote r1 and
r2 the coordinates of the particles in the first two images of the system along the reaction path (r1
is an energy minimum). We measure the potential energy of the configuration, starting from r1,
and moving in the direction r1 − r2. We perform a similar extrapolation at the other minimum.
We show in Fig. 1 a double-well potential obtained from the NEB algorithm (blue part), and by
linear extrapolation of the reaction path (black part). We have compared all methods and found
that while each scheme gives a slightly different potential, the statistics of tunnel splittings remains
unaffected by our choice. In the main text, we use the most physical scheme, namely the linear
extrapolation of the reaction path.

Once the classical potential V (ξ) is obtained by extrapolation as discussed above, we solve
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Figure S2: Scatter plot of the participation ratio PR (a,c,e) and the potential energy barrier V
(b,d,f) versus the tunnel splitting δE, of double-well potentials in glasses prepared at Tf = 0.092
(a-b), Tf = 0.07 (c-d), and Tf = 0.062 (e-f). The data for DWPs found in the same glass sample
(there are Ng of them) are presented with the same color. The tunnel splittings are computed using
an adimensional mass m̃0 = 30000.

numerically the Schrödinger Eq. (2) using a standard Python package. Note that, in general, the
Laplacian term should take into account curvature effects along the reaction coordinate, ∇2

ξ =

∂2ξ + (detg)−1/2∂ξ[(detg)1/2∂i] + (detg)−1/2∂i[(detg)1/2∂ξ], where g is a metric tensor and ξi are
coordinates orthogonal to ξ. For simplicity, we neglect these effects and use the standard second
derivative along the reaction coordinate.

We present in Fig. S2 a scatter plot of the tunnel splitting δE as a function of participation ratio
PR and energy barrier V for DWPs identified in glasses from hyper-quenched (top) to ultrastable
(bottom). In Fig. S2 (a,c,e) we observe that in the relevant range of E. . 10−3 the value of PR can
be as large as ∼ 200 for Tf = 0.092 and ∼ 30 for Tf = 0.062. In Fig. S2 (b,d,f) we observe that
in the same relevant range, the barrier is always V & 10−2 � E. , indicating that the relevant DWP
are indeed TLS. We also checked (not shown) that in the same range, one always has E3−E1 � E. ,
where E3 is the third energy level.

Finally, we checked that for most TLS in the relevant range, the wavefunctions of the first two
levels are delocalized over the two wells, indicating that tunnelling is active. However, the barrier V
has a relatively wide distribution (see Fig. S2), and there exist TLS with large barriers and hence very
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Figure S3: The TLS density n0, as extrapolated from n(E. )/E. in the limit E. → 0, divided by m̃0,
as a function of glass stability, encoded by the value of log(τα/τo) for the three values of Tf and
different m̃0. A reduction of n0 by two orders of magnitude is robustly observed, independently of
m̃0. Furthermore, we find n0 ∝ m̃0 independently of Tf .

small tunnelling matrix elements. For those TLS, the wavefunctions are almost localized, indicating
that tunnelling is highly suppressed. These TLS would be frozen in experimental conditions. The
wide distribution of V is known to be responsible for a logarithmic growth of n0 with observation
time τ , n0 ∝ log τ [6], which also provides an additional explanation for why our simulations
overestimate n0 with respect to experiments.

IV Supplementary information - Dimensional scaling analysis for
unit conversion

The number of TLS per particle in a given glass sample with a tunnel splitting less than δE, for
δE → 0, is n0δE. Hence, n0 has the dimensions of an inverse energy, expressed in units of ε−1.
However, because in our simulation units the number density is ρ = 1, n0 is also the number of TLS
per unit volume, in units of ε−1σ−3, i.e.

nexp0 = nsim0 × ε−1σ−3 . (3)

For Argon, ε−1σ−3 ∼ 3.85×1048J−1m−3, while for Nickel ε−1σ−3 ∼ 1.51×1048J−1m−3, which allows
one to convert our numerical results for nsim0 into experimental values for these two materials.

Because the glass transition temperature in the simulation is Tg = 0.067, the corresponding
glass transition temperature in physical units is

Tg = 0.067× ε

kB
. (4)

Finally, the temperature TQ at which quantum effects become relevant is that at which the thermal
wavelength equals the interparticle distance. Since our simulation density is ρ = 1/σ3, we get

TQ =
2π~2

m0σ2kB
=

2π

m̃0

ε

kB
, (5)
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and we recall that m̃0 = m0σ
2ε/~2 is the adimensional mass that appears in the Schrödinger

equation. Finally, note that the relevant (active) TLS are those with δE < kBTQ, and their total
number in our simulation is given by

nactive = NNgn (δE = kBTQ)

∼ NNgn
sim
0

kBTQ
ε

= 2πNNg
nsim0

m̃0
.

(6)

We find that n0/m̃0 is roughly constant for a given glass stability Tf , as shown in Fig. S3. This
results implies that the choice of m̃0 can be quite arbitrary, within a reasonable range. In particular,
m̃0 cannot be too small otherwise the condition TQ � Tg would be violated.

V Supplementary information - Vibrational and TLS contributions
to the specific heat

Here, we compare the contributions to specific heat coming from TLS and from harmonic vibrations
around an inherent structure. To obtain the TLS contribution, for a given Tf and m̃0, we collect
all the TLS found in all the Ng glasses, with splitting δEi, and compute [6, 3]

CTLS =
1

NNg

∑

i

x2i
cosh(xi)2

, xi =
δEi

2kBT
. (7)

To obtain the vibrational contribution, we considered a single glass prepared at Tf = 0.062, and
all the NIS inherent structures found within that glass. For each inherent structure, we diagonalize
the Hessian matrix of the classical potential, to obtain a set of eigenvalues (spring constants) κα.
Each of these provides a quantum harmonic oscillator contribution to the vibrational specific heat,
which is

Cvib =
1

NNIS

∑

α

x2α
sinh(xα)2

, xα =
~ωα

2kBT
, ωα =

√
κα
m0

. (8)

Note that the finite size of the system imposes a cutoff on the low-frequency Debye behavior. In fact,
the lowest frequency found in our system is ~ωα/kB = 0.0038 (in simulation units) for m̃0 = 5000,
and ~ωα/kB = 0.0016 for m̃0 = 30000. To avoid this problem we used data of larger system with
N = 192000 particles [56] and extrapolate the quadratic region of the density of states to the ω → 0
limit.

Yet, from Fig. S4 we conclude that the vibrational contribution decays much faster than the
TLS one upon lowering temperature, and that already at T ∼ 10−4 we have Cvib � CTLS for all
considered values of m̃0 and Tf .
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Figure S4: (a) TLS contribution to the specific heat per particle, as a function of T . Dotted-dashed
lines are the asymptotic low-temperature scaling, CTLS ∼ T , for m̃0 = 30000 (for m̃0 = 5000 the
statistics is not sufficient for a good extrapolation). (b) Vibrational contribution to the specific heat
per particle, as a function of T , for Tf = 0.062, averaged over inherent structures in a typical glass
metabasin.
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Chapter 4

Efficient algorithms for the simulation
of equilibrium supercooled liquids

The development of the SWAP algorithm opened the way to computer studies of supercooled
liquids and glasses in a previously inaccessible temperature regime. Most of our numerical work
was made possible by this recent advance.

The optimization of the swap Monte Carlo algorithm, combined to the design of new computer
glass-forming models allowed thermalization at temperatures below the experimental glass transi-
tion. Surprisingly, this is achieved by bringing a small modification to the original Monte Carlo
algorithm. The massive acceleration of dynamics offered by the addition of local swap moves raises
questions on the origin of the glassy slowdown [230, 231]. It also reveals that smarter algorithms
may be able to bypass the dramatic slowdown of supercooled liquids.

This sudden leap forward motivated efforts to take things one step further. Being able to reach
even lower temperatures in equilibrium, or thermalizing larger system sizes, is an important goal.
The putative Kauzmann transition could be approached even closer [232, 233]. Large computer
samples are needed to investigate the melting mechanism of ultrastable films [234]. Large samples
are also needed to study the mechanical stability of stable glasses [235], their vibrational proper-
ties [236], or to address the nature of the Gardner transition in 3d glasses by finite-size scaling
analysis.

A first attempt to increase the efficiency of the swap algorithm is to implement a parallel
version of the algorithm, i.e. running on several processors. In the following article, we explore this
possibility by proposing a Hybrid molecular dynamics/SWAP Monte Carlo method. This method
is implemented in the LAMMPS simulation package, for which MD is readily parallelized. We
optimize the algorithm and its parameters to achieve the best efficiency, which we compare to the
SWAP Monte Carlo method. We find that this method is as efficient as SWAP MC when run
in serial (one processor). Our implementation within the LAMMPS package makes the algorithm
accessible to a broad community of users. When run in parallel, however, the current version of
the algorithm does not allow to gain in efficiency. In fact, the speedup gained in the MD part of
the algorithm is counterbalanced by a greater cost of parallelizing the swap MC part.

In a second part of the work, we present a fully continuous version of the SWAP algorithm.
The size of particles are treated as continuous variables which evolve in an external potential. A
generalized Hamiltonian is defined for the system of interacting particles. The equations of motion
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for the position and particle size are derived and solved numerically, as done in molecular dynamics.
In this continuous method, the distribution of particle sizes, which defines a glass-forming model,
is not fixed. It fluctuates in order to minimizes the potential energy of the system. This makes
this method difficult to use in practice, since the potential for particle radii must be adjusted at all
temperatures. Moreover, crystallization becomes almost inevitable at low temperature: the particle
size distribution deforms in order to facilitate crystallization. While this method could be easily
parallelized (the dynamics is deterministic), it is cumbersome to implement and does not compete
with the SWAP and Hybrid methods.

In practice, Elijah Flenner initially proposed and implemented a version of the SWAP algorithm
in the LAMMPS package. Christopher Fullerton and myself worked on a better implementation
of the code, in order to make the parallel version as efficient as possible. Despite our efforts, the
current version, run for 3d systems, is not more efficient when run in parallel. I performed the ef-
ficiency tests of the Hybrid method, which are presented in Figs. 2-7 of the article. I implemented
several pair interaction potentials, such as the WCA potential, inverse power law potential, and
harmonic potential. Murari Singh implemented, optimized and studied the continuous version of
the swap method.

This Hybrid method is used to prepare the stable configurations studied in the article ‘Nature of
defects and excitations in structural glasses’ of Chapter 3, as well as constant-pressure simulations,
for which the results are presented in Chapter 5.
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Efficient swap algorithms for molecular
dynamics simulations of equilibrium
supercooled liquids
L. Berthier, E. Flenner, C. J. Fullerton, C. Scalliet, M. Singh, J. Stat. Mech. (2019) 064004

It was recently demonstrated that a simple Monte Carlo (MC) algorithm
involving the swap of particle pairs dramatically accelerates the equilib-
rium sampling of simulated supercooled liquids. We propose two numerical
schemes integrating the efficiency of particle swaps into equilibrium molecu-
lar dynamics (MD) simulations. We first develop a hybrid MD/MC scheme
combining molecular dynamics with the original swap Monte Carlo. We
implement this hybrid method in LAMMPS, a software package employed
by a large community of users. Secondly, we define a continuous time ver-
sion of the swap algorithm where both the positions and diameters of the
particles evolve via Hamilton’s equations of motion. For both algorithms,
we discuss in detail various technical issues as well as the optimisation of
simulation parameters. We compare the numerical efficiency of all available
swap algorithms and discuss their relative merits.

I Introduction

Simulations are a useful tool to understand the equilibrium properties of supercooled liquids ap-
proaching a glass transition [1]. They offer microscopic insight into static and dynamic properties
for well-defined and usually quite simple model systems. A major obstacle in this approach is the
difficulty of simulating large enough timescales in order to get closer to experimentally-relevant
studied materials. Recently, the gap between simulated timescales and experimental ones has been
closed [2, 3] using a simple Monte Carlo (MC) scheme, where ordinary translational moves of the
particles (that mimic the physical dynamics) are complemented by the swap of unlike particle
pairs [4, 5]. The method is thus broadly applicable to models composed of discrete or continuous
mixtures of distinct particles. In practice, this encompasses virtually all types of glass-formers [1].

While having many advantages, such as simplicity and efficiency, Monte Carlo is not necessarily
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the most commonly used simulation technique for supercooled liquids. Molecular dynamics (MD)
techniques are often preferred, because the microscopic dynamics is closer to that of real molecular
fluids [6]. For colloidal particles, Brownian dynamics may be more adapted. For several models
of supercooled liquids, the equivalence of all these different microscopic dynamics to those of MC
simulations is fully established [7, 8, 9, 10]. This implies in particular that the chosen numerical
method to simulate supercooled liquids is essentially one of personal convenience. Since particle
swaps were first introduced in the context of MC studies [5, 2], it is natural to ask whether it is
possible to extend the method in the more general context of MD simulations.

One potential advantage of MD simulations is that they are easier to parallelize than MC
techniques, mainly because the positions of the particles are all updated simultaneously in MD rather
than sequentially in MC. This makes simulating large systems prohibitively slow when using MC
simulations. Although spatial correlations remain relatively modest in supercooled liquids [1, 11],
larger and larger systems are required to analyse the deeply supercooled states that swap MC
simulations can now potentially access [12, 13, 14, 15]. It is therefore natural to ask if it is possible
to introduce swap moves into molecular dynamics, a simulation method which is readily parallelized.

As a first step we consider a hybrid MC/MD simulation scheme where blocks of swap Monte
Carlo moves are inserted at regular time intervals into a conventional molecular dynamics simulation.
This method has already been used long ago [4], in a different context. We show how to best tune
the parameters of this hybrid technique to obtain maximum efficiency, and carefully discuss the
numerical efficiency of the technique. We implement the method into the LAMMPS open software
for MD simulations [16]. In a second effort, we implement a continuous time version of the swap
MC into a generalized MD scheme where both the positions and the diameters of the particles
obey Newton’s equations of motion for a suitably defined Hamiltonian. This second scheme bears
similarities with semi-grand MC techniques for polydisperse fluids [17, 4, 18]. When properly
optimised, we find that all three simulations techniques provide essentially the same (potentially
very large) speedup over conventional MD and MC techniques, so that again the choice of one swap
algorithm over another is mostly one of personal convenience.

This article is organised in the following way. In Sec. II, we discuss the hybrid MC/MD method:
numerical scheme, details of the studied models, thermalisation speedup. These results are of general
interest and do not depend on the specific implementation of the algorithm. We then present the
computational efficiency obtained with our implementation of the method in the LAMMPS package.
In Sec. III, we present the continuous time version of the swap algorithm. The relative merits of all
swap algorithms are discussed in Sec. IV.

II Hybrid MC/MD method

II.1 Microscopic model

We study numerically a system composed of N size polydisperse particles of identical masses m in
a cubic box of linear size L with periodic boundary conditions. The system is defined by the 3N
particle position coordinates rN = {r1, r2, . . . , rN}, and the particle sizes σN = {σ1, σ2, . . . , σN}.

Two particles i 6= j at a distance rij = |ri − rj | interact only if rij < 1.25σij . We model the
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Figure 1: The hybrid scheme consists of a regular succession of blocks of molecular dynamics
simulations and blocks of particle-swap Monte Carlo steps. Every tMD, the molecular dynamics is
paused and nswap swap Monte Carlo steps are performed, which are not counted in the total elapsed
MD time.

interactions between particles via a soft repulsive pair potential

u(rij , σij)/ε =

(
σij
rij

)12

+ F (rij , σij) ,

where F (rij , σij) = c0 + c2

(
rij
σij

)2

+ c4

(
rij
σij

)4
(1)

is a function that smooths the potential at the cutoff distance 1.25σij . The coefficients c0, c2, and c4
ensure the continuity of the potential up to the second derivative at the cutoff. The total potential
energy of the system is U(rN , σN ) =

∑
i<j u(rij , σij). In order to obtain a good glass-forming

model, we study a continuously polydisperse system. The particle diameters follow the distribution
P (σm ≤ σ ≤ σM ) = A/σ3, where A is a normalizing constant, σm = 0.73 and σM = 1.62. To ensure
the structural stability of the polydisperse mixture, we employ a nonadditive interaction rule for
the cross diameters σij =

σi+σj
2 (1 − 0.2|σi − σj |), following previous work [3]. Lengths and times

are respectively expressed in units of σ =
∫
σP (σ)dσ and

√
ε/mσ2. In the following, we present

results for this model at number density ρ = N/L3 = 1, mostly for N = 1500. In Sec. II.7, we study
systems with larger sizes to check the scalability of the algorithm with system size.

II.2 Hybrid scheme

We introduce the hybrid scheme used to simulate the glass-forming model presented in Sec. II.1.
The method consists of alternating between ordinary molecular dynamics simulation sequences
during which the particle positions evolve with a fixed particle size, and particle-swap Monte Carlo
sequences during which the particles exchange their sizes at fixed positions. The hybrid method is
illustrated in the schematic diagram of Fig. 1.

The trajectories of particles in the MD blocks are generated in the canonical ensemble (NV T )
by integrating Nosé-Hoover chain equations of motion [19, 20, 21, 22]. We use a chain of thermostats
of length three. The time integration of the equations of motion is performed by a time-reversible
measure-preserving Verlet algorithm, with a time discretization dt = 0.01 [23]. The damping pa-
rameter associated to the heat bath variables is equal to 1. The particles positions and velocities
are evolved during sequences of duration tMD. This defines the MD blocks. At the end of each MD
block, the time is paused, and the particle positions and velocities are frozen. A series of particle-
swap Monte Carlo moves are then performed, and this defines a swap Monte Carlo (SMC) block.
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These blocks are composed of Nswap attempted elementary swap moves. During each elementary
move, two particles are chosen randomly and the exchange of their diameters is accepted or rejected
based on the Metropolis criterion. The swap moves preserve detailed balance and guarantee an
equilibrium sampling of phase space in the NV T ensemble. The duration of the swap Monte Carlo
blocks is defined in a system-size independent way through nswap = Nswap/N .

We combine the parameters tMD and nswap together as

ρswap =
nswap
tMD

, (2)

which represents the density of particle-swap Monte Carlo moves per particle and unit MD time. In
the following, we will study how the parameters tMD and nswap affect the efficiency of the algorithm.
In particular, we will study the competition between the thermalisation speedup offered by the swap
moves and the additional CPU time entailed by the addition of swap MC blocks.

We have implemented the hybrid scheme into the LAMMPS open software, because it is widely
used and versatile. We have already used this method to study other model systems, such as
Lennard-Jones and its truncated Weeks-Chandler-Andersen version [24, 25, 26]. Very deeply super-
cooled states have been successfully obtained for all these models. Details about how size polydis-
persity is handled and other LAMMPS-specific details are presented in Appendix V.

II.3 Proper sampling of the canonical ensemble

In the previous section, we presented the hybrid scheme as a succession of molecular dynamics and
swap Monte Carlo blocks. Inside each block, the dynamics (MD or MC) is carefully designed to
sample the canonical NV T ensemble. However, given the different nature of both algorithms, we
need to ensure that the combination of both methods continues this equilibrium sampling.

In the hybrid method, the MD simulation is regularly interrupted to perform particle-swap
moves. In the MD blocks, both the potential and kinetic energies fluctuate. By contrast, the
SMC blocks only affect the potential energy of the system, since only the diameters of particles are
changed, at fixed positions and velocities. As a new MD block starts, the particles have the same
positions and velocities as in the previous MD block, but they now possess a different potential
energy. It takes a short but finite time (of the order t ∼ 0.1) for the kinetic energy to relax after the
SMC block has been performed. As a result, MD blocks cannot be made arbitrarily short. When
hybrid simulations are run with tMD < 0.1, we have found that the system heats. In the limit
tMD = dt, which amounts to alternating MC and MD at each integration step, the kinetic energy
is up to 3% higher than the imposed temperature and the Nosé-Hoover thermostat does not work
properly.

However, when the hybrid simulations are run with tMD > 0.1, the probability distributions of
the potential and kinetic energies follow the canonical ones, and coincide with those obtained from
standard NV T simulations without the SMC blocks.

II.4 Equilibration speedup

In this section, we study the equilibrium dynamics of the model presented in Sec. II.1 simulated
with the hybrid method.

We first run equilibration simulations during which we monitor the evolution of the potential
energy U and the structure factor of the liquid, to detect aging effects and potential instabilities of
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Figure 2: Evolution of the equilibration time τα with inverse temperature 1/T in hybrid MD/MC
simulations of the three-dimensional soft polydisperse model of Sec. II.1 at number density 1. The
swap density ρswap is varied between ρswap = 0 (ordinary molecular dynamics) and ρswap = 100.
The dynamics at intermediate ρswap smoothly interpolates between these two limits.

the homogeneous fluid. When equilibrium is reached, we compute the self-part of the intermediate
scattering function

Fs(k, t) =

〈
1

N

∑

j

eik·[rj(t)−rj(0)]

〉
. (3)

We spherically average over wavevectors of magnitude k = 7.0, which corresponds to the first
diffraction peak in the static structure factor of the liquid. The brackets indicate averages over
independent equilibrated configurations. We do not insist that times are taken immediately or long
after the Monte Carlo swap moves. Following common practice, we define the structural relaxation
time of the liquid τα as the time at which Fs(k, τα) = e−1.

We study the influence of gradually adding SMC blocks to standard MD simulations. We
compute the equilibrium relaxation time of the liquid varying temperature and swap density ρswap
and report the results in Fig. 2. For ρswap ≥ 0.1, we use tMD = 0.1, and different lengths nswap
for swap blocks. To access the lowest density of swap ρswap = 0.01, we use instead tMD = 1.
The resulting swap density ρswap then varies from 0.01 to 100. Conventional molecular dynamics
simulations correspond to ρswap = 0.

For standard molecular dynamics, the relaxation time of the liquid increases sharply as temper-
ature decreases. We evaluate empirically TMCT ≈ 0.1 through a mode-coupling theory power-law fit
to the relaxation time data [27]. In practice, the numerical study of equilibrium supercooled liquids
with molecular dynamics simulations are confined to temperatures above TMCT , as the relaxation
time near TMCT corresponds typically to the maximal computer time accessed in conventional MD.
As such the mode-coupling temperature crossover TMCT is a useful temperature scale in the context
of computer simulation studies of supercooled liquids.

The situation changes gradually as ρswap increases. For low values ρswap = 0.01 − 0.1, the
relaxation time of the system at high temperature is equal to that of the standard MD simulation.
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Figure 3: Relaxation time as a function of ρswap for three selected temperatures: T =
0.105, 0.085, 0.062. At fixed temperature, each data set corresponds to a given duration of the
MD blocks, tMD = 0.1, 1, 10, and each single point to one value of nswap. The arrow labeled τMD

α

indicates the relaxation time of the liquid at T = 0.105 for ordinary MD simulations; this time
cannot be directly measured for the two lowest temperatures.

In this regime, the dynamics is not slow enough to be affected by the addition of a small number of
swap moves. Around TMCT and below, the addition of short SMC blocks becomes key to observing
the liquid relax in numerically accessible timescales. Strikingly, equilibrium is easily reached at
T < TMCT with a density of swap as small as ρswap = 0.01, i.e., when only 1% of the N particles
are swapped per unit time. As the swap density ρswap increases, the relaxation time departs more
strongly from the one obtained with pure MD simulations.

For large swap densities such as ρswap = 100, the dynamics are affected so much that the high-
temperature Arrhenius behavior of the normal dynamics now persists almost down to TMCT , before
eventually increasing with a super-Arrhenius law at lower temperatures. We find that the hybrid
method can achieve thermalization of supercooled liquids down to 0.6TMCT . We point out that
Fig. 2 resembles results obtained with the swap Monte Carlo method, in which the role of ρswap was
played by the probability, p, to perform a particle-swap move over a translational move [28]. This
suggests a close correspondence between ρswap in the hybrid method and p in the original swap MC
method, which we explore further in Sec. II.6.

In order to optimize the hybrid method, we investigate the separate influence of the parameters
nswap and tMD on the thermalization speedup of supercooled liquids. We select three temperatures
of interest, one above TMCT and two below: T = 0.105, 0.085, and 0.062. For each temperature,
we report the relaxation time τα measured with the hybrid simulations at different nswap and tMD

in Fig. 3. Each data set corresponds to a fixed duration tMD of the MD blocks, so that increasing
ρswap corresponds to increasing the duration nswap of the SMC blocks.

The qualitative evolution of the relaxation time with swap density is similar at all temperatures.
Starting from the limit ρswap = 0 (conventional MD simulations), τα decreases with the swap density,
roughly as τα ∼ 1/ρswap [3]. At T = 0.085, 0.062, this behaviour is observed over a few decades of
ρswap. At large ρswap, all curves saturate to a plateau value: increasing the length of SMC blocks at
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Figure 4: Ratio of the CPU time THybrid of Hybrid simulations compared to the CPU time of
standard molecular dynamics TMD, both running for the same total MD length. The trivial limits
of THybrid/TMD at small and large ρswap are well captured by a simple empirical fitting function
shown with a dashed line.

fixed interval tMD does not speedup further the dynamics. Indeed, as nswap increases more particle-
swap attempts are performed in a SMC block. But since the particles’ positions are frozen during
such SMC blocks, the saturation of τα reflects the thermalization of the particles’ diameters within
a frozen configuration. At a given temperature, the plateau value at larger ρswap depends on tMD:
the longer tMD, the higher τα is at the plateau. Since molecular dynamics is inefficient at relaxing
the structure of the liquid in this temperature regime, longer MD blocks do not help speedup the
structural relaxation. We emphasise that MD blocks are nonetheless essential to the hybrid method,
since swap moves and particle displacements work hand in hand to decorrelate the structure of the
liquid [3].

The optimal value tMD = 0.1 emerges from optimizing the physical efficiency (see Fig. 3) of the
hybrid simulation which requires a small tMD value, together with the constraint that tMD must be
large enough for a proper sampling of the canonical ensemble (see Sec. II.3).

II.5 Efficiency of the hybrid method on a single CPU

In this section, we focus on the efficiency of the hybrid method executed on a single CPU. More
specifically, we are interested in quantifying the competition between the added CPU cost due to
increasing the number of swap moves and the speedup in thermalisation offered by the swap moves
observed in Fig. 2. Such results, therefore, will be a combination of the physical efficiency of the
algorithm, the efficiency of our implementation of the hybrid method, and the hardware that we
run it on. However, our discussion is generic and should be useful to anyone willing to employ the
hybrid method. We present results obtained with our implementation of the hybrid method in the
LAMMPS package. We expect these results to be broadly applicable, as there is little flexibility in
implementing such a serial program, apart from well-known optimizations [6].

To characterize the influence of ρswap on the CPU time in the hybrid method, we measure
the time in seconds to run hybrid simulations which last the same total MD time, using different
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Figure 5: The product of the measured relaxation time τα with the computational cost f(ρswap)
of increasing the swap density in the hybrid method presents a minimum at all temperature. The
hybrid method is the most efficient with the parameters yielding a minimum in the curves. The
best trade-off between physical speedup and CPU cost is reached for nswap = 2− 10, tMD = 0.1, as
highlighted by the shaded region.

combinations of nswap and tMD. The computational time should of course not depend on how the
MD and SMC blocks are distributed, but rather on the total duration of each type of blocks. We
therefore report times as a function of ρswap in Fig. 4. As expected, we see that all points collapse
on a single master curve, confirming that the CPU time indeed depends on ρswap only. In the range
ρswap = 0−10, the CPU time of the hybrid method is dominated by that of the MD blocks. Around
ρswap = 10, the CPU time becomes dominated by particle-swaps, and eventually grows linearly with
ρswap with a slope controlled by the CPU cost of an individual swap move. This simple dependence
of the CPU time with ρswap is well captured by a fitting function f(ρswap) = 1 + 0.04ρswap (dashed
line in Fig. 4), which captures these two limits.

To finally determine the optimal parameters of the hybrid method, we combine the dynamical
gain shown in Fig. 3 and the computational cost discussed in Fig. 4. The product of both quantities
quantifies the time needed to achieve a given number of MD steps in units of the relaxation time
of the system. In other words, this quantifies how long (in CPU time) it takes to equilibrate the
system at a particular state point. This quantity should be minimal for the hybrid method to be
the most efficient.

The numerical results are shown in Fig. 5. All the curves shown in this figure present a minimum
for a given value of ρswap, and the location and value of this minimum both depend on tMD. For a
given temperature, the global minimum occurs for tMD = 0.1. The location of the minimum varies
over a narrow range of ρswap, slightly shifting to higher ρswap at lower temperatures. This range
is highlighted by the shaded region in Fig. 5, and corresponds to ρswap = 20 − 100 and thus to
nswap = 2 − 10. This represents the best trade-off between the speedup offered by increasing the
number of swap moves, and the added CPU cost of performing these moves.
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Figure 6: Comparison between the hybrid (nswap = 10, tMD = 0.1) and swap MC algorithms
(p = 0.2). (a) Equilibrium relaxation times of the liquid τα as a function of the inverse temperature
in hybrid and swap MC methods, as well as in standard MD and MC simulations. Relaxation times
for hybrid and MD methods are in MD units. For swap and conventional MC, we convert 1 MD
step into a = 3.2 MC steps. (b) Self-intermediate scattering function Fs(k, t) measured in swap MC
(close symbols) and hybrid simulations (open symbols) at T = 0.062, 0.075, 0.092 using the same
time units as in (a). These data demonstrate the full equivalence between swap MC and hybrid
simulations, which offer the same equilibration speedup over conventional MC and MD methods.

II.6 Comparison between the hybrid and swap MC methods

We now compare the efficiency and physical dynamics obtained in both the hybrid and the swap
MC methods. Both methods have their own set of optimised parameters. For the hybrid method,
tMD and nswap must be tuned, whereas for swap MC one must adjust the relative probability p to
attempt a particle-swap move instead of a translational move. Within the MC approach the typical
size of the translational moves must also be adjusted [7]. In order to compare the two methods,
we present results for simulations run with the optimal parameters in each case. The optimal
efficiency of the swap MC algorithm is reached around p = 0.2 [3]. In this section, we consider
hybrid simulations with nswap = 10, tMD = 0.1.

To compare MD and MC methods, we need to employ a dictionary between timescales, which
correspond to very different processes in both approaches. To this end, we first measure the relax-
ation time of supercooled liquids measured in standard MC and MD simulations, i.e. with no swap
moves at all. These are respectively expressed in numbers of MC steps and MD time. As found
before in a different system [7], we observe that the structural relaxation time in both dynamics
follows a similar temperature dependence, see Fig. 6a. Rescaling the MC curve on top of the MD
curve, we find that t = 1 in MD units corresponds to t ≈ 320 MC steps. Using a time discretisation
dt = 0.01, this implies that 1 MD step corresponds roughly to a = 3.2 MC steps, a conversion
similar to the one found for a Lennard-Jones model [7].

This conversion factor allows us to convert the simulation parameters used in optimal hybrid
simulations, nswap = 10, tMD = 0.1, into an equivalent probability of performing swap moves:
pequiv = (nswap/a)/(nswap/a + tMD/dt) ≈ 0.238, which is indeed very close to the optimal p ≈ 0.2
determined in Ref. [3].
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Figure 7: CPU time (in seconds) as a function of the swap density ρswap for hybrid simulations
of systems composed of N = 1500 (red), 12000 (blue), 120000 (green) particles, running on one
(square), two (circle) or eight (triangle) processors. All the simulations run for a total time of 10
(in MD units), obtained by varying both tMD and nswap.

In Fig. 6b, we show self-intermediate scattering functions Fs(k, t) measured in hybrid and swap
MC simulations at three temperatures below TMCT . We have converted Monte Carlo steps in MD
units using the above conversion factor. We see that the equivalence between MC and MD dynamics
discussed before for conventional simulations [7, 8] now extends to swap algorithms. Apart from
small differences at short times, the decay of time correlation functions using swap MC and the
hybrid methods are very similar.

We obtain the relaxation time for these two swap dynamics and present the results in Fig. 6a
along with the results for the ordinary dynamics. It is clear from this figure that the relaxation times
of the swap MC and hybrid methods are again equivalent. We conclude that the hybrid method is
able to speedup the equilibration of supercooled liquids with an efficiency comparable to the one
of the original swap MC algorithm. Given the above conversion factor of order unity between MC
and MD steps, we finally conclude that both methods give an equivalent equilibration speedup at
an equivalent CPU cost.

We have shown that the hybrid method MC/MD is as powerful as the swap Monte Carlo
algorithm when it comes to generating computer supercooled liquids at temperatures lower than
the laboratory glass transition. The implementation in the LAMMPS package that we propose
should in addition makes this algorithm a very powerful and versatile tool accessible to the glass
community.

II.7 Efficiency of the hybrid method in parallel

In essence, the hybrid method converts the translational moves of the original swap MC algorithm
into MD integration steps, while keeping the much less frequent swap moves unchanged. An im-
portant difference between translational MC steps and MD steps is that the former need to be
performed sequentially, which makes MC intrinsically difficult to parallelise. Existing solutions to
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this problem only become advantageous for extremely large system sizes [29]. Converting MC steps
to MD steps in the hybrid method thus makes it possible to easily parallelise the translational part
of the swap algorithm. This is an important objective of the present work.

The LAMMPS package, a “Massively Parallel Simulator”, provides a good starting point to
implement the hybrid scheme on several CPUs. In LAMMPS, the molecular dynamics is already
well optimized to run on several processors. It is possible to parallelize MD simulations because
the algorithm is deterministic, so each processor can be in charge of a subset of the total system
without having to perform time-costly inter-processor communications frequently. To work within
the existing framework of LAMMPS, some inter-processor communication is necessary during the
SMC blocks. We now determine how much of an effect this has on the efficiency of the hybrid
method when run in parallel.

We simulate at temperature T = 0.062 systems composed of N = 1500, 12000, 120000 particles.
The simulations have been run on one, two and eight processors. For a given system size and
number of CPUs, we run simulations at different values of nswap and tMD. All the simulations are
run for the same total MD length. In Fig. 7 we report the CPU time in seconds for this large set of
hybrid simulations.

We observe two regimes in this figure. At low density of swap moves, ρswap < 1, the CPU time
of the simulation is dominated by the MD blocks. In this regime, the CPU time depends essentially
on the number of particles per processor. For example, N = 12000 particles on 8 CPUs takes about
the same CPU time as N = 1500 particles on one processor. In this regime of modest swap density,
the hybrid algorithm allows us to efficiently simulate very large systems by using more than one
processor. In other words, we benefit from the optimal parallelisation offered by the MD algorithm,
as implemented in LAMMPS. In this regime of system sizes, no such improvement would be gained
for the original swap MC method.

At larger ρswap, the CPU time becomes dominated by the SMC blocks, and it increases linearly
with ρswap, as found already in Fig. 4. The relative position of the curves corresponding to different
numbers of CPUs is inverted compared to the low ρswap regime. In other words, running simulations
on more processors does not decrease the CPU time of a simulation, bur rather increases it.

The difficulty in parallelising Monte Carlo algorithms is well-known and intrinsic to their stochas-
tic sequential nature. In LAMMPS, information about particles in different parts of the box is stored
on different processors. Adding SMC moves to LAMMPS therefore means that processors need to
exchange information during most swap moves. These communications are time-consuming, and
more frequent than during parallelised MD simulations. This means that swap moves in this imple-
mentation are less efficient in parallel than they are in serial. The CPU time in this regime of ρswap
is completely dominated by these inter-processors communications, hence the increase in CPU time
when running on more processors. More details are given in Appendix V.

There is a crossover between the two regimes discussed above, at which the CPU time is the
same for a given system size, regardless the number of processors. This crossover occurs at a value
around ρswap ∼ 10, which tends to decrease as system size increases.

In order to get the global efficiency of the hybrid method in parallel, we have reproduced the
analysis done in Fig. 5. We multiply the physical relaxation time by the CPU time for simulations
run in parallel. The optimal parameters for the hybrid method in serial are around ρswap = 20−100
(see Fig. 5) but this corresponds to the swap-dominated regime. As a result, the global efficiency
of the hybrid method does not increase with the number of processors. In other words, for a large
system, it is advantageous to use a larger number of swap moves on a single CPU than a smaller
number of swap moves on many CPUs, at least using our current implementation of the algorithm
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on the LAMMPS package.

II.8 Future directions

In order to improve the efficiency of the hybrid method, in particular in the parallel case, several
future directions are possible because some improvements could be made to our current implemen-
tation of the scheme in the LAMMPS package. One possibility would be to use a separate serial
architecture for performing swap moves, while running the MD blocks in parallel. The SMC block
would be performed on one processor only, avoiding costly inter-processor communication. In this
case the MD blocks would be more efficient in parallel than in serial and the efficiency of the SMC
blocks would be the same, meaning that overall this implementation should be faster. However, this
method requires copying data from the LAMMPS parallel architecture and building neighbor lists
from scratch before every SWAP block. Then, at the end of SMC blocks the new particle sizes would
be sent back to each processor and the neighbour lists and parallel architecture updated again. It
may be that these extra calculations will have a strong effect on the computational efficiency.

Another way to improve the speedup and circumvent the issues encountered while dealing with
LAMMPS architecture would be to write a handmade molecular dynamics code that could be more
versatile, and optimized for hybrid simulations. The MD part of the code in this case would be
designed to run in parallel and integrate efficiently with a completely serial SMC routine.

III Continuous time swap MD algorithm

III.1 Equations of motion

In this section, we introduce an algorithm that includes the physics of swap MC moves in a fully
continuous time MD framework. The swap MC algorithm used in the context of supercooled liq-
uids [5, 3] uses swap moves where the diameter of pairs of particles is exchanged, which leaves the
particle size distribution fixed. In older versions of the swap MC algorithm [4], particle diameters
were exchanged with an external bath in a semi-grand canonical ensemble. This ensemble is con-
veniently used to describe theoretically [17] and numerically [30] mixtures with a continuous size
polydispersity. In this approach, the particle diameters are considered as fluctuating variables along
with the particle positions. The diameters are constrained by an external potential (a chemical
potential), and the particle size distribution becomes the result of the equilibrium sampling. The
approach used in this section is a continuous time version of this idea. A zero-temperature version
of the algorithm is discussed in Refs. [18, 31], which study the nature of energy minima generated
by the Hamiltonian shown below in Eq. (4).

To study instead the finite temperature version of this approach, we introduce a generalised
Hamiltonian where the diameters of particles are considered as dynamical variables, alongside their
positions. For a system of N particles, given the 3N particle coordinates rN ≡ {r1, r2, . . . , rN}, their
3N conjugate momenta pNr ≡ {p1,r,p2,r, . . . ,pN,r}, the N particle diameters σN ≡ {σ1, σ2, . . . , σN}
and their N conjugate momenta pNσ ≡ {p1,σ, p2,σ . . . , pN,σ}, we define the Hamiltonian

H(rN ,pr
N , σN , pNσ ) =

∑

i

p2
i,r

2m
+ U(rN , σN )

+
∑

i

p2i,σ
2M

+ V (σN ), (4)
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where m is the mass conjugate to position momenta pr, and M is the mass conjugate to diameter
momenta pσ. The potential energy due to inter-particle interactions is given by U(rN , σN ), which
can be an ordinary pair potential. Each particle is additionally subject to a potential v(σi) that
constrains its diameter σi, so that V (σN ) =

∑
i v(σi) in Eq. (4). Examples of this potential will be

given below.
The equations of motion follow from Hamilton’s equations, and read

dpi,r
dt

= −∂H
∂ri

= −∂U(rN , σN )

∂ri
, (5)

dpi,σ
dt

= −∂H
∂σi

= −∂[U(rN , σN ) + V (σN )]

∂σi
, (6)

dri
dt

=
∂H

∂pi,r
=

pi,r
m

, (7)

dσi
dt

=
∂H

∂pi,σ
=
pi,σ
M

. (8)

Similarly to standard molecular dynamics, we discretise in time these equations of motion and
obtain an enlarged version of the standard velocity-Verlet algorithm. We solve the equations of
motion using this algorithm with a time discretization dt = 0.001. As a result, we obtain trajectories
for the particles coordinates and diameter. In the following, we simulate systems of N = 500
particles at number density N/L3 = 1.0 in canonical ensemble NV T in cubic box with periodic
boundary conditions.

We consider two temperatures Tr and Tσ related to particle translational momenta and diameter
momenta, respectively. They are defined as

Tr =
1

3N

∑

i

p2
i,r

2mi
, (9)

Tσ =
1

N

∑

i

p2i,σ
2Mi

. (10)

The temperatures are kept constant and equal, Tr = Tσ, during the simulations using a Berendsen
thermostat [32] with coupling time constant τ = 5.0. In the following, we refer to the temperature
simply as T . The reduced units are defined exactly as in Sec. II.1.

III.2 Microscopic model

A glass-forming model is typically defined by the interactions between the particles and their size
dispersity. We model the interaction between two particles i and j by the pair potential defined
in Eq. (1). In the continuous method, we cannot use the same nonadditive cross diameter rule as
presented in Sec. II.1 because its derivative is not continuous. As a first step, we have simulated
an additive rule for the diameters but we could easily generalise the nonadditive rule replacing
the absolute value |σi − σj | by a smooth function with equivalent properties, such as for instance
[1− exp(−(σi − σj)2)].

We focus on continuously polydisperse systems characterized by their diameter distribution,
P (σ). Contrary to the hybrid and swap MC methods in which particles exchange their diameters
leaving the global distribution P (σ) unaffected, the present method does not directly impose the
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Figure 8: Probability distribution of diameters P (σ) measured in equilibrium at different temper-
atures T for: (a) the continuous polydisperse system with P (σ) ≈ 1/σ3.2; binary systems with
uniform distribution of width ∆σ = 0.1 (b) and ∆σ = 0.2 (c).

diameter distribution P (σ). Instead, one must impose an external potential for the diameters, v(σ),
to constrain the fluctuations of the diameters σN and the particle size distribution is obtained as the
result of the equilibrium simulations. This is a major difficulty if one wants to perform simulations
at a series of state points, since P (σ) would evolve if v(σ) is left unchanged. Therefore, this approach
needs an additional iteration step where the potential v(σ) is adjusted at each state point in order
to keep P (σ) constant. This additional step becomes time consuming at low temperatures, where
the equilibration of the system is slow and controls in particular the convergence of the distribution
P (σ) itself.

We simulate two classes of systems which were shown to be structurally stable against crys-
tallization at low temperature using swap MC. The first system is analogous to the continuously
polydisperse one presented in Sec. II.1, and is characterized by P (σ) ∼ 1/σ3.2 in a finite range [σm,
σM ]. In order to obtain this diameter distribution at equilibrium, we design the diameter potential
v(σ) as follows. The hard boundaries of the distribution at σm and σM are imposed by two very
steep exponential functions. To generate a power law distribution P (σ) ∼ 1/σ3.2 in between, we
employ a smooth power law form. The diameter potential used to enforce this distribution thus
reads

v(σ) = exp[A(−λ1σ + σm)] + exp[A(λ2σ − σM )]−Dσn
= vσ(A, λ1, λ2, D, n) , (11)

where the parameters (A, λ1, λ2, D, n) need to be tuned at each temperature in order to obtain
the desired size distribution in equilibrium. More quantitative details on this procedure are given
in Appendix VI, where all simulated parameters are tabulated. We show in Fig. 8a the measured
probability distribution function at equilibrium across a range of temperatures. Therefore, we
have successfully designed a diameter potential that imposes a constant diameter distribution that
resembles the one studied in Sec. II with the hybrid method.

The second type of glass-forming model we study is a continuously polydisperse version of a
discrete binary mixture, using a 50:50 mixture of particles with a typical size ratio σB/σA = 1.4. In
this model, the original delta peaks at σA and σB in the distribution P (σ) are broadened uniformly
over a typical width ∆σ. We have considered two such binary systems of width ∆σ = 0.1 and
∆σ = 0.2. These diameter distributions are again designed by using the same functional form vσ
as in Eq. (11) but using two distinct types of particles. This approach means we must now adjust
10 independent parameters at each simulated temperature. We show in Fig. 8b-c the measured
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Figure 9: (a) Probability distribution P (σ) of diameters σ, measured for continuous polydisperse
system at T = 0.23, where phase separation and crystallisation is observed. The energy cost in
diameter space due to the distortion of the particle size distribution is more than compensated by
an ordering in position space. (b) Dependence of the equilibrium relaxation time τα with inverse
diameter mass 1/M for continuous polydisperse liquids P (σ) ∼ 1/σ3.2 at temperature T = 0.3.

probability distribution functions measured at equilibrium across a broad range of temperatures for
the two systems considered. The quantitative details about the parameters used in these simulations
are also tabulated in Appendix VI.

We demonstrate in Fig. 8 that we are successful in designing diameter potentials and sets
of parameters which produce a desired diameter distribution P (σ) across different temperatures.
This method, however, is relatively cumbersome. At each temperature, one has to make many
trials in order to find the parameters for the diameter potential that yields the desired probability
distribution at equilibrium. As temperature decreases, relaxation times increase and the trial and
error procedure becomes increasingly costly in terms of CPU time. In our effort to design new
algorithms and methods to simulate supercooled liquids at ever lower temperature, this method
therefore does not necessarily appear as the most efficient one, as it introduces the need to perform
a large number of runs to prepare the system before making any measurement. Of course, the
temperature evolution of the potential v(σ) is very smooth, and thus training at high temperatures
and some educated guesses help converge that procedure faster.

III.3 Structural instability and crystallization

Crystallisation, fractionation and ordering are problems that need to be faced when dealing with
supercooled liquids. To push the swap MC method to its maximal efficiency, new models of su-
percooled liquids were developed that better resist ordering and are therefore better glass-formers.
Recent investigations have demonstrated that swap MC is able to crystallise polydisperse models
of hard spheres relatively easily [28, 33, 34], whereas the ordinary dynamics would only allow one
to probe the metastable fluid.

We expect that the hybrid method and swap MC behave similarly with respect to crystallisation,
but we find that the fully continuous version shows qualitatively distinct behaviour, as we now
explain. In Fig. 8a, we show that a continuous polydispersity can be easily maintained down to
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T = 0.25 by a proper choice of the potential v(σ). If we use this insight to attempt thermalising
the system at T < 0.25 we observe that the system becomes unstable. An example is shown in
Fig. 9(b) which shows the measured P (σ) for T = 0.23, compared to the functional form σ−3.2

observed at higher temperatures. It is clear that the shape of the particle size distribution is now
completely different since it develops peaks near σ ∼ 1.0 and σ ∼ 1.4. Simultaneously, direct
visualisation reveals that the system has partially crystallised and phase separated between large
and small particles.

The physical interpretation is that the system is distorting the particle size distribution (thus
paying an energetic cost in diameter space due to the potential v(σ)) in order to gain free energy
by ordering the system in position space. Such instability is typically not observed using hybrid
and swap MC algorithm because the particle size distribution is by construction not allowed to vary
over the course of a simulation. Of course, in the large system size limit, the phase separation and
crystallisation reported in Fig. 9(b) should also occur when swap MC is used, because concentration
fluctuations would occur. These fluctuations are presumably too slow to lead to crystallisation in
hybrid and swap MC approaches.

We conclude, therefore, that the type of semi-grand canonical simulation that we perform when
employing the continuous time swap algorithm may unfortunately accelerate the crystallisation of
the system. To cure this problem, new models should be developed that are even more robust against
ordering and could then be simulated using the continuous time swap algorithm. For instance, one
could attempt to use a finite nonadditivity to the pair interaction as a first step in this direction.

III.4 Choice of the diameter mass

In standard molecular dynamics the diameter of the particles is constant. This corresponds to
the limit of an infinite diameter mass M in the continuous method described by Eq. (8). As the
diameter mass decreases from M =∞, the diameters become dynamical variables and start to vary
and influence the structural relaxation.

We look for the diameter mass that optimizes the continuous method. To do so, we compute
the relaxation time τα of a liquid as a function of the diameter mass M . The relaxation time is
computed as in Sec. II.4, taking Eq. (3) at wavevectors of magnitude k = 6.7. We report in Fig. 9(b)
the measured relaxation time τα as a function of inverse diameter mass 1/M in the continuously
polydisperse system P (σ) ∼ 1/σ3.2, at a fixed temperature T = 0.30.

The qualitative behavior of τα in Fig. 9(b) is qualitatively similar to the one in Fig. 3. The
parameter 1/M plays a role similar to the swap density ρswap or the probability p of particle-
swap moves in the hybrid and swap MC algorithms, respectively. When they increase, the typical
timescale for the diameter dynamics decreases, which speeds up the physical relaxation of liquids.
We observe a clear decrease in the structural relaxation time as the mass M of diameters decreases,
starting from a very large value M = 105. Around M = 1, the relaxation time reaches a plateau,
and decreasing further the diameter mass M does not speed up the structural relaxation of the
liquid.

While any choice M < 1 minimizes the time needed to relax the liquid, a very small diameter
mass is not suitable. Indeed, when M is too small, large variations of the diameters occur on very
short time scales, which requires a very small integration time step dt. This effectively increases the
CPU time of the simulations, which is undesired. In the following, we choose M = 1 as the optimal
compromise between physical speedup and computational efficiency.
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Figure 10: Relaxation time as a function of inverse temperature measured in: (a) binary system
with ∆σ = 0.1, (b) ∆σ = 0.2, and (c) continuous polydisperse system. Relaxation times have
been computed using three different methods continuous time swap method, hybrid method and
standard MD.

III.5 Physical Efficiency

We now compare the relaxation dynamics of the three glass-forming models presented in Sec. III.2
when simulated both with the continuous swap method and standard MD simulations. We first have
to determine iteratively the correct parameters for the diameter potential at each temperature, as
described above. Then, we run simulations with the continuous method at a temperature T to
obtain equilibrium configurations. We also measure the equilibrium relaxation time of the system
using the continuous time swap algorithm. Finally, the equilibrated configurations are taken as
initial conditions for standard MD simulations, during which the relaxation time is measured. By
construction, then, the MD simulations run the dynamics for the same particle size distribution
as the continuous time swap algorithm. These configurations will also serve as starting points for
hybrid MD/MC simulations, to be discussed below in Sec. III.6.

The results for the equilibrium relaxation time τα of the three models and three numerical algo-
rithms are reported in Fig. 10. The binary systems with ∆σ = 0.1 and ∆σ = 0.2 can be simulated
down to quite low temperature without crystallizing. In both cases, the efficiency of the continuous
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time swap method over MD simulations is temperature dependent, with an efficiency increasing as
temperature decreases. The speedup in thermalization offered by the continuous method depends
on the width ∆σ accessible to diameters. Larger variations in the particles’ diameters are expected
to ease even more the structural relaxation of the liquid. When ∆σ = 0.1, diameters are more
constrained than when ∆σ = 0.2. The dynamical gain observed in Fig. 10(a) is about one order of
magnitude in relaxation time for ∆σ = 0.1, while for ∆σ = 0.2, extrapolation of the data presented
in Fig. 10b suggest that the continuous time swap method can more easily achieve thermalization in
a region inaccessible to MD simulations, with a speedup estimated at about 2 orders of magnitude.
Clearly these two binary systems do not yield as large a speedup as fully polydisperse models [3],
and as a result are less prone to crystallisation.

In the case of the continuous polydisperse model with diameter distribution P (σ) ∼ 1/σ3.2,
shown in Fig. 10c, the dynamical gain with the continuous method is even greater, similarly to
what was measured with the swap MC algorithm[3]. While the dynamical gain is very interesting
with this model, the continuous time method cannot simulate supercooled liquids at temperatures
lower than T < 0.25, the last point studied, because of structural instability discussed in Sec. III.3,
and we can thus not benefit from the efficiency of the swap algorithm as much as when the hybrid
method is used.

III.6 Comparison with the hybrid method

In this section, we compare the physical efficiency of the continuous time swap algorithm with the
hybrid method. To that effect, we use configurations equilibrated with the continuous method as
initial condition for hybrid simulations using parameters (nswap = 10, tMD = 0.1), and measure
the relaxation time of the liquid. Results for the binary system with ∆σ = 0.2 and the continuous
polydisperse system with P (σ) ∼ 1/σ3.2 are presented in Fig. 10b-c. We observe that both methods
give physical relaxation times that are extremely close to one another, and have a very similar
temperature dependence. Note that we did not tune the parameters of each method in order to
obtain the exact same relaxation times, but rather used each technique with its own set of optimal
parameters. The agreement between the two methods suggests that the continuous time swap
method, once optimised, captures the same physics as the other swap algorithms (hybrid MC/MD
and pure MC). Overall, we conclude that all three algorithms have the same efficiency in terms of
speedup of the structural relaxation.

Finally, we also plot the self-intermediate scattering functions measured at different temperatures
in hybrid and continuous time methods in Fig. 11. At each temperature, the curves corresponding
to the two methods have the same time dependence. Both the relaxation dynamics at long times
and microscopic dynamics are very similar. This implies that the two methods are equivalent as
far as the relaxation of the liquid is concerned. The different nature of the microscopic rules for
the dynamics do not matter. Performing discrete particle-swap moves or continuously modifying
the diameters of particles has no influence on the physical relaxation of supercooled liquids at long
times. What matters, eventually, is the strong coupling between diameter and position degrees
of freedom that relax in a strongly correlated manner [3], the diameter fluctuations allowing the
system to efficiently relax the positional degrees of freedom even in a temperature regime where the
physical dynamics is extremely slow.
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Figure 11: Self-intermediate scattering function Fs(k, t) calculated for the binary system with ∆σ =
0.2 using the continuous time (open symbols) swap and hybrid (filled symbols) algorithms at different
temperatures.

III.7 Computational performance

The continuous time swap algorithm runs similarly to conventional MD simulations, with the dif-
ference that particles have one more degree of freedom (the diameter) in addition to the positions.
This implies that running this algorithm is essentially as costly in terms of CPU time as running
a conventional MD simulations. But the speedup offered in terms of structural relaxation time is
the same as with swap MC method. This method thus offers a valuable alternative to swap MC,
especially for users that are not familiar to Monte Carlo simulations.

Attempts to parallelize the hybrid method did not bring significant improvements in terms of
CPU time. This was due to the difficulty to parallelize efficiently the Monte Carlo blocks present
in the hybrid method. The continuous time swap method offers the same advantages as standard
molecular dynamics simulations in terms of parallelisation. Since the dynamics is continuous and
deterministic, one can in principle implement this method to run it efficiently on several processors.
The CPU time needed to run simulations of the same MD length is expected to scale with the
number of particles per processor, as discussed in Sec. II.7.

IV Discussion and perspectives

In this work, we provided two distinct generalisations of the swap Monte Carlo algorithm that has
recently proved extremely successful in producing equilibrium configurations of supercooled liquids
at very low temperatures. Both algorithms combine the idea of particle swaps with conventional
Molecular Dynamics techniques. In the first version, we simply alternate periods of conventional
MD with periods of swap MC moves, while in the second we solve Hamilton’s equations of motion
for both positions and diameters simultaneously, in a fully continuous time MD scheme.

After an adequate optimisation of all simulation parameters involved in each three swap-like
algorithms, we find that the three algorithms provide a very similar (and quite impressive in some
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cases) speedup of equilibration, which suggests that the same physics is at play in the three cases.
Namely, the addition of diameter fluctuations strongly couples to positional degrees of freedom to
relax the structure of the supercooled liquid. The equivalence between the three algorithms even
extends to time correlation functions.

Our general conclusion is that all three algorithms can be equivalently used to produce low-
temperature equilibrium configurations for model glass-formers, and which algorithm should be
preferred depends is firstly a matter of personal convenience. The hybrid and swap MC are very
close to one another in spirit and performances, and the implementation into the LAMMPS software
of the hybrid method makes it user-friendly in case a different model needs to be studied. Regarding
the continuous time swap algorithm, it is promising since it combines the efficiency of the swap MC
to the simplicity of the MD technique, with great potential if large systems need to be studied.
However, the iterative determination of the diameter potential makes it more cumbersome to use,
and one must find ways to prevent the ordering that the semi-grand canonical ensemble seems to
facilitate. In future work, it would therefore be interesting to develop more robust glass-forming
models that can resist the crystallisation and phase separation observed when the particle size
distribution is not conserved by the dynamics.
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V Considerations for implementing the hybrid MD/MC swap al-
gorithm in LAMMPS

In this section of the appendix we give some details about how the hybrid molecular dynamics/particle-
swap Monte Carlo method is implemented in the LAMMPS package. We provide an outline of how
several problems were overcome.

V.1 Handling continuously polydisperse systems in LAMMPS

In LAMMPS, each particle has a type and all particles of a given type share the same values for
certain properties. One of these shared properties is their size σ. This means that to simulate
a system of N particles with continuous polydispersity, N different types of particle are needed.
Defining N types of particles in LAMMPS would be cumbersome, especially if we wish to simulate
large numbers of particles.

To overcome this problem, we decided to define only one particle type, and to store the diameters
of particles in a type-independent property. We used the existing charge property to store the
diameter of each particle. We also created a modified version of pair_style lj called pair_style
lj_poly that uses the charge in place of particle size when calculating the pair interaction energy.

V.2 Avoiding neigbour list rebuilds after every swap move

To keep the neighbour list of particle i as short as possible, LAMMPS takes the size of particle
i into account when generating its neighbour list. This means that if the size of i should change
(for example during a swap move), the neighbour list is incorrect and must be recalculated. Given
that we typically attempt N swap moves after every MD step, recalculating neighbour lists this
frequently would overwhelm any computational time gained by using the swap algorithm.

To reduce this computational burden, we calculate the neighbour list for particle i as if it had
the largest size in the particle size distribution. This means that after a successful swap move, the
neighbour list will still be valid. This modification comes at the price of longer neighbour lists, but
the increase in the time to calculate pair interaction energies and to update a particle’s neighbour
list is offset by not having to recalculate the neighbour list after every swap move. We note that
this means the simulation time for systems of particles with pair interactions that have short cutoffs
will be significantly faster.

V.3 Full and half neighbour lists

The neighbour lists required by Molecular Dynamics and Monte Carlo simulations are different.
Due to the nature of the energy and force calculations being carried out at each step, Molecular
Dynamics simulations require that a pair of particles appears once in the neighbour lists: that is if
j is in the neighbour list of i then i is not in the neighbour list of j. In a Monte Carlo simulation,
particle i must know about all the particles it could interact with: i would appear in the neighbour
list of j and j in that of i. In practice this means that the neighbour lists required for Monte Carlo
simulations are twice the size of those for Molecular Dynamics. In LAMMPS, these are referred
to as full and half neighbour lists. Since the energy and force calculations take up the bulk of
computational time, we wish to avoid maintaining only full neighbour lists and thus doubling the
length of the force calculations performed during each Molecular Dynamics move. The alternative
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solution of maintaining only half neighbour lists and performing a sum over all particles for the
energy calculations during Monte Carlo moves is even less desirable.

Thankfully LAMMPS has a method for updating full and half neighbour lists together at the
same time - the computational overhead to do this is considerably less than that required for the
two solutions described above. The class pair_lj_poly must be written to ensure that the correct
neighbour list is used in each case: full for interaction energies and half for force calculations.

V.4 Triggering blocks of swap moves

Due to some technical details about how blocks of swap moves are triggered during a LAMMPS
simulation we had to modify the run function in the LAMMPS verlet class. The swap moves are
triggered within a modify->pre_exchange() command and the position of this command in the
run function means that neighbour lists are unnecessarily calculated every time a block of swap
moves is attempted. We moved the position of the modify->pre_exchange() command within the
run function to prevent this.

V.5 The hybrid method and parallelisation

The final issue, which remains only partially resolved, arises due to integrating a serial simula-
tion method (swap Monte Carlo) into a parallelized one (Molecular Dynamics, as performed by
LAMMPS). This issue is caused by the particular way that LAMMPS implements parallel compu-
tation and could be avoided if custom Molecular Dynamics code was used. If this was done, the
theoretical maximum computational efficiency for the parallelised hybrid method would be achieved.

LAMMPS spatially parallelises the system, meaning that a processor has responsibility for a sub-
box of the simulation box. A processor must keep track of particles on neighbouring processors that
particles it has responsibility for may interact with. This means that during Molecular Dynamics
bouts of inter-processor communication must be carried out with roughly the same frequency as
the neighbour lists are rebuilt. Due to the non-local nature of the changes that take place during
swap moves and the way that LAMMPS keeps track of particle identities, this inter-processor
communication must be carried out much more frequently when attempting swap moves. We have
tried to minimise it as much as possible, but it is impossible to eliminate without more serious
modifications to LAMMPS. Unfortunately, these communications are sufficiently costly that our
implementation of the hybrid method does not scale as well as it could when run on multiple
processors.

VI Designing diameter potentials in the continuous time swap al-
gorithm

VI.1 Continuously polydisperse model

In this method, in the absence of a diameter potential, i.e. when vσ = 0, the particles sizes will
all shrink to zero to minimize the potential energy. Therefore we must perform our simulations
for a finite diameter potential to constrain the diameter sizes for a desired range and distribution.
We employ Eq. (11) as defined in Sec. III.2 to generate continuously polydisperse systems with a
size distribution P (σ) ∼ 1/σ3.2. In this equation, two exponential functions create the steep walls
(the steepness is determined by the parameter A, here A = 100.0) at minimum σm and maximum
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Figure 12: Diameter potential at different T for suitable set of parameters to maintain the desirable
distribution of particles with average diameters σ ≈ 1.0 and polydispersity of ≈ 24%.

diameters σM . To generate the desired particle size distribution between [σm, σM ], we employ a
power law form with proper combination of parameters n and D. The power n decides the nature
of the distribution, while the prefactor D set an energy scale in diameter space (and hence is
T -dependent).

We start the process of tuning the parameters of diameter potential at some initial temperature.
We first obtain n = 2.6 and D = 14.46 at T = 1.0. We know that for a given size distribution, the
pair potential energy increases as T increases. So if we fix these potential parameters n and D and
investigate a higher T , the kinetic energy will not suffice to sample enough of the large particles and
we need to increase the parameter D to reobtain the correct distribution. Similarly we decrease the
parameter D as we decrease T . Also, we notice that after fixing the parameters A, n and D, then
while going from high to low T , the particle size distribution becomes systematically narrower and
therefore we need to choose two more parameters, λ1 and λ2, to maintain the correct width of the
size distribution.

Here we tune our potential parameters such that the average size σ ≈ 1.0 and the average
polydispersity is ≈ 24%. The resulting potential is continuous in its first and second derivative and
is thus convenient for MD simulations. Representative potential v(σ) are shown in Fig. 12 and the
corresponding values of the parameters at different temperatures are reported in Table 1.

VI.2 Binary polydisperse model

The second class of system that we consider is an equimolar mixture of particles having average size
ratio 1.4 (i.e., σA/σB = 1.4) with uniform distributions centered around their respective average
diameters σA and σB, of width ∆σ = 0.1 and ∆σ = 0.2.

To generate the diameter potential we employ the same functional forms as in Eq. (11). There
are six terms in this diameter potential. Four exponential functions (with steepness parameter
A = 100) define the steep walls delimiting the range of the particle size distributions of width ∆σ,
and two power law functions with suitable power of σ (n1 = 2.5 and n2 = 2.4) produce uniform
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distributions centered around σA = 1.0 and σ = 1.4.
In this case, the average diameter is therefore σ ≈ 1.2. For the case of ∆σ = 0.1, the polydisper-

sity for A-type particles is is ≈ 3.2% and around σB = 1.4 it is ≈ 2.2%. For the case of ∆σ = 0.2,
the polydispersity around σA = 1.0 is ≈ 6% and around σB = 1.4 it is ≈ 4.2%. The parameters
used at different temperatures are listed in Table 2.
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T D λ1 λ2

1.00 14.4600 1.000 1.0000
0.90 13.9400 1.000 1.0000
0.80 13.3900 1.000 1.0000
0.70 12.8830 1.004 0.9995
0.60 12.2998 1.006 0.9980
0.50 11.6840 1.009 0.9950
0.45 11.3139 1.010 0.9950
0.40 10.8932 1.010 0.9950
0.35 10.5277 1.013 0.9950
0.30 10.0566 1.016 0.9950
0.25 9.44502 1.017 0.9920

Table 1: Parameters for internal potential v(σ) to generate distribution of size of particles P (σ) ∼
1/σ3.2

T D1 D2 λ1 λ2

3.000 68.7081 72.1031 0.996 1.003
2.800 67.5904 71.1848 0.997 1.002
2.600 65.7046 69.3978 0.997 1.002
2.400 64.3770 68.3707 0.998 1.001
2.300 63.9399 67.8369 0.999 1.001
2.200 63.5409 67.3381 0.999 1.000
2.150 62.8426 66.8393 0.999 1.000
2.100 62.6431 66.6398 0.999 1.000
2.050 61.6456 66.2408 0.999 1.000
2.000 61.2466 65.9415 0.999 1.000
3.000 69.0051 72.8954 0.996 1.003
2.800 67.5200 71.3107 0.996 1.002
2.600 65.8695 69.5649 0.998 1.002
2.400 64.5384 68.5352 0.999 1.001
2.300 63.9399 67.8369 0.999 1.001
2.200 63.2000 67.2000 1.000 1.000
2.100 62.3200 66.5500 1.000 1.000
2.000 61.2000 65.7000 1.000 1.000
1.975 60.9500 65.4500 1.000 1.000
1.950 60.6500 65.2000 1.000 1.000
1.925 60.3000 64.9000 1.000 1.000
1.900 60.0500 64.8000 1.000 1.000
1.875 59.9000 64.6500 1.000 1.000
1.850 59.5550 64.4560 1.000 1.000

Table 2: Parameters used to design the potential v(σ) to generate a binary distribution of diameters
with width ∆σ = 0.1 (top) and ∆σ = 0.2 (bottom).
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The role of the configurational
entropy in glassy slowdown

In the Introduction, we presented theoretical arguments for an underlying thermodynamic glass
transition.They associate the configurational entropy decrease with the dramatic slowdown of su-
percooled liquids. This picture is motivated by the existence of a finite-temperature entropy crisis
in the mean field theory of structural glasses.

We argued that a ‘configurational entropy’ cannot be unambiguously defined in finite-dimensional
liquids. It is supposed to count the number of metastable states available to the system, but defin-
ing ‘metastable states’ beyond mean field is intricate. Several numerical methods were employed
in the past to measure a configurational entropy. The first estimates crudely counted the number
of minima in the potential energy landscape. Recently, refined methods were developed, inspired
by theoretical constructions.

The article ‘Configurational entropy of glass-forming liquids’ has been published as a Perspective
in The Journal of Chemical Physics. It is based on a series of lectures given by Ludovic Berthier
at the 2017 Boulder summer school ‘Disordered and Frustrated systems’, which I attended. I
organized and complemented the lecture notes, in order to provide a review and perspective on
configurational entropy measurements in computer simulations. My initial effort was then sup-
ported by Misaki Ozawa, who implemented and developed some of the numerical schemes.

In the second article ‘Does the Adam-Gibbs relation hold in simulated supercooled liquids?’,
we address the validity of the Adam-Gibbs (AG) relation, introduced in Sec. 1.4.1, which relates
the configurational entropy and relaxation time in the supercooled liquid regime. We also address
the generalized Adam-Gibbs (gAG) relation (Eq. 1.18), which contains the non-trivial exponents
θ and ψ. They correspond to an interface term, and the dynamical exponent, respectively. Using
the thermalization speedup of particle-swap methods, we revisit previous numerical tests of the AG
relations. Most importantly, we address their validity in a broad temperature regime, relevant to
test theoretical predictions.

This work was initiated by Ludovic Berthier, Misaki Ozawa and Andrea Ninarello. The paper
analyzes data for several glass-forming models, published in previous works. My contribution
was to extend these results to supercooled liquids prepared in conditions closer to experimental
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ones, namely at constant pressure. My work aimed at identifying glass-forming models which were
as fragile as experimental liquids, and stable against crystallization using the SWAP algorithm.
Interestingly, it was realized that good glass-formers model in constant volume conditions can
crystallize easily at constant pressure. Using the Hybrid algorithm presented in Chapter 4, I
was able to generate supercooled liquids at constant pressure, down to temperatures below the
experimental glass transition temperature. Misaki Ozawa then performed configurational entropy
measurements. I was able to measure the equilibrium relaxation time down to unprecedentedly
low temperatures in a three-dimensional model. The dynamical slowdown is followed on almost
6 orders of magnitude (Fig. 2 (c)). Such high-quality data allows to perform precise fitting and
extrapolation of the relaxation time, which are needed to test accurately the Adam-Gibbs relation.

We find that the Adam-Gibbs relation is not verified when addressed over the relevant temper-
ature regime T < Td, in four different glass-forming models. Interestingly, we gather high-quality
experimental data and find that the relation is also not verified in experimental systems. The data
is fitted to a generalized Adam-Gibbs relation, in order to estimate the exponents θ and ψ. The
values measured numerically are in agreement with theoretical predictions.

Most importantly, deviations from the Adam-Gibbs relation were previously invoked to question
the thermodynamic nature of the glass transition. We show that recent thermodynamic theories
rather predict a generalized Adam-Gibbs relation. We show that experimental and numerical data
follow the gAG relation, and thus do not invalidate thermodynamic theories for the glass transition.
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Perspective: Configurational entropy of
glass-forming liquids

L. Berthier, M. Ozawa, and C. Scalliet, The Journal of chemical physics 150 (16), 160902 (2019).

The configurational entropy is one of the most important thermodynamic quantities
characterizing supercooled liquids approaching the glass transition. Despite decades of
experimental, theoretical, and computational investigation, a widely accepted defini-
tion of the configurational entropy is missing, its quantitative characterization remains
fraud with difficulties, misconceptions and paradoxes, and its physical relevance is
vividly debated. Motivated by recent computational progress, we offer a pedagogical
perspective on the configurational entropy in glass-forming liquids. We first explain
why the configurational entropy has become a key quantity to describe glassy materi-
als, from early empirical observations to modern theoretical treatments. We explain
why practical measurements necessarily require approximations that make its physical
interpretation delicate. We then demonstrate that computer simulations have become
an invaluable tool to obtain precise, non-ambiguous, and experimentally-relevant mea-
surements of the configurational entropy. We describe a panel of available computa-
tional tools, offering for each method a critical discussion. This perspective should
be useful to both experimentalists and theoreticians interested in glassy materials and
complex systems.
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I Configurational entropy and
glass formation

I.1 The glass transition

When a liquid is cooled, it can either form a crys-
tal or avoid crystallization and become a super-
cooled liquid. In the latter case, the liquid re-
mains structurally disordered, but its relaxation
time increases so fast that there exists a tem-
perature, called the glass temperature Tg, be-
low which structural relaxation takes such a long
time that it becomes impossible to observe. The
liquid is then trapped virtually forever in one of
many possible structurally disordered states: this
is the basic phenomenology of the glass transi-
tion. [1, 2, 3, 4] Clearly, Tg depends on the mea-
surement timescale and shifts to lower temper-
atures for longer observation times. The exper-
imental glass transition is not a genuine phase
transition, as it is not defined independently of
the observer.

The rich phenomenology characterizing the ap-
proach to the glass transition has given rise to
a thick literature. It is not our goal to re-
view it, and we refer instead to previous arti-
cles. [1, 2, 3, 4, 5, 6, 7, 8, 9] There are convincing
indications that the dynamic slowing down of su-
percooled liquids is accompanied by an increas-
ingly collective relaxation dynamics. This is seen
directly by the measurement of growing length-
scales for these dynamic heterogeneities, [10, 11,
12] or more indirectly by the growth of the appar-
ent activation energy for structural relaxation,
as seen in its non-Arrhenius temperature depen-
dence. These observations suggest an interpreta-
tion of the experimental glass transition in terms
of a generic, collective mechanism possibly con-
trolled by a sharp phase transition. [13] ‘Solv-
ing the glass problem’ thus amounts to identify-
ing and obtaining direct experimental signatures
about the fundamental nature and the mathe-
matical description of this mechanism.

Why is this endeavor so difficult as compared
to other phase transformations encountered in
condensed matter? [14, 15] The core problem is

Figure 1: Two equilibrium configurations of a
two-dimensional glass-forming model character-
ized by relaxation times that differ by a factor
1012. The two density profiles appear to the
naked eye similarly featureless. These two states
in fact differ by the number of available equi-
librium states and the configurational entropy
quantifies this difference.

illustrated in Fig. 1 by two particle configurations
taken from a recent computer simulation. [16]
The left panel shows an equilibrium configura-
tion of a two-dimensional liquid with a relax-
ation time of order 10−10 s, using experimental
units appropriate for a molecular system. The
right panel shows another equilibrium configu-
ration now produced close to Tg with an esti-
mated relaxation timescale of order 100 s. The
system on the right flows 1012 times slower than
the one on the left, but to the naked eye both
configurations look quite similar. In conventional
phase transitions, [14, 15] a structural change
takes place and some form of (crystalline, ne-
matic, ferromagnetic, etc.) order appears. Glass
formation is not accompanied by such an obvious
structural change. Therefore, the key to unlock
the glass problem is to first identify the correct
physical observables to distinguish between the
two configurations in Fig. 1.

Several theories, scenarios and models have
been developed in this context. [5, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27] Some directly fo-
cus on the rich dynamical behavior approach-
ing the glass transition, [24] while others advo-
cate some underlying phase transitions of various
kinds, [17, 19, 20] possibly involving some ‘hid-
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den’ or amorphous order.
In this perspective, we explore one such re-

search line, in which configurational entropy as-
sociated with a growing amorphous order plays
the central role. [19, 20, 28] We argue that re-
cent developments in computational techniques
offer exciting perspectives for future work, al-
lowing the determination of complex observables
that are not easily accessible in experiments, as
well as the exploration of temperature regimes
relevant to experiments.

I.2 Why the configurational entropy?

The fate of equilibrium supercooled liquids fol-
lowed below Tg with inaccessibly long observa-
tion times was discussed 70 years ago by Kauz-
mann in a seminal work. [29] Since the super-
cooled liquid is metastable with respect to the
crystal, Kauzmann compiled data for the excess
entropy, Sexc ≡ Sliq − Sxtal, where Sliq(T ) and
Sxtal(T ) are the liquid and crystal entropies, re-
spectively. Kauzmann observed that Sexc(T ) de-
creases sharply with decreasing the temperature
of the equilibrium supercooled liquid.

An extrapolation of the temperature evolution
of Sexc from equilibrium data to lower temper-
atures suggests that Sexc becomes negative at a
finite temperature, which led Kauzmann to com-
ment: [29] ‘Certainly it is unthinkable that the
entropy of the liquid can ever be very much less
than that of the solid.’ To avoid this paradoxi-
cal situation, referred to as the Kauzmann para-
dox or entropy crisis, he mentioned the possi-
bility of a thermodynamic glass transition oc-
curring well below Tg, at a temperature now
called the Kauzmann temperature, TK . Al-
though Kauzmann suggested that crystallization
eventually prevents the occurrence of an entropy
crisis, Kauzmann’s intuition remains very influ-
ential, for good reasons.

Gibbs and DiMarzio were the first to give the-
oretical insights to the temperature evolution of
Sexc, by analogy with a lattice polymer model
whose entropy is purely configurational. [30, 31]
Hence the conventional name, ‘configurational
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Figure 2: Experimental and numerical deter-
minations of the equilibrium configurational en-
tropy in various models [16, 33] and materi-
als. [32, 34, 35] Data points extracted from vapor
deposition experiments [35] are indicated by the
ellipse. Both axis are rescaled using the mode-
coupling crossover as a reference temperature at
which the relaxation time is about 10−7s. For
hard spheres, the inverse of the reduced pres-
sure, 1/p, replaces temperature. Extrapolation
to low temperatures suggests the possibility of
an entropy crisis at a finite TK in d = 3, whereas
TK = 0 in d = 2.

entropy’ and notation Sconf , widely used in the
experimental literature. [32] We show below that
there is no, and that there cannot be any, unique
definition of Sconf . We nevertheless use the same
symbol for all discussed estimates. In particular,
Sconf ≈ Sexc.

We compile state-of-the-art experimental [32,
34, 35] and numerical [16, 33] data of Sconf , and
their extrapolation to low temperatures in Fig. 2.
We employ a representation close to Kauzmann’s
original analysis, [29] rescaling Sconf by its value
at some high temperature (we choose the mode-
coupling temperature Tmct, [36] for convenience).

In calorimetric experiments, the configura-
tional entropy becomes constant below Tg upon
entering the non-equilibrium glass regime, defin-
ing a residual entropy. [29, 34] The glass residual
entropy is a non-equilibrium effect that has been
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extensively discussed. [37, 38, 39, 40, 41] Here, we
focus on equilibrium supercooled liquids and do
not discuss further the glass residual entropy and
remove non-equilibrium measurements in Fig. 2.

The data for ethylbenzene and toluene are ex-
tended by combining conventional calorimetric
measurements to data indirectly estimated from
ultrastable glasses produced using vapor deposi-
tion. [35, 42] In that case, T corresponds to the
substrate temperature. Various computational
models using hard, [43] soft, [44] and Lennard-
Jones potentials, [45] along isochoric and isobaric
paths, in spatial dimensions d = 2 [16] and 3 [33]
are included along with experiments. [32, 34, 35]
This representative data set demonstrates that
all glass formers in dimension d = 3 display a
sharp decrease of Sconf , even down to a temper-
ature regime unavailable to Kauzmann. These
results reinforce the idea that Sconf can vanish at
a finite temperature, TK > 0. Simulation data
in d = 2 suggest instead that Sconf vanishes only
at TK = 0, suggesting that a finite TK entropy
crisis does not occur for d < 3. [16]

Of course, the data in Fig. 2 do not rule out the
existence, at some yet inaccessible temperature,
of a crossover in the behavior of Sconf that makes
it smoothly vanish at T = 0, [46, 47] or remain fi-
nite with an equilibrium residual entropy in clas-
sical systems, [48, 49, 50, 51, 52] or a discon-
tinuous jump due to an unavoidable crystalliza-
tion, [29, 53, 54] or a liquid-liquid transition, [22]
or a conventional (kinetic) glass transition. [55]
These alternative possibilities are not supported
by data any better than the entropy crisis they
try to avoid. It is impossible to comment on
the many articles supporting the absence of a
Kauzmann transition [46, 50, 56, 57, 58, 59],
but we clarify below that none of them resists
careful examination. The existence of a ther-
modynamic glass transition remains an experi-
mentally and theoretically valid, but unproven,
hypothesis. Thus, extending configurational en-
tropy measurements to even lower temperatures
remains an important research goal. [60]

As emphasized repeatedly, a negative Sexc is
not prohibited by thermodynamic laws. [56] This

is also not ‘unthinkable’ since entropy is not a
general measure of disorder. As a first counterex-
ample, think of hard spheres for which the crys-
tal entropy is larger than that of the fluid above
the melting density under constant volume con-
dition. A second example under constant pres-
sure condition would be materials showing in-
verse melting. [61] A stronger reason to ‘resolve’
the Kauzmann paradox is that if Sliq continues
to decrease further below Sxtal, the third law of
thermodynamics could be violated. [62] However,
the third law is conventionally interpreted as a
consequence of the quantum nature of the sys-
tem. [63] This implies that the Kauzmann para-
dox is not really problematic if considered within
the realm of classical physics. In summary, there
is no theoretical need to avoid the entropy crisis.

However, theoretical treatments rooted in
Gibbs and DiMarzio’s theory [30, 31] relate the
configurational entropy to the (logarithm of the)
number of distinct glass states available to the
system at a given temperature. A proper enu-
meration of those states must therefore result in
a non-negative configurational entropy. In this
interpretation, Fig. 2 suggests that a fundamen-
tal change in the properties of the free-energy
landscape must underlie glass formation.

A strong decrease of the configurational en-
tropy answers the question raised by the appar-
ent structural similarity suggested by the snap-
shots in Fig 1. Conventional phase transitions
deal with the ‘structure’ of a single configura-
tion, [14, 15] for instance the periodic order of the
density profile for crystallization, see Fig. 3(a).
By contrast, it is not the nature of the density
profile that changes across the glass transition,
but rather the number of distinct available pro-
files. [1] There are many distinct states avail-
able to the liquid, leading to a finite configu-
rational entropy, but only a subextensive num-
ber in the putative thermodynamic glass phase,
where Sconf = 0. ‘Glass order’ can thus only be
revealed by the enumeration of equilibrium ac-
cessible states, see Fig. 3(b).

A final general question is: how can a purely
thermodynamic quantity be useful to under-

160



Article: Configurational entropy of glass-forming liquids

Figure 3: (a) Crystallization at the melting tem-
perature Tm corresponds to the emergence of
periodic order in the density profile of a single
configuration. (b) The glass transition at TK is
detected by enumerating equilibrium configura-
tions in configuration space C. Glass order is re-
vealed by comparing the degree of similarity (in
practice, the overlap in Eq. (7)) of amorphous
density profiles.

stand slow dynamics? After all, the above phe-
nomenological description of the glass transi-
tion relies on dynamics, and a connection to
configurational entropy is not obvious. The
first quantitative connection arose in 1965, when
Adam and Gibbs proposed that the timescale
for structural relaxation increases exponentially
with 1/(TSconf). [17] Quantitatively, the mod-
est decrease of Sconf(T ) in Fig. 2 could then be
sufficient to account for the modest increase in
the apparent activation energy, and for the large
increase of relaxation times although this view
remains heavily debated, to this day. [64, 65]

Testing the Adam-Gibbs relation has become a

straw man for a deeper issue: [32, 58, 66, 67] how
can one (dis)prove the existence of a causal link
between the rarefaction of equilibrium states and
slow dynamics? In essence, the physical idea to
be tested is that the driving force behind struc-
tural relaxation for T > TK is the configurational
entropy gained by the system exploring distinct
disordered states. Slower dynamics then arises
when fewer states are available at lower T , since
the system hardly finds new places to go. In this
view, the two configurations in Fig. 1 relax at a
much different rate not because there structure
is different, but because much fewer equilibrium
configurations are accessible to the configuration
on the right. This is indeed hard to recognize by
the naked eye.

I.3 Mean-field theory of the glass
transition

Despite the diversity of theoretical work related
to glass formation, the configurational entropy
plays a central role. This is natural for theories
rooted in thermodynamics and describe an en-
tropy crisis, [17, 18, 68] but theories based on
a different mechanism must also explain the ob-
served behavior of Sconf , and the role played by a
(possibly avoided) entropy crisis. [21, 22, 46] Fi-
nally, theories based on dynamics must explain
why a rapidly changing Sconf is an irrelevant fac-
tor. [24, 69, 70, 71] This makes the concept of
configurational entropy, a careful understanding
of its physical content, and the development of
precise numerical measurements important re-
search goals.

The first theory ‘predicting’ an entropy cri-
sis appeared about a decade after Kauzmann’s
work. [30, 31] Inspired by lattice polymer stud-
ies, [72] Gibbs and DiMarzio identified the de-
crease of Sexc presented by Kauzmann with the
reduction of the entropy computed within a set
of mean-field approximations. In their lattice
model, ‘states’ were identified with microscopic
configurations, with no need to subtract any vi-
brational contribution, Sconf ≈ Stot. An approx-
imate statistical mechanics treatment of their
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model yields Stot → 0 at a finite temperature.
Revisions and extensions of the Gibbs-

DiMarzio work abound. [48, 73, 74] Modern stud-
ies offer more detailed treatments of the polymer
chain and refined approximations. [75] The en-
tropy may or may not vanish, depending on the
approximations used and the ingredients entering
the model. [52, 76] An entropy crisis is thus not
always present within the Gibbs-DiMarzio line
of thought, but one cannot draw general con-
clusions about the existence of an entropy cri-
sis in supercooled liquids. Moreover, the distinc-
tion between individual configurations and free-
energy minima is generally not considered, which
may be problematic. [77] Finally, these works rely
heavily on the polymeric nature of the molecules
to make predictions whose validity for simpler
particle models or molecular systems is not guar-
anteed. These works nevertheless suggest that
the presence of a Kauzmann transition could well
be system-dependent. This is demonstrated by
some specific colloidal models in which the en-
tropy crisis is indeed avoided with a finite con-
figurational entropy at zero temperature. [49, 51]

A coherent mean-field theory of the glass tran-
sition was recently derived for classical, off-
lattice, point particle systems interacting with
generic isotropic pair interactions. [78, 79, 80, 81,
82] The ‘mean-field’ nature of the theory stems
from the fact that it becomes mathematically ex-
act in the limit of d → ∞, whereas it amounts
to an approximate analytic treatment for physi-
cal dimensions d < ∞. The nature of the glass
transition found in this mean-field limit agrees
with results obtained in the past in a variety
of approximate treatments, starting with den-
sity functional theory of hard spheres, [83] replica
calculations of fully-connected spin glass mod-
els, [18, 84, 85, 86, 87, 88] and others. [89, 90, 91]

The fact that distinct models and treatments
yield similar results reflects a universal evolu-
tion of the free-energy landscape in glassy sys-
tems, with results rediscovered in a variety of
contexts. [28, 92] The theory reveals the exis-
tence of sharp temperature scales where the to-
pography of the free-energy landscape changes

qualitatively. There exists a first temperature
scale, Tonset, above which a single global free en-
ergy minimum exists, and below which a large
number, N , of free-energy minima appear. This
number scales exponentially with the system size,
which allows for the definition of an entropy,
Σ = lnN , 1 also called complexity. At a second
temperature scale, Tmct < Tonset, the partition
function becomes dominated by those multiple
free-energy minima. This transition shares many
features with the dynamic transition first discov-
ered in the context of mode-coupling theory. [36]
The third critical temperature is TK < Tmct, be-
low which the number of free-energy minima be-
comes subextensive, resulting in a vanishing com-
plexity, Σ(T → TK)→ 0.

An entropy crisis is thus an analytic result in
mean-field theory, which provides a clear physical
interpretation of the configurational entropy as
the logarithm of the number of free-energy min-
ima, Sconf ≈ Σ = lnN . A Kauzmann transition
is exactly realized, and is referred to as a random
first order transition (RFOT).

The idea that the existence, number, and or-
ganization of distinct free-energy minima control
the glass transition was elegantly captured by an
approach developed by Franz and Parisi. [93, 94]
As in Landau theory, they expressed the free-
energy, or effective potential V (Q), as a function
of a global order parameter Q. As illustrated in
Fig. 3(b), the distinction between liquid and glass
phases stems from the degree of similarity of par-
ticle configurations drawn from the Boltzmann
distribution. Let us define an overlap, Q, as the
degree of similarity of the density profiles of two
equilibrium configurations, such that Q ≈ 0 for
uncorrelated profiles (liquid phase), and Q ≈ 1
for similar profiles (glass phase); see Eq. (7) be-
low.

The free-energy V (Q) can be computed ana-
lytically for mean-field glass models, as shown in
Fig. 4. As expected, the global minimum of V (Q)
is near Q ≈ 0 for T > TK as there exist so many
distinct available states that two equilibrium
configurations chosen at random have no simi-

1In this paper, we set the Boltzmann constant to unity.
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Figure 4: Schematic plot of the Franz-Parisi free
energy in mean-field theory. Inset: Temperature
evolution of the configurational entropy.

larity. All critical temperatures mentioned above
have a simple interpretation in this representa-
tion. The free-energy V (Q) has non-convexity
when T < Tonset, it develops a secondary min-
imum when T < Tmct, and this local minimum
becomes the global one when T reaches TK . The
secondary minimum occurs for Q slightly smaller
than 1, due to thermal fluctuations. [95] In this
description, mean-field glass theory shares simi-
larities with ordinary first-order transitions.

In the interesting regime, TK < T < Tmct, the
glass phase at high Q is metastable with respect
to the liquid phase at low Q. The free-energy
difference between the liquid and glass phases
results from confining the system within a re-
stricted part of the configuration space. Pre-
venting the system to explore the multiplicity of
available free-energy minima entails an entropic
loss, precisely given by the complexity, TΣ(T ).
The temperature evolution of the configurational
entropy Sconf is thus readily visualised and quan-
tified from the Franz-Parisi free-energy as shown
in Fig. 4. The inset of Fig. 4 shows that a finite
configurational entropy emerges discontinuously
at Tonset, and vanishes continuously at TK .

The entropy crisis captured by the random
first-order transition universality class is now val-
idated by exact calculations performed in the

large dimensional limit, d→∞. [82] This confers
to RFOT a status similar to van der Waals the-
ory for the liquid-gas transition. With its well-
defined microscopic starting point, mean-field
theory confirms that the configurational entropy
is central to the understanding of supercooled liq-
uids, and the rigorous treatment it offers puts
phenomenological and approximate ideas intro-
duced earlier by Kauzmann, Gibbs, DiMarzio,
Adam, and others on a solid basis. This now
serves as a stepping stone to describe finite di-
mensional effects. [96, 97, 98, 99, 100, 101]

I.4 Conceptual and technical prob-
lems

Physically, the configurational entropy quantifies
the existence of many distinct glass states that
the system can access in equilibrium conditions.
There are two main routes to measure Sconf .

First, one can subtract from the total en-
tropy a contribution that comes from small ther-
mal vibrations performed in the neighborhood
of a given reference configuration: Sconf(T ) ≈
Stot(T )−Sglass(T ). In this view, Sglass(T ) should
be the entropy of an equilibrium system that
does not explore distinct states at temperature
T . This quantity can be measured straightfor-
wardly in equilibrium for T < TK , whereas some
approximations are by construction needed to
measure Sglass for T > TK .

Experimentally, it is often assumed that
Sglass ≈ Sxtal, because it is possible to mea-
sure Sxtal in equilibrium using reversible thermal
histories. [32] This represents a well-defined and
physically plausible proxy. It has been tested
for some systems, [102, 103, 104, 105, 106, 107]
and its validity seems to be non-universal. [107]
We shall introduce in Sec. III.5 a computational
method to determine Sglass that makes no refer-
ence to the crystal. [108, 109, 110]

The second general route to Sconf is to directly
enumerate the number of distinct glass states
available to the system in equilibrium, N , and
use Sconf = lnN . Here, mean-field theory pro-
vides a rigorous definition of glass states as free-
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energy minima. However, just as for ordinary
phase transitions (e.g. van der Waals theory) lo-
cal free-energy minima are no longer infinitely
long-lived when physical dimension is finite, and
states can no longer be defined precisely. Thus,
strictly speaking, the complexity that vanishes at
TK in mean-field theory is not defined in finite di-
mensional systems. Again, approximations must
be performed to measure a physical analog. Two
such methods based on the Franz-Parisi free en-
ergy [93, 94] and glassy correlation length, [68]
are now available, as discussed in Secs. IV and
V. The existence of an entropy crisis in finite di-
mension is not directly challenged by the approx-
imate nature of these estimates. To determine
whether a Kauzmann transition can occur in fi-
nite d, one should rather study the effect of finite-
dimensional fluctuations within a d-dimensional
field theory using the Franz-Parisi free-energy as
a starting point.[96, 97, 98, 99, 100, 101] There
exists no ‘proof’ that the Kauzmann transition
should be destroyed in finite dimensions as di-
vergent conclusions were obtained using distinct
approximate field-theoretical treatments. This is
a difficult, but pressing, theoretical question for
future work.

A popular alternative is the enumeration of po-
tential energy minima using the potential energy
landscape (PEL), which was actually proposed
long before the development of mean-field theory,
first by Goldstein, [111] and further formalized
by Stillinger and Weber. [112, 113] The PEL ap-
proach assumes that an equilibrium supercooled
liquid resides very close to a minimum of the
potential energy, also named inherent structure.
Assuming further that each inherent structure
corresponds to a distinct glass state, the number
of inherent structures, NIS, provides a proxy for
the configurational entropy, Sconf ≈ lnNIS. This
assumption offers precise and simple computa-
tional methods to estimate the configurational
entropy, [46, 114, 115] discussed below in Sec. III.

The identification between inherent structures
and the free-energy minima entering the mean-
field theory should not be made, as explicit ex-
amples were proposed to show that it is gen-

erally incorrect. [77, 116] Physically, it is be-
lieved that free-energy minima may contain a
large number of inherent structures. The con-
cept of ‘metabasins’ [117] has been empirically
introduced to capture this idea, but there is no
available method to enumerate the number of
metabasins to obtain a configurational entropy.
The hard sphere model is a striking example of
the difference between energy and free energy
minima. In large dimensions, hard spheres un-
dergo an entropy crisis, but it does not corre-
spond to a decrease of the number of inherent
structures, which are not defined for due to the
discontinous nature of the pair potential.

Using the PEL approach, several arguments
were given to question the existence of a Kauz-
mann transition in supercooled liquids. By
considering localized excitations above inherent
structures, Stillinger provided a physical argu-
ment showing that the PEL approximation to
the configurational entropy can not vanish at a
finite temperature. [46] The effect of such excita-
tions on the free-energy landscape has not been
studied, and so this argument does not straight-
forwardly apply to the random first order tran-
sition itself. In the same vein, Donev et al. di-
rectly constructed dense hard disk packings of a
binary mixture model to suggest that NIS cannot
yield a vanishing configurational entropy. This
again does not question the Kauzmann transition
of that system, since it should be demonstrated
that the equilibrium free-energy landscape is sen-
sitive to these artifical inherent states, whose rel-
evance to the equilibrium supercooled fluid is not
established.2 Finally, the ambiguous nature of
inherent structures becomes obvious when con-
sidering colloidal systems composed of a contin-
uous distribution of particle sizes. Starting from
a given inherent structure, each permutation of
the particle identity provides a different energy
minimum and a naive enumeration of the config-
urational entropy [118] would contain a divergent

2In addition, the constructed dense packings are
largely demixed and partially crystallized, and it is un-
clear that these states are relevant for the (metastable)
fluid branch.

164



Article: Configurational entropy of glass-forming liquids

mixing entropy contribution, again incorrectly
suggesting the absence of a Kauzmann transi-
tion. [116] A similar argument was proposed for
a binary mixture. [119] The problem of the mix-
ing entropy in the PEL approach is considered
further, and solved, in Sec. III.6.

II Computer simulations of
glass-forming liquids

II.1 Why perform computer simula-
tions to measure the configura-
tional entropy?

Let us start with some major steps in com-
puter simulations of supercooled liquids, refer-
ring to broader reviews for a more extensive per-
spective. [120, 121] Early computational stud-
ies date back to the mid-1980s, [122, 123, 124,
125, 126] followed by intensive works strongly
coupled to the development of mode-coupling
theory during the 1990s. [45] The nonequilib-
rium aging dynamics of glasses, [127] along with
concepts of effective temperatures, [128, 129,
130] rheology [131, 132] and dynamical hetero-
geneities [10, 131, 133, 134] were in the spot-
light at the end of the 20th century. The search
for a growing static lengthscale, [135] linked to
a Kauzmann transition and configurational en-
tropy, [114, 115] have continuously animated the
field until today. Over this period spanning
about 3 decades, the numerically-accessible time
window increased about as many orders of mag-
nitude, mainly due to improvements in computer
hardware. Until 2016, computer studies lagged
well behind experiments in terms of equilibrium
configurational entropy measurements, but re-
cent developments in computer algorithms have
been able to generate, for highly polydisperse
systems, equilibrium configuration comparable
to experimental data. [44] For these models, tem-
peratures below the experimental glass transi-
tion are now numerically accessible in equilib-
rium conditions, making computer simulations
an essential tool for configurational entropy stud-
ies in supercooled liquids. [16, 136]

As illustrated in Fig. 1, theories for the glass
transition need to make predictions for com-
plex observables that reflect nontrivial changes in
the supercooled liquid, such as multi-point time
correlation functions, [137] point-to-set correla-
tions, [135, 138] non-linear susceptibilities, [139,
140] as well as properties of the potential and
free-energy landscapes. [141, 142, 143] Most of
these quantities are extremely challenging, or
sometimes even impossible, to measure in exper-
iments. Computer simulations are particularly
suitable because they generate equilibrium den-
sity profiles from which any observable can be
computed. Obtaining the same information in
experiments is possible to some extent in col-
loidal glasses, but still a challenge in atomistic
or molecular glasses.

Computer simulations take place under per-
fectly controlled conditions, and are therefore
easier to interpret than experiments. All set-
tings are well-defined: microscopic model, al-
gorithm for the dynamics, statistical ensemble
(isobaric or isochoric conditions), external pa-
rameters, etc. Computer simulations are also
very flexible. Since the mean-field theory for the
glass transition provides exact predictions for the
configurational entropy in infinite dimensions, it
is crucial to understand how finite-dimensional
fluctuations affect them. Along with current ef-
forts that strive to develop renormalization group
approaches to this problem, numerical simula-
tions give precious insights into the effect of di-
mensionality on the physics of glass formation.
Numerical simulations can be performed in any
physical dimensions, and the range d = 1 − 12
was explored in that context. [144, 145, 146, 147]
Even the space topology can be varied. [148, 149]
One can study the effect of freezing a subset of
particles with arbitrary geometries by means of
computer simulations. [138, 150, 151, 152, 153]
The size of the system under study can be tuned
and finite-size scaling analysis can reveal impor-
tant lengthscales for the glass problem. [154, 155]
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II.2 Simple models for supercooled
liquids

The features associated with the glass transi-
tion, such as a dramatic dynamical slowdown
and dynamic heterogeneities, are observed in
a wide variety of glassy materials composed of
atoms, molecules, metallic compounds, colloids
and polymers. It may be useful to focus on
simple models exhibiting glassy behavior to un-
derstand universal features of the glass transi-
tion. We consider classical point-like particles
with no internal degrees of freedom that interact
via isotropic pair potentials. These models may
not capture all detailed aspects of glass forma-
tion, e.g. β-relaxations due to slow intramolecu-
lar motion in molecules, but their configurational
entropy can nevertheless be measured. The nu-
merical study of simple models is especially rel-
evant in the context of configurational entropy,
since mean-field theory was precisely derived for
such simple models, which allow direct compari-
son between theory and simulations. [82]

For this perspective, we use results for three
simple glass-formers to illustrate generic fea-
tures of entropy measurements. The Lennard-
Jones (LJ) potential was first introduced to
model the interaction between neutral atoms and
molecules. The interaction potential between
two particles separated by a distance r reads

vLJ(r) = 4ε

[(σ
r

)12
−
(σ
r

)6
]
, (1)

where ε and σ set the energy and length scales.
The stiffness of the repulsion in the soft-sphere
(SS) potential vSS(r) = ε(σ/r)ν can be tuned
with ν. [44] The hard-sphere (HS) potential, de-
fined as vHS(r) = ∞ if r < σ, and vHS(r) = 0
otherwise, models hard-core repulsion between
particles of diameter σ. This highly-idealized
model efficiently captures the glass transition
phenomenology.[156, 157] We recall that for hard
spheres, pressure and temperature are no longer
independent control parameters, but enter to-
gether in the adimensional pressure, p = P/(ρT ),
so that 1/p replaces the temperature for that sys-

tem, [156] and directly controls the packing frac-
tion φ via the equation of state, φ = φ(p).

The homogeneous supercooled liquid is
metastable with respect to the crystal in the
temperature regime where the configurational
entropy is measured, and so the expression
“equilibrium supercooled liquid” represents,
strictly speaking, an abuse of language. Design-
ing glass-forming models in which crystallization
is frustrated, and defining strict protocols to
detect crystallization is crucial.[44] Mixtures
of different species are good experimental
glass-formers: colloidal glasses are made of poly-
disperse suspensions, [158] and metallic glasses
are alloys of atoms with different sizes. [159]
Inspired by experiments, numerical models use
particles of different species which differ by
their size σ or interaction ε. The Kob-Andersen
(KA) model is a bidisperse mixture with 80%
larger particles and 20% smaller particles,
interacting via the LJ potential with adjusted
parameters σ and ε to describe amorphous
Ni80P20 metallic alloys.[45] Many numerical
models with good glass-forming ability have
been developed, [44, 45, 124, 126, 160, 161]
although development in computational power
now leads to crystallization for some of those
models. [44, 162, 163, 164] Thus, developing
new models robust against crystallization is an
important research goal.

While the situation may seem satisfactory to
theorists, numerical glass-formers are probably
too simplistic for many experimentalists. A wide
variety of more realistic glass forming models
have been developed and studied [165, 166, 167,
168]. Future developments should aim at design-
ing minimal models for more complex systems
and powerful algorithms for efficient simulations,
in order to also close this conceptual gap.

II.3 Molecular dynamics simulations

The two main classical methods used to simu-
late the above models are Monte Carlo (MC) and
Molecular Dynamics (MD) simulations.[169, 170]
Quantum effects, partially included in ab initio
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simulations, are irrelevant in the present context.
The course of a numerical simulation is very

similar to an experiment. A sample consisting of
N particles is prepared and equilibrated (using
either MC or MD dynamics) at the desired state
point, until its properties no longer change with
time. After equilibration is achieved, the mea-
surement run is performed. Common problems
are just as in experiments: the sample is not equi-
librated correctly, the measurement is too short,
the sample undergoes an irreversible change dur-
ing the measurement, etc.

A noticeable difference between computer and
experimental supercooled liquid samples is their
size. Numerical studies of the configurational en-
tropy are limited to around 104 particles, to be
compared to around 1023 atoms or molecules in
experimental samples. Periodic boundary condi-
tions are applied to the simulation box in order to
avoid important boundary effects, and simulate
the bulk behavior of ‘infinitely’ large samples.
Lengthscales larger than the system size are nu-
merically inaccessible. Up to now, this limit was
not really problematic since all relevant length-
scales associated with the glass transition are not
growing to impossibly large values, in particular
for static quantities. Analysis of dynamic hetero-
geneity have shown that systems larger than 104

particles are sometimes needed. [10, 12, 154]
The difference between MD and MC is the way

the system explores phase space. The molecu-
lar dynamics method simulates the physical mo-
tion of N interacting particles. As an input,
one defines a density profile rN0 , particle veloc-
ities vN0 , and an interaction potential between
particles. The method solves the classical equa-
tions of motion step by step using a finite dif-
ference approach. As an output, one obtains
physical particle trajectories (rN (t),vN (t)) from
which thermodynamic quantities can be com-
puted, see Sec. II.5. By construction, the tra-
jectories sample the microcanonical ensemble.
Other ensembles can be simulated by adding de-
grees of freedom which simulate baths which gen-
erate equilibrium fluctuations in any statistical
ensemble.[169, 171, 172]
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Figure 5: Isobaric relaxation time of supercooled
liquids as a function of the inverse temperature
for ethanol, [173] propylene carbonate, [174] and
propylene glycol, [175] as well as the standard
molecular dynamics (open squares) and its com-
bination with the swap Monte-Carlo algorithm
(open circles) [176] for three-dimensional polydis-
perse soft spheres [44]. We renormalize axis us-
ing the onset of glassy dynamics, (τ0 = 10−10s in
experiments), and the corresponding T0. We fit
MD results with a parabolic fit, which provides
a reasonable estimate of Tg for this system (ver-
tical dashed line). The SWAP algorithm (open
circles) can equilibrate the numerical model well
below that Tg value.

Molecular dynamics mimics the physical mo-
tion of particles, very much as it takes place in ex-
periments, but computers are much less efficient
than Nature. Long MD simulations of a sim-
ple glass model (about a month) can only track
the first 4-5 orders of magnitude of dynamical
slowdown in supercooled liquids approaching the
glass transition, to be compared to 12-13 orders
of magnitude in real molecular liquids. In Fig. 5,
we show relaxation time τα of some molecular liq-
uids of various fragilities, [173, 174, 175, 177] and
MD simulations of polydisperse soft spheres un-
der isobaric condition. The temperature range
accessible with MD simulations is far from the
experimentally relevant regime, and stops well
before Tg is reached (estimated from a parabolic
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fit [178]).
Recently, efficient software packages for MD

have been developed that use the power of
graphic cards. [179, 180] They typically yield a
speed-up of about two orders of magnitude over
normal MD, which is sufficient to get below the
mode-coupling crossover, and thus access inter-
esting new physics and dynamics. [164, 179]

II.4 Beating the timescale problem:
Monte Carlo simulations

Monte Carlo simulations aim at efficiently sam-
pling the configurational space with Boltzmann
statistics.[181, 182] A stochastic Markov process
is generated in which a given configuration rN

is visited with a probability proportional to the
Boltzmann factor e−βU(rN ), where β = 1/T and
U are the inverse of the temperature and the po-
tential energy, respectively. The method only
considers configurational, and not kinetic, de-
grees of freedom, and is suitable for configura-
tional entropy measurements.

A Markov process is defined by the transition
probability T (rN → r′N ) to go from configura-
tions rN to r′N . To sample configurations with
a probability P (rN ) given by the Boltzmann fac-
tor, the global balance condition should be veri-
fied
∑

r′N

P (rN )T (rN → r′N ) =
∑

r′N

P (r′N )T (r′N → rN ) .

(2)
We consider a stronger condition and impose the
equality in Eq. (2) to be valid for each new state
r′N . This detailed balance condition reads

T (rN → r′N )

T (r′N → rN )
=
P (r′N )

P (rN )
= exp

[
−β
(
U(r′N )− U(rN )

)]
.

(3)
In practice, T (rN → r′N ) = α(rN → r′N ) ×
acc(rN → r′N ), where α and acc are the prob-
abilities to propose a trial move and to accept
it, respectively. We consider a symmetric matrix
α for trials such that the matrix acc obeys the
same equation as T in Eq. (3). If trial moves
are accepted with probability acc(rN → r′N ) =

min
{

1, exp
[
−β(U(r′N )− U(rN ))

]}
(Metropo-

lis criterion), [181] the configurations are drawn
from the canonical distribution at equilibrium at
the desired temperature.

Contrary to MD simulations, dynamics in a
Monte Carlo simulation is not physical, since it
results from a random exploration of configura-
tional space. This is actually good news, since
there is a considerable freedom in the choice of
trial moves, opening the possibility to beat the
numerical timescale problem illustrated in Fig. 5.
The choice of trial move depends on the purpose
of the numerical simulation. A standard trial
move consists in selecting a particle at random
and slightly displacing it. For small steps, the
dynamics obviously resembles the (very physical)
Brownian dynamics. [183]

Efficient Monte Carlo simulations should in
principle be possible using lattice models for
glasses, which would use discrete rather than
continuous degrees of freedom. This approach
has been heavily used to analyse models based on
dynamic facilitation such as kinetic Ising mod-
els [184], or plaquette models [185] but the en-
tropy does not play any central role in these mod-
els. Lattice glass models were introduced as lat-
tice models that have, in some controlled mean-
field limit, a random first order transition, [90,
91] but simulation studies of finite dimensional
versions of these models remain scarce, [186] and
we are aware of no study of configurational en-
tropy in such lattice models.

If instead efficient equilibration is targeted,
more efficient but less physical trial moves should
be preferred. In the SWAP algorithm, [44, 161,
187, 188, 189, 190, 191] trial moves combine stan-
dard displacement moves and attempts to swap
the diameters of two randomly chosen particles.
Since the trial moves satisfy detailed balance
in Eq. (3), the SWAP algorithm by construc-
tion generates equilibrium configurations from
the canonical distribution.

Using continuously polydisperse samples, this
algorithm outperforms standard MC or MD, as
equilibrium liquids can be generated at tem-
peratures below the experimental glass transi-
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tion. [44] In Fig. 5, we show the equilibrium re-
laxation time τα of an Hybrid scheme of MD
and SWAP MC developed recently in Ref. [176].
The relaxation dynamics with this scheme is sig-
nificantly faster than with standard MD, which
makes equilibration of the system possible even
below the estimated experimental glass tran-
sition temperature Tg. Accessing numerically
these low temperatures is crucial to compare sim-
ulations and experiments. From a theoretical
perspective, the concept of metastable state ap-
plies far better at low temperatures. In particu-
lar, numerical estimates for the configurational
entropy become more meaningful in these ex-
treme temperature conditions.

To conclude, Monte Carlo simulations are very
relevant in the present context, because their
flexibility allows us to compute and compare dif-
ferent estimates for the configurational entropy
of supercooled liquids. [33, 136] These measure-
ments are done under perfectly controlled con-
ditions, in a temperature regime relevant to ex-
perimental works, and even at lower tempera-
tures. [16]

II.5 From microscopic configurations
to observables

The output of a numerical simulation consists in
a series of equilibrium configurations. To mea-
sure an observable numerically, one must first
express it as a function of the positions of the
particles.

Static quantities describing the structure of
the liquid are easily computed.[192] In particu-
lar, the density field is given by

ρ(r) =
N∑

i=1

δ(r− ri) . (4)

Two-point static density correlation functions
such as the pair correlation function

g(r) =
1

ρN

〈∑

i 6=j
δ(r + ri − rj)

〉
, (5)

where ρ = N/V is the number density and the
bracket indicate an ensemble average at thermal

equilibrium, and the structure factor

S(k) =
1

N
〈ρkρ−k〉 , (6)

are evaluated, where ρk =
∑N

i=1 e
ik·ri is the

Fourier transform of the density field. Even if
these quantities are not relevant to describe the
dynamical slowdown of the supercooled liquid
(see Fig. 1), they are convenient to detect insta-
bilities of the homogeneous fluid (crystallization,
fractionation). Thermodynamic quantities (such
as energy, pressure), and their fluctuations (e.g.
specific heats, compressibility), related to macro-
scopic response functions, can be computed di-
rectly from the two-point structure of the liquid.

As presented in Sec. I.3, the relevant order pa-
rameter for the glass transition is the overlap Q
that quantifies the similarity of equilibrium den-
sity profiles. This quantity compares the coarse-
grained density profiles of two configurations, to
remove the effect of short-time thermal vibra-
tions. Numerically, the following definition is
very efficient

Q =
1

N

∑

i,j

θ(a− |r1i − r2j |) , (7)

where r1 and r2 are the positions of particles in
distinct configurations, and θ(x) is the Heaviside
step function. The parameter a is usually a small
fraction (typically 0.2−0.3) of the particle diam-
eter. The overlap is by definition equal to 1 for
two identical configurations, it is slightly smaller
than 1 due to the effect of vibrations, and be-
comes close to zero (more precisely 4πa3ρ/3� 1)
for uncorrelated liquid configurations at density
ρ.

III Configurational entropy by
estimating a ‘glass’ entropy

III.1 General strategy

The configurational entropy enumerates the
number of distinct glass states. One possible
strategy to achieve this enumeration is to first
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estimate the total number of configurations, or
phase space volume, Ntot. If one can then
measure the number of configurations belong-
ing to the same glass state, Nglass, the number
of glass states Nconf can be deduced, Nconf =
Ntot/Nglass. Taking the logarithm of Nconf yields
the configurational entropy

Sconf = Stot − Sglass. (8)

Whereas the measurement of the total entropy
Stot is straightforward, the art of measuring the
configurational entropy lies in the quality of the
unavoidable approximation made to determine
Sglass. Recall that experimentalists typically use
Sglass ≈ Sxtal. This is not a practical method
for simulations, because numerical models which
can crystallize are generally very poor glass-
formers. In this section, we describe several pos-
sible strategies to measure Sglass which do not
rely on the knowledge of the crystal state, and
present their limitations.

Let us now introduce our notations for entropy
calculations. We consider a M -component sys-
tem in the canonical ensemble in d spatial di-
mensions, with N , V , and T = 1/β the num-
ber of particles, volume, and temperature, re-
spectively. We fix the Boltzmann constant to
unity. We take M = N to treat continuously
polydisperse systems. The concentration of the
m-th species is Xm = Nm/N , where Nm is the
number of particles of the m-th species (N =∑M

m=1Nm). A point in position space is denoted
as rN = (r1, r2, · · · , rN ). For simplicity, we con-
sider equal masses, irrespective of the species,
which we set to unity.

For this system, the following partition func-
tion in the canonical ensemble is conventionally
used [193]

Z =
Λ−Nd

ΠM
m=1Nm!

∫

V
drNe−βU(rN ), (9)

where Λ and U(rN ) are respectively the de
Broglie thermal wavelength and the potential
energy. The only fluctuating variables are the
configurational degrees of freedom rN , since mo-
menta are already traced out in Eq. (9).

III.2 Total entropy Stot

An absolute estimate of the total entropy at a
given state point can be obtained by performing
a thermodynamic integration from a reference
point where the entropy is exactly known, [110,
114, 194, 195] typically the ideal gas at ρ→ 0 or
β → 0. This approach works for all state points
which can be studied in equilibrium conditions,
and are connected to the reference point by a se-
ries of equilibrium state points. This is usually
doable also in most experiments. However, this
constraint prevents a direct analysis of the en-
tropy of vapor-deposited ultrastable glasses pro-
duced directly at very low temperature. In prac-
tice, to perform the thermodynamic integration
and access Stot, we need to distinguish between
continuous ‘soft’ interaction potentials, such as
the Lennard-Jones potential, and discontinuous
‘hard’ potentials, as in the hard sphere model:

Stot = Sid + βEpot(β)−
∫ β

0
dβ′Epot(β

′) (soft),(10)

Stot = Sid −N
∫ ρ

0
dρ′

(p(ρ′)− 1)

ρ′
(hard), (11)

where Sid, Epot and p = P/(ρT ) are the ideal
gas entropy, the averaged potential energy, and
the reduced pressure, respectively. The ideal gas
entropy Sid can be written as

Sid = N
(d+ 2)

2
−N ln ρ−N ln Λd+S

(M)
mix , (12)

where S(M)
mix is the mixing entropy of the ideal

gas,

S
(M)
mix = ln

(
N !

ΠM
m=1Nm!

)
. (13)

When M is finite and Nm � 1, Stirling’s ap-
proximation can be used, lnNm! ' Nm lnNm −
Nm, and Eq. (13) reduces to S

(M)
mix /N =

−∑M
m=1Xm lnXm.

As a representative example, Fig. 6(a) shows
the temperature dependence of the numerically
measured total entropy in the Kob-Andersen
model. [45] It decreases monotonically with de-
creasing the temperature.
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III.3 Inherent structures as glass
states

The first strategy that we describe to identify
glass states and estimate Sglass is based on the
potential energy landscape (PEL). [111, 112, 113,
117, 143] The central idea is to assume that each
configuration can be decomposed as

rN = rNIS + ∆rN , (14)

where rNIS is the position of the ‘inherent struc-
ture’, i.e. the potential energy minimum closest
to the original configuration. This trivial decom-
position becomes meaningful if one makes the
central assumption that different inherent struc-
tures represent distinct glass states. It follows
immediately that the glass entropy, Sglass, then
quantifies the size of the basin of attraction of
inherent structures.

Assuming that temperature is low, ∆rN can
be treated in the harmonic approximation. Ex-
panding the potential energy U(rN ) around the
inherent structure rNIS, one gets

Uharm(rN ) ' U(rNIS) +
1

2

∑

i,j

∂2U(rNIS)

∂ri∂rj
∆ri∆rj .

(15)
Injecting this expansion in the partition function,
Eq. (9), gives

Zharm = e−βU(rNIS)ΠNd
a=1(β~ωa)−1, (16)

where ω2
a are the eigenvalues of the Hessian

matrix. We also considered that each inher-
ent structure is realized ΠM

m=1Nm! times in the
phase space volume, as permuting the particles
within each specie leaves the configuration un-
changed (see related argument in mean-field the-
ory) [196, 197, 198]. This factorial term cancels
out with the denominator in Eq. (9).

We have implicitly assumed that exchanging
two distinct particles produces a different inher-
ent structure, [118] which is consistent with the
identification of energy minima as glass states.
Physically, this implies that there is no mixing
entropy associated with inherent structures. As
realized recently, [116] this assumption produces

Figure 6: (a) Total entropy Stot and various
estimates of the glass entropy Sglass: harmonic
Sharm

glass , with anharmonic correction Sanh
glass, and the

Frenkel-Ladd entropy SFL
glass. (b) Anharmonic en-

ergy Eanh from simulations (black points) and
polynomial fitting to third order (red line). (c)
Constrained mean-squared displacement in the
Frenkel-Ladd method. The dashed horizontal
line correspond to the Debye-Waller factor inde-
pendently measured in the bulk dynamics at the
lowest temperature. The vertical arrow indicates
αmin.
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unphysical results for systems with continuous
polydispersity.

Averaging over independent inherent struc-
tures (denoted by 〈(· · · )〉IS), the free energy of
the harmonic solid is obtained,

−βFharm = 〈lnZharm〉IS (17)

= −β
〈
U(rNIS)

〉
IS
−
〈
Nd∑

a=1

ln(β~ωa)

〉

IS

.

The internal energy of the harmonic solid is

Eharm =
Nd

2
T +

〈
U(rNIS)

〉
IS

+
Nd

2
T, (18)

where the first and last terms are the kinetic and
harmonic potential energies. Using Eqs. (17) and
(18), we finally obtain the glass entropy in the
harmonic approximation:

Sharm
glass = β (Eharm − Fharm) ,

=

〈
Nd∑

a=1

{1− ln(β~ωa)}
〉

IS

. (19)

In practice, this method requires the produc-
tion of a large number of independent inherent
structures, obtained by performing energy min-
imizations from equilibrium configurations us-
ing widespread algorithms such as the steep-
est decent or conjugate gradient methods, [199]
or FIRE. [200] The energy U(rIS) is measured,
and the Hessian matrix is diagonalized to get
the eigenvalues ω2

a. Using Eq. (19), these mea-
surements then provide the glass entropy Sharm

glass .
The numerical results for Sharm

glass (T ) in the Kob-
Andersen model are shown in Fig. 6(a). The dif-
ference Stot − Sharm

glass is a widely used practical
definition of the configurational entropy in com-
puter simulations. [114, 115, 153, 194, 201, 202]

III.4 Anharmonicity

Although presumably not the biggest issue, it is
possible to relax the harmonic assumption in the
above procedure. [143] First, the anharmonic en-
ergy, Eanh, is obtained by subtracting the har-
monic energy in Eq. (18) from the total one,

Eanh = Epot −
〈
U(rNIS)

〉
IS
− Nd

2
T. (20)

The anharmonic contribution to the entropy can
then be estimated as

Sanh =

∫ T

0

dT ′

T ′
∂Eanh(T ′)

∂T ′
, (21)

which requires a low-temperature extrapolation
of the measured Eanh(T ). This can be done us-
ing an empirical polynomial fitting, Eanh(T ) =∑

k≥2 akT
k, where the sum starts at k = 2

to ensure a vanishing anharmonic specific heat
at T = 0. By substituting this expansion in
Eq. (21), we obtain

Sanh(T ) =
∑

k≥2

k

k − 1
akT

k−1. (22)

We show the numerically measured Eanh for
the Kob-Andersen model, along with its polyno-
mial fit in Fig. 6(b). The non-trivial behavior
of Eanh suggests that the harmonic description
overestimates phase space at low T , but under-
estimates it at high T , a trend widely observed
across other fragile glass-formers. [143, 165] The
resulting Sanh using Eq. (22) is thus negative and
is of the order of Sanh/N ≈ −0.1, which is a small
but measurable correction to Sconf . As a result,
the improved glass entropy Sanh

glass = Sharm
glass +Sanh

is slightly smaller than the harmonic estimate, as
shown in Fig. 6(a).

III.5 Glass entropy without inherent
structures

The identification of inherent structures with
glass states is a strong assumption which can
be explicitly proven wrong in some model sys-
tems. [77, 116, 203] Moreover, inherent structures
cannot be defined in the hard sphere model (be-
cause minima of the potential energy cannot be
defined), which is obviously an important theo-
retical model to study the glass transition.

A more direct route to a glass entropy which
automatically includes all anharmonic contribu-
tions and can be used for hard spheres is ob-
tained by using the following decomposition,
[108, 109, 110, 136, 194, 203, 204, 205]

rN = rNref + δrN , (23)
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where rNref is a reference equilibrium configura-
tion. The first difference with Eq. (14) is that
inherent structures do not appear, since devia-
tions are now measured from a given equilibrium
configuration.

The second difference is the strategy to esti-
mate the size of the basin surrounding rNref , which
makes use of a constrained thermodynamics inte-
gration about the fluctuating variables δrN . The
potential energy of the system is βU(rN ), is aug-
mented by a harmonic potential to constrain δrN

to remain small, leading to

βUα(rN , rNref) = βU(rN ) + α
N∑

i=1

|ri − rref,i|2.

(24)
We consider the statistical mechanics of a

given basin, specified by rNref , under the harmonic
constraint. The partition function and the cor-
responding statistical average are

Zα = Λ−Nd
∫

V
drNe−βUα(rN ,rNref),(25)

〈(· · · )〉Tα =

∫
V drN (· · · )e−βUα(rN ,rNref)

∫
V drNe−βUα(rN ,rNref)

. (26)

Note that the factorial term ΠM
m=1Nm! in

Eq. (25) is treated as in Eq. (16) within the
PEL approach. We consider the entropy of a
constrained system as Sα = β(Eα − Fα), where
βEα = Nd

2 + β
〈
Uα(rN , rNref)

〉T

α
and βFα =

− lnZα are the internal energy and free energy,
respectively.

In the glass phase, the system remains close
to the reference configuration for any value of α,
including α = 0. For the liquid, this is true only
for times smaller than the structural relaxation
time. For α small but finite, however, the system
must remain close to the reference configuration
and explore the basin whose size we wish to es-
timate. We therefore define the glass entropy in
the Frenkel-Ladd method as [108]

SFL
glass = lim

αmin→0
Sαmin , (27)

where (· · · ) represents an average over the ref-
erence configuration. The limit in Eq. (27) is

a central approximation in this method, which
is directly related to conceptual problems sum-
marised in Sec. I.4. Because metastable glass
states are not infinitely long-lived in finite di-
mensions, a finite value of α is needed to pre-
vent an ergodic exploration of the configuration
space, and the limit in Eq. (27) is difficult to take
in practice. The choice of αmin amounts to defin-
ing ‘by hand’ the glass state as the configurations
that can be reached at equilibrium for a spring
constant αmin.

The practical details are as follows. At very
large α (= αmax), the entropy is known exactly
because the second term in the right hand side of
Eq. (24) is dominant. The entropy of the system
is described by the Einstein solid,

Sαmax =
Nd

2
−N ln Λd − Nd

2
ln
(αmax

π

)
. (28)

By performing a thermodynamic integration
from αmax, one gets Sαmin , and thus SFL

glass from
Eq. (27)

SFL
glass = Sαmax +N lim

αmin→0

∫ αmax

αmin

dα∆T
α , (29)

where ∆T
α is defined by

∆T
α =

1

N

〈
N∑

i=1

|ri − rref,i|2
〉T

α

. (30)

To perform the integration and take the limit
αmin → 0 in Eq. (27), we write:

lim
αmin→0

∫ αmax

αmin

dα∆T
α ' αmin∆T

αmin
+

∫ αmax

αmin

dα∆T
α .

(31)
The practical choice for αmax is simple, as it is
sufficient that it lies deep inside the Einstein solid
regime where ∆T

α = d/(2α) is satisfied. For αmin,
a more careful look at the simulation results is
needed.

In Fig. 6(c), we show ∆T
α for the Kob-Andersen

model at low temperature. The Einstein solid
limit is satisfied for large α, and we can fix
αmax = 107. When α decreases, deviations
from Einstein solid behavior are observed, and
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a plateau emerges. Decreasing α further, the
harmonic constraint for ∆T

α becomes too weak
and the glass metastability is not sufficient to
prevent the system from diffusing away from the
reference configuration, which translates into an
upturn of ∆T

α at small α. It is instructive to com-
pare the plateau level with the Debye-Waller fac-
tor measured from the bulk dynamics, [164] indi-
cated by a dashed line. This comparison shows
that αmin ≈ 2 is a good compromise: it is in
the middle of the plateau, and corresponds to vi-
brations comparable to the ones observed in the
bulk. Using this value for αmin, we obtain the
Frenkel-Ladd glass entropy shown in Fig. 6(a).
We observe that SFL

glass is smaller than Sharm
glass ,

and becomes comparable to the anharmonic esti-
mate using inherent structures, Sanh

glass, as temper-
ature decreases, confirming that anharmonicities
are automatically captured by the Frenkel-Ladd
method. [203]

We show the resulting Sconf = Stot − SFL
glass

in Fig. 2. Comparing with experimental data,
the temperature range where Sconf can be mea-
sured is limited since the SWAP algorithm is
not efficient for binary mixtures such as the
Kob-Andersen model. [201] Nevertheless an ex-
trapolation to lower temperature suggests that
Sconf/N may vanish at a finite TK. [33]

III.6 Mixing entropy in the glass state

Using multi-component mixtures is essential to
study supercooled liquids and glasses for spher-
ical particle systems, as exemplified by metal-
lic [159] and colloidal [158, 206] glasses. This is
also true for most computer simulations, since
monocomponent systems crystallize too easily,
except for large spatial dimensions [147] or ex-
otic mean-field like model systems. [207] For
such multi-components systems, a mixing en-
tropy term appears in the total entropy, see
Eq. (12), with no analog in the glass entropy,
see Eqs. (19) and (29). Physically, this is because
we decided to treat two configurations where dis-
tinct particles had been exchanged as two dis-
tinct glass states.

Figure 7: Mixing entropy conundrum for con-
tinuous polydispersity. Should one treat these
3 configurations as 3 distinct glass states, or
only two by grouping (a) and (b) together? In
Sec. III.7, a computational measurement is de-
scribed that provides the correct answer, instead
of guessing it.

For typical binary mixtures studied in com-
puter simulations, the mixing entropy is about
as large as the configurational entropy itself over
the range accessible to molecular dynamics simu-
lations. [110, 114] Therefore, neglecting the mix-
ing entropy can change the configurational en-
tropy by about 100%, which in turn produces a
similar uncertainty on the estimate of the Kauz-
mann temperature. Properly dealing with the
mixing entropy is thus mandatory. [116]

For discrete mixtures, such as binary and
ternary mixtures, with large size asymmetries,
the above treatment produces an accurate deter-
mination of Sconf . [114, 115, 153, 194, 201, 202]
However, for systems with a continuous distri-
bution of particle sizes, such as colloidal parti-
cles and several computer models, this leads to
unphysical results. In the liquid, the mixing en-
tropy is formally divergent, since for M = N

it becomes S(M=N)
mix /N = (lnN !)/N ' lnN −

1 → ∞. [208, 209] Because the glass entropy
remains finite in conventional treatments, the
configurational entropy also diverges, leading to
the conclusion that no entropy crisis can take
place in systems with continuous polydisper-
sity. [116, 210] A similar argument was proposed
by Donev et al to suggest that an entropy crisis
does not exist in binary mixtures. [119]

In fact, the above treatments do not accu-
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rately quantify the mixing entropy contribution
in the glass entropy. This can be easily seen
by considering a continuously polydisperse ma-
terial with a very narrow size distribution, which
should physically behave as a mono-component
system, but has a mathematically divergent mix-
ing entropy. In addition to this trivial exam-
ple, the fundamental problem is illustrated in
Fig. 7, which sketches three configurations which
differ by the exchange of a single pair of parti-
cles. The inherent structure and the standard
Frenkel-Ladd methods treat those three config-
urations as distinct. Physically, configurations
(a) and (b) should instead be considered as the
same glass state, since they differ by the ex-
change of two particles with nearly identical di-
ameters. The glass entropy should contain some
amount of mixing entropy, taking into account
those particle permutations that leave the glass
state unaffected. [116]

Recently, two methods were proposed to esti-
mate the glass mixing entropy. The first method
provides a simple approximation to the glass
mixing entropy using information about the po-
tential energy landscape. [116] We describe the
second one in the next subsection, which leads
to a direct determination of the glass mixing
entropy using a generalized Frenkel-Ladd ap-
proach. [33]

III.7 Generalized Frenkel-Ladd
method to measure the glass
mixing entropy

A proper resolution to the problematic glass mix-
ing entropy is to directly measure the amount of
particle permutations allowed by thermal fluc-
tuations, instead of making an arbitrary deci-
sion. [33] Technically, one needs to include par-
ticle permutations in the statistical mechanics
treatment of the system. In addition to the
positions, we introduce the particle diameters,
represented as ΣN = {σ1, σ2, · · · , σN}. Let π
denote a permutation of ΣN , and ΣN

π repre-
sents the resulting sequence. There exist N !
such permutations. We define a reference se-

quence ΣN
π∗ = (σ1, σ2, σ3, · · · , σN ). The poten-

tial energy now depends on both positions and
diameters, U(ΣN

π , r
N ). For simplicity, we write

U(rN ) = U(ΣN
π∗ , r

N ) for the reference ΣN
π∗ .

Including particle diameters as additional de-
grees of freedoms, the partition function reads

Z =
1

N !

∑

π

Λ−Nd

ΠM
m=1Nm!

∫

V
drNe−βU(ΣNπ ,r

N ).

(32)
This partition function is the correct starting
point to compute the configurational entropy
in multi-component systems, including contin-
uous polydispersity. The resulting method is
a straightforward generalization of the Frenkel-
Ladd method. [108]

As before, we introduce a reference configura-
tion and a harmonic constraint,

βUα(ΣN
π , r

N , rNref) = βU(ΣN
π , r

N )+α
N∑

i=1

|ri−rref,i|2,

(33)
where rNref is a reference equilibrium configura-
tion.

For the unconstrained system with α = 0, the
partition function in Eq. (32) reduces to the con-
ventional partition function in Eq. (9), because
diameter permutations can be compensated by
the configurational integral. Therefore, the com-
putation of Stot is not altered by the introduction
of the permutations. For the glass state with
α > 0, the partition function in Eq. (32) and the
corresponding statistical average become

Zα= 1
N !

∑
π
N !Λ−Nd

ΠMm=1Nm!

∫
V drNe−βUα(ΣNπ ,r

N ,rNref).(34)

〈(· · · )〉T,Sα =
∑
π

∫
V drN (··· )e−βUα(ΣNπ ,r

N,rNref )

∑
π

∫
V drNe

−βUα(ΣNπ ,r
N,rN

ref
)
,(35)

We add a factor N ! in the numerator of Eq. (34),
because there exist N ! configurations defined by
the permutations of the particle identities of the
reference configuration rNref . More crucially, due
to the presence of rNref , the partition function in
Eq. (34) is not identical to the one in Eq. (25).

Following the same steps as before we get
the glass entropy by a generalized Frenkel-Ladd
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method, defined as

SGFL
glass = Sαmax +N lim

αmin→0

∫ αmax

αmin

dα∆T,S
α

+S
(M)
mix − Smix(rNref , β), (36)

with

∆T,S
α =

1

N

〈
N∑

i=1

|ri − rref,i|2
〉T,S

α

, (37)

and Smix(rNref , β) is obtained as

Smix(rNref , β)=− ln

(
1

N !

∑

π

e−β(U(ΣNπ ,r
N
ref)−U(rNref))

)
.

(38)
Note that in Eq. (36), the mean-squared displace-
ment ∆T,S

α is evaluated by simulations where
both positions and diameters fluctuate, and we
expect ∆T,S

α ≥ ∆T
α . Practically, ∆T,S

α is com-
puted by Monte Carlo simulations including
standard translational displacements and diame-
ter swaps. In addition to this, SGFL

glass in Eq. (36)

contains another non-trivial contribution, S(M)
mix −

Smix, which requires Monte Carlo simulations of
the diameter swaps for a fixed rNref . In practice
the entropy in Eq. (38) is evaluated by a thermo-
dynamic integration. [33]

For mixtures with large size asymmetry such
as the Kob-Andersen model, particle permuta-
tions of un-like particles rarely happen, [201]
and the generalized Frenkel-Ladd method yields
Smix = S

(M)
mix and ∆T,S

α = ∆T
α , so that Eq. (36) re-

duces to the conventional Frenkel-Ladd method
in Eq. (29). On the other hand, for continuously
polydisperse systems or mixtures with small size
asymmetry, we expect Smix/N < S

(M)
mix /N → ∞

and ∆T,S
α > ∆T

α . In the limit case of a very
narrow continuous distribution, we would have
Smix/N = 0 and ∆T,S

α = ∆T
α , and we auto-

matically get back to the treatment of a mono-
component material.

We finally obtain the configurational entropy
as Sconf = Stot − SGFL

glass , which finally resolves
the paradox raised by the mixing entropy in con-
ventional schemes. For polydisperse systems,
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Figure 8: Mixing entropy Smix/N as a function of
the normalized temperature T/Tmct for polydis-
perse soft spheres (SS), hard spheres (HS), and
the Kob-Andersen model (KA). The dashed-line
corresponds to the combinatorial mixing entropy
for the KA mixture.

both the total entropy and the glass entropy in
Eq. (36) contain the diverging mixing entropy
term, which thus cancel each from the final ex-
pression of the configurational entropy. Instead,
the physical mixing entropy contribution is quan-
tified by Smix(rNref , β) in Eq. (38), which is finite,
and whose value depends on the detailed particle
size distribution of the system.

In Fig. 8, we show the measured Smix(rNref , β)
for three representative glass-forming models.
For the Kob-Andersen binary mixture, the com-
binatorial mixing entropy, S(M=2)

mix /N ≈ 0.5, [114,
194] is found, whereas for continuously polydis-
perse soft [44] and hard spheres [43] with poly-
dispersity ≈ 23%, a finite value of the mixing
entropy is measured, with a non-trivial temper-
ature dependence. The data also directly con-
firms that the mixing entropy cannot be used
to disprove the existence of a Kauzmann tran-
sition. [119]

Figure 2 shows the final result, Sconf = Stot −
SGFL

glass , for polydisperse hard and soft spheres
along isochoric [33] and isobaric paths (in prepa-
ration), in d = 2 [16] and 3. For the hard sphere
model, we use the inverse of the reduced pres-
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sure, 1/p = ρT/P , as the analog of the tem-
perature. Thanks to the efficiency of the SWAP
algorithm for these models, we can measure a
reduction of the configurational entropy compa-
rable to experimental molecular liquids, and even
access values measured in vapor deposited ultra-
stable glasses. [211] Therefore, the simulation re-
sults presented here, together with experimen-
tal ones, offer the most complete and persuasive
data set for existence of the Kauzmann transi-
tion at a finite temperature in d = 3 and at zero
temperature in d = 2.

IV Configurational entropy
from free energy landscape

IV.1 Franz-Parisi Landau free energy

The mean-field theory of the glass transition in-
troduced in Sec. I.3 suggests a well-defined route
to the configurational entropy, [212] based on
free energy measurements of a Landau free en-
ergy V (Q), expressed as a function of the overlap
Q between pairs of randomly chosen equilibrium
configurations. [93, 94] A practical definition of
the overlap was given in Eq. (7). The introduc-
tion of the appropriate global order parameter to
detect the glass transition driven by an entropy
crisis is the first key step.

The second key point is the assumption that
V (Q) contains, for finite dimensional systems,
the relevant information about the configura-
tional entropy. As illustrated in Fig. 4, mean-
field theory suggests that the glass phase at large
Q, for TK < T < Tmct, is metastable with re-
spect to the equilibrium liquid phase at small
Q, with a free-energy difference between the two
phases that is controlled by the configurational
entropy. To measure this configurational en-
tropy, one should first demonstrate the existence
of the glass metastability, and use it to infer Sconf

as a free energy difference between liquid and
glass phases.

The computational tools to study V (Q) and
metastability are not specific to the glass prob-
lem, but can be drawn from computer studies

of ordinary first-order phase transitions. [189] To
analyze the overlap and its fluctuations, we intro-
duce a reference equilibrium configuration rNref .
We then define the overlap Qref = Q(rN , rNref)
between the studied system rN and the reference
configuration, and introduce a field, ε, conjugate
to the overlap,

Uε(r
N , rNref) = U(rN )− εNQ(rN , rNref), (39)

where U is the potential energy of the uncon-
strained bulk system (ε = 0). The corresponding
statistical mechanics and average become

Zε = Λ−Nd
∫

V
drNe−βUε(r

N ,rNref),(40)

〈(· · · )〉ε =

∫
V drN (· · · )e−βUε(rN ,rNref)

∫
V drNe−βUε(r

N ,rNref)
, (41)

and the related Helmholtz free energy is obtained
as

− βFε = lnZε, (42)

where the overline denotes an average over in-
dependent reference configurations. All ther-
modynamic quantities can then be deduced
from Fε, such as the average overlap 〈Q〉ε =
−(1/N)∂Fε/∂ε.

Following the spirit of the Landau free en-
ergy, [15] we express the free energy as a func-
tion of the order parameter Q, instead of ε. The
Franz-Parisi free energy V (Q) is obtained by a
Legendre transform of Fε,

V (Q) =
1

N

(
min
ε
{Fε + εNQ} − F0

)
, (43)

where F0 = −β−1 lnZ0 is the free energy of the
unconstrained system, which simply ensures that
V (Q) = 0 for the equilibrium liquid phase at
small Q. Following standard computational ap-
proaches for free-energy calculations, [189] V (Q)
is directly obtained by probing the equilibrium
fluctuations of the overlap,

V (Q) = − T
N

ln
Λ−Nd

Z0

∫

V
drNe−βU(rN )δ(Q−Qref),

= − T
N

lnP (Q), (44)
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where P (Q) = 〈δ(Q − Qref)〉 is the probability
distribution of the overlap function for the un-
constrained bulk system.

This method naturally solves issues about the
mixing entropy. [116] As captured in Eq. (43),
this construction treats free energy differences,
with no need to define absolute values for the en-
tropy. The combinatorial terms in Eq. (41) are
therefore not included since they eventually can-
cel out. Additionally, the constraint applied to
the system acts only on the value of the overlap
Q. Since particle permutations do not affect the
value of the overlap, see Eq. (7), particle permu-
tations within the same species can occur both
in the liquid, near Qliq, and in the glass, near
Qglass, with a probablity controlled by thermal
fluctuations.

In finite dimensions, the secondary minimum
in V (Q) obtained in the mean-field limit (see
Fig. 4) cannot exist, as the free energy must be
convex, for stability reasons. [213] At best, V (Q)
should develop a small non-convexity for finite
system sizes, and a linear part for larger systems,
as for any first-order phase transition. In the
presence of a finite field ε, a genuine first-order
liquid-to-glass transition is predicted, [93, 94]
where 〈Q〉ε jumps discontinuously to a large
value as ε is increased. This phase transition ex-
ists in the mean-field limit, and can in principle
survive finite dimensional fluctuations.

The existence of this constrained phase transi-
tion induced by a field ε in finite dimensional sys-
tems is needed to identify the Franz-Parisi free-
energy with the configurational entropy in the
unconstrained bulk system. If a metastable glass
phase is detected in some temperature regime
T > TK , then it is possible to measure the free-
energy difference between the equilibrium liquid
and the metastable glass, namely V (Qglass). This
quantity represents the entropic cost of localizing
the system in a single metastable state: this is
indeed the configurational entropy.

IV.2 Computational measurement

The free-energy V (Q) in Eq. (44) is the cen-
tral physical quantity to measure in computer
simulations. [136, 212, 214] It follows from the
measurement of rare fluctuations of the overlap,
since P (Q) ∼ e−βNV (Q). Measuring such rare
fluctuations (indeed, exponentially small in the
system size) in equilibrium systems is a well-
known problem that has received considerable at-
tention and powerful solutions in the context of
equilibrium phase transitions, [189] such as um-
brella sampling. Physically, the idea is to per-
form simulations in an auxiliary statistical en-
semble where the Boltzmann weight is biased
by a known amount, and from which the unbi-
ased canonical distribution is reconstructed af-
terwards. [215, 216] Combining this technique to
the swap Monte Carlo [44] and parallel temper-
ing methods [217] to sample more efficiently the
relevant fluctuations makes possible the numeri-
cal measurement of V (Q) over a broad range of
physical conditions.

The same numerical techniques can also be
used to probe the existence and physical proper-
ties of the phase transition induced by a field ε.
The ε-transition has given rise to number of the-
oretical and computational analysis, which con-
clude that the transition is present in spatial di-
mensions d > 2. [212, 214, 216, 218, 219, 220] The
phase transition emerges for temperatures lower
than a critical temperature T ∗, which is the ana-
log of Tonset defined in the mean-field theory. For
T < T ∗, a first-order phase transition appears at
a finite value ε∗(T ) of the field, where the overlap
jumps discontinuously to a value Qglass(T ).

The existence of the transition allows the
quantitative determination of the configurational
entropy, namely

Sconf =
N

T
V (Q = Qglass). (45)

A nearly equivalent determination can be ob-
tained directly from the properties of the con-
strained phase transition, since ε∗ represents the
field needed to tilt the Franz-Parisi free energy
and make the local minimum at large Q become
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Figure 9: Franz-Parisi free energy in three di-
mensional polydisperse hard spheres, using a
combination of swap Monte Carlo, parallel tem-
pering, and umbrella sampling techniques. [136]
V (Qglass) decreases progressively with increasing
the volume fraction φ. The vertical arrow indi-
cates the estimate of Sconf as the free energy dif-
ference between the low-overlap (Qliq) and large-
overlap (Qglass) phases. Estimated Kauzmann
transition volume fraction, φK, at which Sconf

vanishes is φK ≈ 0.68. The system shows jam-
ming transition by rapid compression of dilute
configurations at φJ ≈ 0.655. [221]

the global one. [136, 212] Taking into account the
small but positive Qliq > 0, we can estimate the
configurational entropy as

Sconf '
N

T
ε∗(Qglass −Qliq). (46)

In Fig. 9, we show the evolution of the Franz-
Parisi free energy V (Q) for a system of continu-
ously polydisperse hard spheres in three dimen-
sions, with N = 300 particles. The value of
Qglass is identified by a separate study of the ε-
transition, and is indicated as a vertical dashed
line. For each value of the volume fraction φ,
V (Qglass) provides an estimate of the configura-
tional entropy using Eq. (45), as shown by the
vertical arrow.

More broadly, the data in Fig. 9 suggests that
Kauzmann’s intuition of an underlying thermo-

dynamic phase transition connected to the rapid
decrease of Sconf is realized in deeply supercooled
liquid. The evolution of the Franz-Parisi free en-
ergy shows that the glass phase at large Q is
metastable as φ < φK (i.e., T > TK), but its sta-
bility increases rapidly as φ increases (i.e., T de-
creases), controlled by the decrease of the config-
urational entropy. It is still not known whether a
finite temperature entropy crisis truly takes place
as a thermodynamic phase transition, but the
key idea that glass formation is accompanied by
the decrease of the associated free energy differ-
ence (and hence the configurational entropy) is
no longer a hypothesis, but an established fact.

Finally, the evolution of the free-energy V (Q)
with supercooling is quite dramatic. This
large change quantitatively answers the question
raised by the apparent similarity of the two par-
ticle configurations shown in Fig. 1. The density
profiles of those two state points do not seem very
different, but their free energy profiles V (Q) are.
This means that to compare the two snapshots,
one should monitor appropriate observables re-
flecting the reduction of available states in glass
formation, instead of simple structural changes.

V Configurational entropy from
real space correlations

V.1 A real space view of metastability

In finite dimensions, the long-lived metastable
states envisioned by mean-field theory do not
exist since the system will eventually undergo
structural relaxation in a finite time. Therefore,
metastable states can at best exist over a finite
timescale. [18, 222] In the construction of Franz-
Parisi, [93, 94] metastable states are therefore ex-
plored by introducing a global constraint on the
system via a field conjugate to the macroscopic
overlap. This strategy allows one to estimate the
number of free energy minima for a given tem-
perature.

The constraint envisioned in the Franz-Parisi
is global and acts on the bulk system. In this
section, we introduce another type of constraint
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Figure 10: Sketch of the cavity construction to
determine the point-to-set lengthscale. The posi-
tions of the particles outside a cavity of radius R
are given by a reference equilibrium configuration
and are frozen, while particles inside the cavity
evolve freely at thermal equilibrium in the pres-
ence of the frozen amorphous boundaries. The
overlap profile Q(r) is defined by comparing the
density profile inside the cavity to the reference
configuration.

that again allows a sharp distinction between the
vicinity of a given configuration (the glass basin),
and the rest of the free energy landscape. The
key difference with the Franz-Parisi constraint is
that we impose a spatially resolved constraint to
the system using a cavity construction. [68] We
shall argue that this provides a real space inter-
pretation of the rarefaction of metastable states
in terms of a growing spatial correlation length,
the so-called point-to-set correlation length. This
correlation length cannot emerge from the obser-
vation of the density profile in a single configura-
tion, but stems once again from the comparison
between the distinct density profiles available un-
der some constraint.

The main idea is illustrated in Fig. 10. We pre-
pare an equilibrium configuration of the system,
which we take as a reference configuration, rNref .
We then consider a configuration rN which is
constrained to be equal to the reference configu-

ration outside a cavity of radius R, but can freely
fluctuate inside the cavity. Therefore, the con-
straint from the reference configuration is now
only felt at the frozen amorphous boundary of
the cavity. By varying the cavity size R, one can
then infer how far the constraint propagates in-
side the cavity. As quantified below, one expects
a crossover between small cavities where the con-
straint is so strong that particles inside the cavity
can only remain close to the reference configu-
ration, whereas for very large cavities particles
inside the cavity will explore a large number of
distinct states. The crossover between these two
regimes is used to define the point-to-set correla-
tion length. [68, 223, 224]

Why is this crossover length directly connected
to the configurational entropy? This can be un-
derstood following a simple thermodynamic ar-
gument. Suppose the particles inside the cavity
explore states that are very different from the
reference configuration. This will allow them to
sample states that have a low overlap Q with the
reference configuration. The free energy gained
by this exploration is directly given by the Franz-
Parisi free energy, ∆F− = V (Qglass)vdR

d, where
vd is the volume of the unit sphere in spatial di-
mension d. There is however a free energy cost to
explore those states, as the radial overlap profile
inside the cavity Q(r) will present an interface
between Q(r = 0) ≈ 0 and Q(r = R) ≈ Qglass.
This interface in the profile of the order param-
eter has a free energy cost, and a simple esti-
mate is given by ∆F+ = Y sdR

d−1, where sd is
the surface area of the unit sphere in dimension
d and Y a surface tension between two distinct
glass states. In many disordered systems, the in-
terfacial terms take a more general expression,
∆F+ = ΥRθ, where Υ is a generalized surface
tension and the non-trivial exponent θ ≤ d − 1
accounts for additional fluctuations in directions
transverse to the interface. [18, 225] Physically,
these fluctuations arise because the system can
decrease the interfacial cost by allowing the po-
sition of the interface to fluctuate and take ad-
vantage of the weakest spots.

The competition between exploring many
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states, that decreases the free energy by ∆F−,
and the interfacial cost of an inhomogeneous
overlap profile, that increases the free energy
by ∆F+, leads to a well-defined crossover radius
for the cavity where the two terms balance each
other,

∆F = ΥRθ − V (Qglass)vdR
d = 0. (47)

This crossover radius defines the point-to-set cor-
relation lengthscale ξpts, given by

ξpts =

(
Υ

V (Qglass)vd

)1/(d−θ)
. (48)

This equation directly connects the decrease of
the Franz-Parisi free energy to the growth of a
spatial correlation lengthscale. It is important
to notice that since V (Qglass) is unambiguously
defined and can be measured in computer simu-
lations, the same is true for the point-to-set cor-
relation lengthscale whose existence and physi-
cal interpretation does not require any type of
approximation. In particular, there is no need
to assume the existence of long-lived free-energy
metastable states.

A connection between the point-to-set correla-
tion lengthscale defined in Eq. (48) and the con-
figurational entropy can be established by using
Eq. (45) expressing the Franz-Parisi free energy
V (Qglass) as an estimate of the configurational
entropy. We realize that the growth of the point-
to-set correlation lengthscale as temperature de-
creases is equivalent to a decrease of V (Qglass),
and thus to a decrease of the Sconf , assuming a
modest temperature dependence of Υ. [18, 226]
Therefore, the growth of the point-to-set corre-
lation lengthscale is a direct real space conse-
quence of the decrease of the configurational en-
tropy. [18, 68] If a Kauzmann transition where
Sconf → 0 occurs, then it must be accompanied
by a divergence of the point-to-set correlation
lengthscale, ξpts →∞.

The relation between the point-to-set length-
scale and the configurational entropy can be used
both ways. [136] First, it provides a useful inter-
pretation of the entropy crisis in terms of a di-
verging correlation lengthscale, as put forward in

the early development of the random first order
transition theory. [18] We find it equally conve-
nient to use this connection in the opposite di-
rection and deduce from the growth of the point-
to-set correlation length a quantitative determi-
nation of the variation of the configurational en-
tropy. [16, 136] Using the above scaling relations,
the measurement of ξpts provides another esti-
mate of the configurational entropy

Sconf = N

(
ξ0

ξpts

)d−θ
, (49)

where ξ0 is an unknown factor that results from
conversion between entropy and lengthscale. At
this stage, the value of the exponent θ is unde-
termined. It could be measured by comparing
measurements of Sconf following Eq. (49) to an
independent estimate, for example from Eq. (45).
The two supported values for the exponent are
the simple value θ = d−1, [226, 227, 228] and the
renormalized value θ = d/2 [18, 229] stemming
from the random interface analogy. They respec-
tively lead to Sconf ∼ 1/ξpts and Sconf ∼ 1/ξ

d/2
pts ,

which are equivalent in d = 2 and not very differ-
ent in d = 3 given the relatively modest variation
of the configurational entropy reported in exper-
iments.

V.2 Computational measurement

To determine the point-to-set correlation length
numerically, [135, 230, 231, 232, 233] we es-
sentially follow the theoretical construction de-
scribed above and illustrated in Fig. 10. First,
an equilibrium reference configuration rNref is pre-
pared. We define a cavity of radius R, centered
on a randomly-chosen position in the reference
configuration. We then define a configuration
rN : the particles lying outside the cavity are
frozen at the same positions as in the reference
configuration, whereas particles inside the cavity
can thermalize freely.

The key observable is the overlap profile Q(r)
between configurations rN and rNref inside the
cavity. It is numerically convenient to focus on
the value of the overlap at the center of the cav-
ity Qcenter ≡ Q(r = 0), which depends both
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Figure 11: Measurement of the point-to-set
lengthscale in a 2d systems of polydisperse soft
repulsive spheres. [16] (a) Evolution of the over-
lap at the center of the cavity, Qcenter, with the
cavity radius R for different temperatures. (b)
Evolution of the probability distribution of the
overlap, P (Qcenter), with cavity radius R for a
given low temperature T = 0.035 ≈ 0.3Tg.

on the cavity size R, and the temperature T .
Figure 11(a) shows the evolution of Qcenter with
the cavity size R for polydisperse soft disks in
d = 2. [16] At small R, Qcenter ≈ Qglass mean-
ing that the system is constrained to remain in
the same state as the reference configuration.
The overlap is not strictly one because thermal
fluctuations allow small deviations around the
reference configuration rNref . At larger R, how-
ever, Qcenter decays to a small value, which im-
plies that the system can freely explore states
that have different density profiles. The cav-
ity size at which the transition from high to

low overlap occurs determines the point-to-set
lengthscale ξpts. In practice, one can define ξpts

when Qcenter reaches a specific value, or from
an empirical fitting of the whole function, such
as Qcenter ≈ exp[−(R/ξpts)

b], where b is a fit-
ting parameter. The temperature evolution of
Qcenter(R) is very interesting as it directly re-
veals that the amorphous boundary condition
constrains more strongly the interior of the cavity
as the temperature decreases. Physically, it in-
dicates that as temperature decreases, the point-
to-set correlation lengthscale grows, or equiva-
lently that the configurational entropy decreases,
in virtue of Eq. (49).

An interesting alternative view of the free-
energy competition captured by Eq. (47) emerges
by considering the evolution of the free-energy
gain ∆F− of the configuration rN inside the cav-
ity, as the cavity size is decreased at constant T .
For a very large cavity, the particles in rN are
pinned at the boundaries, but those at the cen-
ter of the cavity evolve as freely as in the bulk
equilibrium system. Since the free-energy gain
∆F− scales as Rd, it decreases as the cavity size
decreases, making it increasingly difficult for the
configuration rN to explore other states inside
cavity. As the cavity size approaches the point-
to-set lengthscale, the entropic driving force to
explore many states inside the cavity becomes
comparable to the free energy cost ∆F+ of the
amorphous boundary. For even smaller cavities,
the system is frozen in a single state. The sce-
nario that we have just described for the cav-
ity is nothing but the entropy crisis predicted by
the random first transition theory for the bulk
system as T → TK . In other words, decreasing
the cavity size for a given T > TK has an effect
similar to approaching the Kauzmann transition
in a bulk system. The qualitative difference is
that the Kauzmann transition is a sharp ther-
modynamic transition happening for N → ∞
in the bulk, whereas the entropy crisis in the
cavity takes place for a finite system comprising
N ∼ ξdpts particles. The crossover from small to
large overlap observed around R ∼ ξpts(T ) in the
profiles of Fig. 11(a) is conceptually analogous to
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a Kauzmann transition rounded by the finite size
of the system. [20]

This analogy is even more striking when the
fluctuations of the overlap are recorded, [233] and
not only its average value. Figure 11(b) shows
the probability distribution of Qcenter, denoted
P (Qcenter), for a fixed temperature as R is var-
ied. For large R, the distribution peaks at low
values of the overlap, whereas for smallR it peaks
near Qglass. Interestingly, at the crossover be-
tween these two regimes, P (Qcenter) is clearly bi-
modal, which is reminiscent of the distribution
of the order parameter near a first-order phase
transition in a finite system. These observations
suggest that it is interesting to monitor the vari-
ance of these distributions, which is a measure of
the susceptibility χ associated with this rounded
Kauzmann transition. For a given T , it is found
that χ has a maximum when R = ξpts, which
provides a fitting-free numerical definition of the
point-to-set correlation lengthscale. [233]

Despite the conceptual simplicity of the mea-
surements described above, it is not straightfor-
ward to obtain statistically meaningful numerical
measurements of the overlap and of its fluctu-
ations inside finite cavities. There are several
reasons for this. First, to obtain a value for
ξpts at a given temperature, one needs to ana-
lyze a range of cavity sizes that encompasses the
crossover shown in Fig. 11. For each cavity size
R, a large number of independent cavities need
to be studied, and the overlap in each individual
cavity needs to be carefully monitored to ensure
that its equilibrium fluctuations have been prop-
erly recorded. All in all, the number of required
simulations is quite substantial.

The second major computational obstacle nat-
urally stems from the physics at play as R is re-
duced. Because the confined system undergoes
a finite-size analog of the Kauzmann transition,
a major slowing down arises in the thermaliza-
tion process. This amounts to studying an ‘ideal’
glass transition in equilibrium conditions, an ob-
viously daunting task. This is however possible
in the present case because only a finite num-
ber of particles are contained in the cavity. This

allows the use of parallel tempering (or replica
exchange) methods, first developed in the con-
text of spin glasses to overcome thermalization
issues in systems with complex landscapes. [217]
With these techniques, the study of a given set
of parameters (T,R) requires simulating a large
number of copies of the system interpolating be-
tween the original system and a state point at
which thermalization is fast. During the course
of the simulations, exchanges between neighbor-
ing states are performed, so that each copy per-
forms a random walk in parameter space. This
method, developed in Ref. [233] has proven suf-
ficiently efficient and versatile to analyze point-
to-set correlations in a broad range of model sys-
tems down to very low temperetures. [136]

VI Perspective

We presented a short review of the configura-
tional entropy in supercooled liquids approach-
ing their glass transition. We first described why
and how configurational entropy became a cen-
tral thermodynamic quantity to describe glassy
materials, both from experimental and theoreti-
cal viewpoints. We then offered our views on sev-
eral paradoxes surrounding the configurational
entropy. In particular, we explained that there is
no reason to try to avoid an entropy crisis, that
available data neither discard nor disprove its ex-
istence, and that there exists no fundamental rea-
son, published proof, or general arguments show-
ing that it must be avoided. In other words, the
Kauzmann transition remains a valid and useful
hypothesis to interpret glass formation. We also
insisted that this is still a hypothesis, but in no
way a proven or necessary fact.

The biggest paradox of all, is perhaps that the
configurational entropy, which represents the key
signature of the entropy crisis occurring in the
modern mean-field theory of the glass transition,
cannot be rigorously defined in finite dimensions
as a complexity that enumerates free energy min-
ima. We have presented several computational
schemes which are meant to provide at the same
time an estimate of the configurational entropy
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in numerical models of glass-forming liquids, and
a physical interpretation that is valid in finite di-
mensions.

We started with the historical method based
on inherent structures, which enumerates the
number of potential energy minima as well-
defined, but incorrect proxies, for free energy
minima. It is unclear that the inherent structure
configurational entropy can in fact vanish at a
Kauzmann transition, and Stillinger provided ar-
guments that it cannot. This method is a compu-
tationally cheap method to remove a vibrational
contribution to the total entropy, but it cannot
be used for simple models such as hard spheres
or continuously polydisperse glass-formers.

We then showed that a generalized method
elaborating on earlier ideas introduced by
Frenkel and Ladd for crystals provides a bet-
ter estimate of the configurational entropy, as it
naturally includes both the glass mixing entropy
and finite temperature anharmonicities. Addi-
tionally, the method can be applied to all types
of models, including hard spheres, at a relatively
cheap computational cost.

More recent methods were developed as direct
applications of the mean-field theory to computer
works, which both bypass the need to mathe-
matically define free energy minima. Free energy
measurements, based on the Franz-Parisi free en-
ergy, provide an estimate for the configurational
entropy that is the closest to the original mean-
field definition. This method relies on the defi-
nition of a global order parameter for the glass
transition, the overlap, which quantifies the sim-
ilarity between pairs of configurations. Conven-
tional methods employed in the context of equi-
librium phase transitions are combined to these
measurements.

Finally, we showed that the decrease of the
entropy can be given a real space interpretation
in terms of a growing correlation lengthscale that
is directly related to the configurational entropy.

This brief summary shows that there now ex-
ist conceptually solid estimates of the configura-
tional entropy that could truly provide a direct
access to the thermodynamic behavior of super-

cooled liquids. Given the recent progress of com-
puter simulations to efficiently equilibrate model
systems down to temperatures that are match-
ing, and in several cases, outperforming exper-
imental work, we feel that this is an exciting
moment for glass physics, since a direct demon-
stration of the relevance and connection to slow
dynamics of an entropy crisis and increasingly
precise localizations of the putative Kauzmann
transition appear possible.
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Does the Adam-Gibbs relation hold in
supercooled liquids?
M. Ozawa, C. Scalliet, A. Ninarello, and L. Berthier, J. Chem. Phys. 151, 084504 (2019).

We perform stringent tests of thermodynamic theories of the glass tran-
sition over the experimentally relevant temperature regime for several sim-
ulated glass-formers. The swap Monte Carlo algorithm is used to estimate
the configurational entropy and static point-to-set lengthscale, and careful
extrapolations are used for the relaxation times. We first quantify the re-
lation between configurational entropy and the point-to-set lengthscale in
two and three dimensions. We then show that the Adam-Gibbs relation is
generally violated in simulated models for the experimentally relevant time
window. Collecting experimental data for several supercooled molecular liq-
uids, we show that the same trends are observed experimentally. Deviations
from the Adam-Gibbs relation remain compatible with random first order
transition theory, and may account for the reported discrepancies between
Kauzmann and Vogel-Fulcher-Tammann temperatures. Alternatively, they
may also indicate that even near Tg thermodynamics is not the only driving
force for slow dynamics.

I Introduction

Since its first derivation in 1965 [1], the Adam-Gibbs relation has played a central role in glass
transition studies [2], since it is at the core of thermodynamic approaches to the glass problem [1,
2, 3, 4, 5, 6, 7, 8, 9]. The Adam-Gibbs relation captures in a simple mathematical form the physical
idea that the decrease of the configurational entropy Sconf controls the growth of the relaxation
time τα as the experimental glass transition temperature Tg is approached:

log(τα/τ0) ∝
1

TSconf
, (1)

where τ0 is a microscopic timescale. Testing the Adam-Gibbs relation has almost become synony-
mous to testing the thermodynamic nature of glass formation [10, 11, 12, 13].
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Since computational methods have become available in the early 2000’s to measure the config-
urational entropy in numerical simulations [14, 15, 16], the Adam-Gibbs relation has been tested
in a large number of studies using many different models of glass-forming materials [12, 17, 18, 19,
20, 21, 22, 23, 24]. Importantly, these simulations are all restricted to a high temperature regime
(typically above the mode-coupling crossover temperature Tmct [25]) that barely overlaps with the
corresponding experimental studies. In addition simulations typically cover a dynamic window of
at most 3-4 decades, much narrower than in experimental studies. Despite these caveats, the gen-
eral consensus is that the Adam-Gibbs relation is generally valid in the regime accessed by the
simulations. In experiments, which typically analyse temperatures close to Tg, the Adam-Gibbs
relation seems again to be well obeyed for a range of materials [10, 11, 26, 27, 28, 29, 30, 31, 32].
Yet, experiments indicate as well that the Adam-Gibbs relation does not hold anymore above a
temperature scale close to Tmct [11, 28], in stark contrast with the numerical results. Systematic
deviations from the Adam-Gibbs relation were also reported below Tmct for some systems [28, 30],
but imprecise entropy measurements or inappropriate timescale determinations have been invoked
to rationalise them.

In the last three decades, the random first order transition (RFOT) theory of the glass transi-
tion [3, 5] has revisited the Adam-Gibbs relation in greater depth [4, 5, 6, 7] to provide an increasingly
precise description of the connection between thermodynamics and dynamics in supercooled liquids.
This connection can be decomposed in two steps. First, the decrease of the configurational entropy
is shown, by a purely thermodynamic reasoning [4], to give rise to a growing ‘point-to-set’ static
correlation lengthscale:

ξpts ∝ S−1/(d−θ)conf , (2)

where an interface exponent θ is introduced. In the simplest approximation, one has θ = d − 1
which corresponds to a (hyper-)surface in a space of dimension d. The value θ = d/2 was also
proposed [3, 7], to take into account finite dimensional surface fluctuations due to the disordered
nature of the amorphous phase. More generally, the inequality θ ≤ d − 1 is expected to hold.
Second, the connection to dynamics is made via the assumption that relaxation in the liquid for
T < Tmct proceeds via thermally activated events correlated over a lengthscale ξpts, resulting in the
general relation [3, 4],

log(τα/τ0) ∝ ξψpts/T, (3)

where ψ is a dynamical exponent. Various theoretical and numerical estimates of ψ have been
proposed [4, 33, 34, 35, 36]. In the original paper by Kirkpatrick et al. [3], ψ = θ = d/2 was
assumed and so only one exponent had been introduced.

Using Eqs. (2, 3), one finds a generalised version of the Adam-Gibbs relation,

log(τα/τ0) ∝
1

TSαconf
, (4)

with a non-trivial exponent

α =
ψ

d− θ . (5)

This shows that α may or may not be equal to unity, depending on the relative values of the two
independent exponents ψ and θ. As a consequence, Eq. (4) may or may not be equivalent to Eq. (1).

To our knowledge, a direct test of Eqs. (3, 4, 5) in the theoretically-motivated temperature
regime, employing appropriate observables, has never been performed. Most previous simulations
have considered a temperature regime T & Tmct [12, 17, 21, 37] where the physics is expected to
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be non-activated and the configurational entropy and point-to-set lengthscales are not well-defined.
This is of course valuable work, but theory itself suggests that the tested scaling relations have
no reason to hold in this temperature regime. Experiments instead access the correct temperature
regime, but cannot easily measure the point-to-set correlation lengthscale. As a proxy, Refs. [38,
39] replaced ξpts by the lengthscale of dynamic heterogeneities that can be more easily estimated
experimentally [40]. Many other experimental studies study Eq. (1) directly near Tg [11, 30].

In this work, we take advantage of the progress allowed by the swap Monte Carlo algorithm [41,
42] to measure directly in several numerical models the temperature dependence of the configura-
tional entropy and point-to-set lengthscale down to Tg. For the dynamics, we build on previous
work [42] and provide additional experimental support showing that one can safely estimate the
temperature dependence of the relaxation time also down to Tg, using a careful fitting procedure.
We collect data from earlier works [43, 44, 45] that we extend where needed, and perform new
simulations for one additional model.

As a result, we are in a position to provide for the first time stringent tests of the Adam-Gibbs
relation and of RFOT theory for computer models simulated in the same regime as in experiments.
Our results suggest that the Adam-Gibbs relation is generally not valid in computer models in
the experimental regime Tg < T < Tmct. To test our findings against experiments, we collect high-
quality thermodynamic and dynamic data for several supercooled liquids (most of which are obtained
by state-of-the-art thermodynamic measurements [46]), and reach similar conclusions. Overall, we
find that Eq. (1) is not obeyed for most systems, while Eq. (4) is obeyed with an exponent α that
fluctuates weakly from system to system, with typically α < 1. Our findings can be taken either as
a confirmation that RFOT theory works well, with a non-trivial set of critical exponents, or that a
small α < 1 exponent indicates that thermodynamics is not the only driving force for the dynamic
slowdown near Tg.

This paper is organised as follows. In Sec. II we present the numerical methods used to obtain
the configurational entropy, the point-to-set lengthscale, and the relaxation time. We also describe
our choice of experimental data to reliably test the Adam-Gibbs relation over a broad range of tem-
peratures. In Sec. III we present the results of our analysis of the exponents θ and α in simulations,
then in experiments. We discuss the physical meaning of our results in Sec. IV.

II Description of the data

In order to analyse quantitatively the connection between dynamic and thermodynamic properties,
we collect and extend data from previous numerical works. We also collect data from selected
published experimental works, and motivate our selection.

II.1 Numerical models

The recent development of the swap Monte Carlo algorithm allows us to access very low-temperature
equilibrium configurations in computer simulations. In particular, the temperature regime Tg < T <
Tmct can be comfortably accessed. This temperature regime is the correct one to test thermodynamic
theories, as it is precisely where they should apply, and it corresponds to the regime explored
experimentally.

We gather simulation data for polydisperse systems using a continuous size distribution [42].
The particle diameters σ are distributed between σmin and σmax from f(σ) = cσ−3, where c is a
normalization constant and σmin/σmax = 0.45. We use the average diameter σ as the unit length.
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We study four numerical models: three-dimensional additive hard spheres (HS3D) [41], two and
three dimensional non-additive soft disks (SSV2D) [43] and spheres (SSV3D) [42] under an isochoric
path. We also perform new simulations of three-dimensional non-additive soft spheres (SSP3D),
under an isobaric path. To thermalize the last model, we use an hybrid molecular dynamics/swap
Monte Carlo scheme [47].

We use the following pairwise potential for the polydisperse soft sphere/disk models [42],

vij(r) = v0

(σij
r

)12
+ c0 + c1

(
r

σij

)2

+ c2

(
r

σij

)4

, (6)

σij =
(σi + σj)

2
(1− ε|σi − σj |), (7)

where v0 is the energy unit, and ε quantifies the degree of non-additivity of the system. We
set ε = 0.2 for SSV3D and SSV2D, and ε = 0.1 for SSP3D. The constants, c0, c1 and c2, are
chosen to smooth vij(r) up to its second derivative at the cut-off distance rcut = 1.25σij . We set
the number density ρ = N/L3 = 1.02 with N = 1500 for SSV3D, and ρ = N/L2 = 1.01 with
N = 1000 for SSV2D. For SSP3D, the pressure on the isobaric path is P = 30.0. For HS3D [41],
the pair interaction is zero for non-overlapping particles and infinite otherwise. The relevant control
parameter for hard spheres is the reduced pressure p = P/(ρT ). For hard spheres, 1/p plays precisely
the same role as temperature T for a dense liquid [48], and there is no distinction between isochoric
and isobaric paths.

Relaxation times for HS3D, SSV3D, and SSV2D are measured in units of MC sweeps, which
comprise N Monte Carlo trial moves. For SSP3D, the relaxation time is expressed in units of√
v0/mσ2, where m is the mass of the particles.

II.2 Configurational entropy and point-to-set length

The configurational entropy Sconf is measured from configurations generated with swap Monte
Carlo simulations. It is defined as Sconf = Stot−Sglass, where Stot and Sglass are the total and glass
entropies, respectively [16]. Stot and Sglass are computed using thermodynamic integration schemes,
as explained in Ref. [45]. In Appendix IV we describe how to measure Sconf along an isobaric path
using constant pressure simulations for SSP3D, as this was not documented before.

Figure 1 shows the configurational entropy that we use for latter analysis. The data for Sconf(T )
are normalized by the values at the mode coupling crossover Tmct, whose value is determined by a
power law fit to the dynamic relaxation time data [25]. The actual values are Tmct = 0.0426, 0.104,
0.556, and 0.123 for HS3D, SSV3D, SSP3D, and SSV2D, respectively.

In order to increase the accuracy of the analysis, we employ empirical fitting functions. For
the three-dimensional models, we use a conventional fitting function TSconf = A(T − TK) +B(T −
TK)

2 [11, 49]. For the two-dimensional model, we use 1/Sconf = A/T+B [43]. The fitting parameters
are presented in Table 1.

We also collect the point-to-set lengthscale ξpts data for SSV2D [43] and HS3D [44], obtained
from recently developed computational methods [50, 51]. Together with Sconf , the data for ξpts will
allow us to estimate the exponent θ using Eq. (2).

II.3 Relaxation times

Dynamical information is obtained using either standard Monte Carlo (for HS3D, SSV3D, SSV2D)
or molecular dynamics (for SSP3D). The equivalence between the two types of dynamics is well
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Figure 1: Configurational entropy data for the four simulated models. The data are normalized
by the values at the mode coupling crossover Tmct. The solid curves represent the fitting functions
defined in the text and Table 1.

documented [52]. Both Monte Carlo and molecular dynamics simulations are run starting from
initial configurations that are obtained using the swap Monte Carlo algorithm. This procedure
allows us to cover about 5 orders of magnitude of relevant slow dynamics.

The relaxation time τα is measured by the self-intermediate scattering function in three dimen-
sional models. For the two-dimensional model, we use the autocorrelation function of the bond-
orientational order parameter, which is insensitive to the long-range Mermin-Wagner fluctuations
that are specific to d = 2 [53].

The relaxation time τα for HS3D [44], SSV3D [42], SSP3D (new to this work), and SSV2D [43]
is shown in Figure 2. The data are normalized using an onset temperature To for the emergence of
slow dynamics, determined from the fitting procedure described below, and define τo = τα(T = To).
Clearly, all simulation data show a non-Arrhenius temperature dependence of the relaxation time,
which demonstrates that our models describe fragile glass-formers.

The swap numerical schemes allow us to prepare equilibrated configurations at very low tem-
peratures. Because they involve non-physical particle dynamics, one cannot use them to measure

Model A B TK log10 τo To C m

HS3D 3.208 -37.33 0.0251 3.88 0.063 22.72 45.5
SSV3D 1.495 -1.92 0.0386 3.02 0.266 3.15 32.0
SSP3D 2.082 -1.74 0.2902 0.41 0.961 16.77 42.4
SSV2D 0.453 1.89 - 2.40 1.006 0.25 31.2

Table 1: Fitting parameters for the configurational entropy (A, B, and TK), for the relaxation
time (τo, To, and C) and kinetic fragility index m for the simulated models. Note that Monte Carlo
dynamics (HS3D, SSV3D, SSV2D) and molecular dynamics (SSP3D) have different time units.
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Figure 2: Relaxation time as a function of inverse temperature for the four simulated models: HS3D
(a), SSV3D (b), SSP3D (c), and SSV2D (d). The data are normalized by τo and To, determined from
a parabolic-law fitting. The horizontal dashed line indicates the timescale of the experimental glass
transition, τα/τo = 1012. The vertical arrow indicates the experimental glass transition temperature
Tg using the parabolic-raw fitting. Three additional fitting functions are shown.

the relaxation time of the physical dynamics in this low-temperature regime. Therefore, we need
to extrapolate the relaxation time from the regime where τα can be measured to the experimental
regime, where this is unachievable.

We start by employing the Vogel-Fulcher-Tammann (VFT) law:

log(τα/τ0) ∝ (T − TVFT)
−1. (8)

where τ0 and TVFT are fitting parameters. We fitted this function on our numerical data over the
accessible time window and we concluded that it performs very badly when extrapolated at lower
temperatures. We found for instance that the swap Monte Carlo algorithm easily thermalises at
temperatures below the extrapolated VFT critical temperature TVFT, which invalidates directly its
use to describe numerical data [42]. The inability of the VFT law to describe experimental data
over a wide range of temperature was discussed in detail in Refs. [54, 55].

It has been found in previous experimental studies that the parabolic law

τparaα = τo exp[C(To/T − 1)2] (9)
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fits accurately the data over a very large temperature range [56, 57]. Its fitting parameters are τo,
C, and To.

In addition to the VFT and parabolic laws, we consider two other functional forms, shown in
Fig. 2. One is a double exponential equation (MEYGEA) discussed in Refs. [56, 57]:

τα = τ0 exp

[
K

T
exp[C/T ]

]
, (10)

where τ0, K, and C are the fitting parameters. The other one is the Avramov and Milchev (AM)
equation [58] given by

τα = τ0 exp[A/T
n], (11)

where τ0, A, and n (real exponent) are the fitting parameters. All the fitting functions considered
in this paper have three free-fitting parameters which is the minimal number to mathematically
characterize non-Arrhenius behavior. Given the small variation of the apparent activation energy
over the dynamic range studied experimentally, it is not surprising that several smooth functions
of temperature can describe the evolution of log(τα). Figure 2 shows that different fitting functions
produce slight variations in the extrapolated value for Tg. The key issue is therefore to choose the
best fitting function, i.e., the one from which the low temperature data can be inferred accurately
from the high temperature one.

To find the best fitting procedure, we train on experimental data with kinetic fragility indexes
similar to our numerical models (see Appendix III). We fit the above four equations to the data,
restricting ourselves to a modest dynamic range, comparable to numerical timescales. We then
extrapolate to temperatures close to Tg, and compare the extrapolation to the actual data. We find
excellent agreement when using the parabolic law, which validates further our procedure. Thus, we
empirically find that fitting the parabolic law to the numerical time window provides an excellent
description of the data close to Tg, as reported previously [56, 57]. This is a purely practical choice,
and we make no assumption about the physical mechanism which could lead to such a law.

By using the fitting parameter τo obtained from the parabolic law, we define two time windows.
First we define the simulation window by τα/τo ∈ [100, 105]. The upper bound of this timescale
corresponds to recent simulation studies with very long timescales [44, 59]. The experimental window
is defined by τα/τo ∈ [103, 1012]. The lower bound corresponds to a timescale around the mode-
coupling crossover Tmct (τα ' 10−7 s [60]), and the upper bound corresponds to the timescale at the
experimental glass transition Tg (τα ' 100 s). The experimental window is therefore the appropriate
regime to test the predictions made by the RFOT theory. Notice that in this paper, we neither try
to go below Tg, nor to examine the fate of supercooled liquids at even lower temperature [61].

For numerical models, we determine the experimental glass transition temperature Tg as τ
para
α (Tg)/τo =

1012. The kinetic fragility index m is determined by m = ∂ log10 τ
para
α /∂(Tg/T )|T=Tg . The fitting

parameters and fragility indexes are given in Table 1.

II.4 Experimental data

We select materials for which high-quality data for the configurational entropy and relaxation time
over a broad temperature range is available in the literature. This allows for a comparison with
computer simulations and an accurate determination of the exponent α in Eq. (4).

We select 2-methyl tetrahydrofuran (2MTHF), ethylbenzene (ETB), ethanol, glycerol, o-terphenyl
(OTP), 1-propanol, propylene carbonate (PC), salol, and toluene. The configurational entropy data
for 2MTHF, ETB, OTP, PC, salol, and toluene were recently obtained from accurate experiments
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Figure 3: (a) Configurational entropy data for 2MTHF [46], ETB [46], ethanol [66], glycerol [67],
OTP [78], 1-propanol [62], PC [46], salol [78], and toluene [46]. The solid curves are quadratic
fitting functions, as used for the d = 3 numerical models. (b) Relaxation time data for 2MTHF [11],
ETB [68, 69, 70], Ethanol [79], glycerol [71, 72, 73], OTP [74], 1-propanol [11, 75], PC [72, 73, 76],
salol [77], and toluene [74]. The horizontal dashed line indicates the timescale of the experimental
glass transition, τα = 100 s.

by Tatsumi, Aso and Yamamuro. Some of the data is presented in Ref. [46]. The data for 1-propanol
is taken from Ref. [62]. In these data for all the above materials, Sconf is measured by thermody-
namic integration of the heat capacity difference between supercooled liquids and non-equilibrium
glasses. This treatment should be conceptually better than using the crystal entropy [11], but this
is still a rather crude approximation [63], whose accuracy is expected to be material-dependent [64].
For ethanol [65, 66] and glycerol [65, 67], Sconf is obtained using the crystal entropy Scry, i.e.,
Sconf = Sliq − Scry.

The relaxation time data are mainly obtained from dielectric measurements, but some data are
combined with other methods, such as viscosity measurements. The corresponding references are:
2MTHF [11], ETB [68, 69, 70], ethanol [46], glycerol [71, 72, 73], OTP [74], 1-propanol [11, 75],
PC [72, 73, 76], salol [77], and toluene [74].

For the experimental data, we set τo = 10−10 s. Therefore the simulation and experimental time
windows correspond to τα ∈ [10−10 s, 10−5 s] and τα ∈ [10−7 s, 102 s], respectively. In particular,
Tg corresponds to the standard relaxation time τα = 100 s.

The configurational entropy and relaxation time data for the materials presented above are
gathered in Fig. 3, together with empirical quadratic fits to the configurational entropy.

III Results

In this section, we perform a test of Eqs. (1, 2, 3, 4, 5) using the experimental and numerical data
presented in Sec. II. We first study Eq. (2) using numerical data for ξpts and Sconf to estimate θ.
Then, we estimate α in Eq. (4) by comparing τα and Sconf using both computer simulations and
experiments to investigate the validity of the Adam-Gibbs relation in Eq. (1). Finally, the values of
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Figure 4: Sconf vs. ξpts plot in d = 3 hard spheres (HS3D) (a) and d = 2 soft disks (SSV2D)
(b). The straight lines are power law fits. For HS3D, we show two independent estimates of Sconf
obtained from: the generalized Frenkel-Ladd (GFL) method and the Franz-Parisi (FP) free energy
approach.

θ and α allow us to discuss that taken by ψ = (d− θ)α, deduced from Eq. (5).

III.1 The static exponent θ

First we estimate the exponent θ in Eq. (2) combining independent data obtained for Sconf and ξpts.
Figure 4 shows a log-log plot of Sconf versus ξpts for three dimensional polydisperse hard spheres

(HS3D) (a) and two dimensional soft disks (SSV2D) (b). We emphasize that while temperature
is a running parameter in this plot, the data point in Fig. 4 correspond to the regime of interest
T < Tmct. Such results have never been achieved, as earlier numerical work were all performed for
T > Tmct, or only slightly below Tmct [33].

For HS3D, we report two estimates for Sconf , obtained from different schemes. One is a gen-
eralized Frenkel-Ladd (GFL) method [45, 80], and the other is the Franz-Parisi (FP) free energy
method proposed earlier [44, 81, 82]. The exponent θ is extracted by fits to straight lines, whose
slope gives θ − d, see Eq. (2). We obtain θ ' 1.35 for GFL and θ ' 1.84 for FP. These values are
compatible with either the theoretical prediction θ = d/2 by Kirkpatrick et al. [3], or with that of
Franz θ = d− 1 [83].

We obtain θ = 1.12 for SSV2D. This value is close to both theoretical predictions, θ = d/2 and
θ = d− 1, which coincide in d = 2, giving θ = 1 . Obviously, one cannot discriminate between the
two predictions.

Overall, we find that for d = 3 the value measured for θ conforms with the two available
predictions, which is an encouraging result from the viewpoint of RFOT theory. Unfortunately, the
obtained values fall in-between the two predictions, which are too close to be discriminated. We
suggest that performing point-to-set and configurational entropy measurements in d = 4, combining
recently developed tools [45, 51, 84], would be very useful to conclude on this point. Indeed, when
d = 4, the two predictions yield θ = d/2 = 2 and θ = d − 1 = 3, which are further appart than in
d = 3.
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Figure 5: Left panels: Standard Adam-Gibbs plot for the d = 3 hard spheres (HS3D) (a), d = 3 soft
spheres along the isochoric path (SSV3D) (b), the isobaric path (SSP3D) (c), and d = 2 soft disks
(SSV2D) (d). Right panels: Generalized Adam Gibbs plots with the fitted α value for each model.
The horizontal dashed lines correspond to the timescale for the experimental glass transition Tg.

III.2 Breakdown of the Adam-Gibbs relation and numerical estimation of α

We next examine the validity of Eq. (4) by connecting τα and Sconf , and estimating the exponent
α. When α = 1, the Adam-Gibbs relation in Eq. (1) is recovered.

In Fig. 5(a,c,e,g) we show conventional Adam-Gibbs plots where the evolution of log10(τα/τo)
is represented as a function of 1/(Tsconf), where sconf = Sconf/N , for hard spheres (HS3D) (a),
soft spheres along the isochoric path (SSV3D) (c), along the isobaric path (SSP3D) (e), and the
soft disks (SSV2D) (g). We combine the dynamic and thermodynamic data described in Sec. II,
restricted to the experimental time window (τα/τo ∈ [103 − 1012]). To our knowledge, this is the
first time that the Adam-Gibbs relation is tested for computer models over the time window where
it is actually supposed to apply.

For all three-dimensional models, we find that log10(τα/τo) is a concave function of 1/Tsconf ,
whereas it is convex for the two-dimensional model. If tested over a narrow time window close to
Tmct, an acceptable linear behaviour could possibly be observed, that would suggest the validity of
the Adam-Gibbs relation, in agreement with many earlier findings [12, 17, 18, 19, 20, 21, 22, 23, 24].
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The trend that we report here appears to contrast with recent results obtained in the Kob-Andersen
model, where slight convexity and concavity are respectively observed in d = 3 [23] and d =
2 [21]. These results were however obtained in the numerical time window, above Tmct. Our results
demonstrate that when observed over a much broader range, and closer to Tg, the Adam-Gibbs
relation is actually not obeyed for any of the numerical models studied here.

The clear violations of the standard Adam-Gibbs relation that we find over the experimental
time window imply that the exponent α must deviate from the value α = 1. We varied its value
around unity and used it as a free parameter to obtain generalised Adam-Gibbs plots, which are
shown in Fig. 5(b,d,f,h) for the same numerical models. All plots now show a perfect straight line,
suggesting that the introduction of the parameter α is sufficient to describe the data. We obtain
α = 0.24, 0.49, 0.72, and 1.89, for HS3D, SSP3D, SSV3D, and SSV2D, respectively, so that α < 1
for the three dimensional models, whereas α > 1 for the two dimensional model.

Since the four models we have simulated all display violations of the Adam-Gibbs relation, we
conclude that Eq. (1) does not describe well the physics of simulated supercooled liquids when
analysed over the experimental time window. Additional models should be studied and analysed
before concluding about the possible universality of the exponent α, but our initial results do not
point towards a constant value. Once more, it would be very valuable to obtain data in d = 4 to
see if a different value for α is found in larger spatial dimensions.

III.3 Breakdown of the Adam-Gibbs relation and experimental estimation of α

Before starting this study, we felt that there was a general consensus in the community that the
Adam-Gibbs relation is well-obeyed in real materials analysed near the experimental glass transition
Tg. Thus, the outcome of the computer simulations showing deviations from Eq. (1) appeared as a
worrying disagreement between simulations and experiments.

Therefore, we decided to collect data sets for several molecular liquids, where high-precision
dynamic and thermodynamic data would be available over both simulation and experimental time
windows, in order to perform a direct comparison with computer models.

We present the results of our data collection in Fig. 6 using again the representation where
the standard Adam-Gibbs relation would yield a straight line. When analysed over the entire
experimental time window, defined above, we again observe a clear concavity for most materials.
The Adam-Gibbs relation in Eq. (1) is violated over this regime, although of course it holds if
observed over a restricted time window close to Tg [11] (almost by definition–the data is continuous!).

As for the simulations, we fit the experimental data using the exponent α as an additional free
parameter. From the experimental data, we determine two distinct values for α, obtained by fitting
either over the simulation or the experimental time window. The typical trend that we observe is
that α > 1 over the simulation time window, but α < 1 over the experimental time window. The
latter fits are included in Fig. 6, and they describe well the data over the entire experimental time
window.

We notice that the concavity in the Adam-Gibbs plot in the experimental time window was
already reported [28, 30]. However, the concavity would be overlooked as it is less pronounced than
the convexity found at much higher temperature, close to Tmct and above [28]. Moreover, Ref. [30]
concluded that the observed concavity was attributed to an imprecise estimate of the configurational
entropy. Our results obtained from simulation data with accurate configurational entropy measure-
ments and recent high-quality experimental data suggest instead that the observed concavity is a
generic physical phenomenon reflecting the nature of glassy dynamics over the experimental time
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window.

IV Discussion

Our central conclusion from both simulations and experiments considered over a broad time regime
τα/τo ∈ [103, 1012] (defined to be both experimentally accessible and theoretically relevant) is that
the conventional Adam-Gibbs relation in Eq. (1) is not obeyed. Instead, the general form predicted
by RFOT theory in Eq. (4) describes numerical and experimental data well. This is maybe not so
surprising, from an empirical viewpoint, given that the generalised relation has one more free fitting
parameter.

We compile all our results for the values of α from simulations (empty points) and experiments
(filled points) in Fig. 7. To organise the data, we use the kinetic fragility index m as the horizontal
axis. This is simply a matter of convenience (as a matter of fact, no strong trend is observed).
Note that, somewhat paradoxically, we do not have values for α in the computer models over
the simulation time window because our computational schemes to measure Sconf only become
applicable for low enough temperatures, typically T . Tmct [45, 82].

The experimental data in Fig. 7 obtained by considering the simulation time window are dis-
persed, α = 0.61 − 2.34, and tend to be characterised by rather large values α > 1. By contrast,
considering a broader and physically better justified experimental time window, data for both sim-
ulations and experiments are much less scattered, α ' 0.25 − 1.28, with a preferred average value
α ' 0.5 − 0.6, except for ethanol. We notice that the deviation for ethanol might be due to a
poor estimation of Sconf . The data was measured using the crystal entropy, and the approximation
Sglass ' Scry may not be good for this material.

Before concluding, we make a further caveat regarding the above analysis of the RFOT theory
predictions. In principle, we could have introduced additional subdominant physical prefactors
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into the scaling relations in Eqs. (2, 3) that could also be temperature dependent quantities. In
particular, a surface tension could enter the relation between Sconf and ξpts [6, 85], and an energy
scale could enter the activated scaling relation in Eq. (3). In the absence of strong theoretical
insights into these quantities, we decided to ignore them. They could of course very well affect the
measured values of the reported exponents. Thus, a better determination of these quantities is an
important research goal [33, 86, 87], in particular in the experimental time window.

To summarize our results in terms of numerical values for the critical exponents introduced
within RFOT theory, we observe in d = 3 that the combination θ ' 3/2 and α ' 0.5 − 0.6 works
well, which would then result in ψ falling in the range ψ ' 0.75− 0.90. If we use instead the value
θ = 2, we would obtain a somewhat larger value for the dynamic exponent ψ ' 1.0 − 1.2, which
agrees well with earlier indirect analysis [38, 39]. Both values violate the general bound ψ ≥ θ
discussed in the context of spin glasses [88], the equality ψ = θ found for the random field Ising
model [89], and the prediction ψ = θ = d/2 in Ref. [3]. In the absence of stronger theoretical
constraints, we tentatively conclude that the measured ψ value that we observe appears somewhat
small, i.e., smaller than all known theoretical predictions. In d = 2, we get θ ' 1.1 and α ' 1.9,
which in turns implies that ψ ' 1.7, which appears somewhat large, by contrast with d = 3.

Our conclusion that α < 1 is favored by the data over the experimental time window sheds
some new light on an old debate in the glass literature [5, 56, 90, 91]. Assuming the existence
of an ideal glass transition at equilibrium where Sconf → 0 and τα → ∞, one is naturally led
to the determination of two critical temperatures: the Kauzmann temperature TK where Sconf
vanishes, and the critical temperature T0 where the relaxation time diverges (not to be confused
with onset temperature To used above). Typically, the latter is obtained from a Vogel-Fulcher-
Tammann fit (T0 = TVFT in Eq. (8)) to the relaxation time. The possible equality T0 = TK
would provide a strong empirical sign for the existence of an ideal glass transition underlying
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glass formation [5]. A large data set collected by Tanaka suggests the existence of systematic
differences between the two temperatures [90], with the tendency that TK > T0, and an apparent
correlation with kinetic fragility. In our analysis using Eq. (4) to describe the data, the connection
between thermodynamics and dynamics becomes automatically satisfied, and thus by construction
thermodynamic and dynamic singularities necessarily coincide. Assuming that the determination
of TK is the most robust one, we conclude that it is the experimental determination of T0 which
should be questioned. In particular, using α < 1 in Eqs. (4) and assuming an asymptotically linear
vanishing of Sconf , one would predict that log(τα/τ0) ∝ (T − T0)

−α, which is distinct from the
standard Vogel-Fulcher-Tamman fit and would automatically produce the equality TK = T0.

From a broader perspective, we conclude that the Adam-Gibbs relation, which is an important
milestone in the field of glass transition studies, is generally violated in both computer models and
real materials when tested over a broad, experimentally-relevant temperature range. We neverthe-
less argued that the failure of Eq. (1) cannot be taken as evidence that thermodynamic theories of
the glass transition are incorrect. The RFOT theory prediction of a connexion between statics and
dynamics in Eq. (4) is obeyed by all materials, with exponent values that are reasonable, but remain
to be predicted from first principles. A larger concern, perhaps, is the apparent lack of universality
in the data shown in Fig. 7 which clearly display variations from one system to another. This may
still be rationalised by invoking the fact that α is obtained from the analysis of a finite time window
where additional preasymptotic effects and temperature dependent prefactors may influence the
reported results.

Taking an orthogonal perspective, we finally ask: Do our results validate or invalidate some
theories of the glass transition? After all, we just established that a slightly generalised version of
the Adam-Gibbs relation with α ' 0.5− 0.6 describes simulations and experiments over 9 orders of
magnitude in the experimentally relevant regime. This is not a small accomplishment. One can take
the alternative view that the deviations from the canonical exponent values should be taken as an
indirect sign that thermodynamics only contributes some part of the slowing down, in addition to
other physical factors [92, 93, 94, 95, 96, 97]. This view is sometimes also invoked to rationalise the
“modest” growth of static correlation lengthscale observed numerically and experimentally [98, 99].
Our finding that α < 1 suggests instead that it is the growth of the relaxation time that is actually
too modest! It is therefore difficult to rationalise how another physical factor working in addition
to the entropy could be invoked to explain our findings. The most radical view is in fact that
thermodynamics is just a spectator to the glassy dynamics [100], in which case our findings should
be interpreted as purely coincidental since entropy plays in fact no role. We have no strong argument
to oppose to this view, which remains perfectly admissible.
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Appendix 1: Configurational entropy along an isobaric path

We wish to measure the configurational entropy Sconf(T, P ) along an isobaric (constant pressure)
path. It is computed as Sconf(T, P ) = Stot(T, P ) − Sglass(T, P ), where Stot(T, P ) and Sglass(T, P )
are the total and glass entropies at the temperature T and pressure P . We explain how to get
Sconf(T, P ) from NPT simulation trajectories.

Notations

We consider the Helmholtz free energy −βF (T, V ) = lnZ(T, V ), where β = 1/T and Z(T, V ) is
the partition function of the NV T ensemble. We also consider the Gibbs free energy −βG(T, P ) =
lnY (T, P ), where Y (T, P ) is the partition function of the NPT ensemble, given by

Y (T, P ) =

∫ ∞

0
dV e−β(PV+F (T,V )). (12)

We introduce the probability distribution of the volume V for a given T and P ,

ρ(V |T, P ) = e−β(PV+F (T,V ))

Y (T, P )
. (13)

In equilibrium, ρ(V |T, P ) is given by Gaussian distribution,

ρ(V |T, P ) = 1√
2πσ2V

exp

[
−(V − V∗)2

2σ2V

]
, (14)

where V∗ and σ2V are the mean and variance of the volume, respectively. We define 〈(· · · )〉T,P =∫∞
0 dV ρ(V |T, P )(· · · ). Using this average, we can write V∗ = 〈V 〉T,P and σ2V = 〈(V − V∗)2〉T,P .

Total entropy

The total entropy Stot(T, P ) is obtained by a thermodynamic integration of the isobaric heat ca-
pacity from a reference temperature Tref = 1/βref , to the target temperature T = 1/β,

Stot(T, P ) = Stot(Tref , P )−
Nd

2
(lnβ − lnβref)

+βU∗(T, P )− βrefU∗(Tref , P )

−
∫ β

βref

dβ′U∗(T ′, P )

+P (βV∗(T, P )− βrefV∗(Tref , P ))

−P
∫ β

βref

dβ′V∗(T ′, P ), (15)

where U∗(T, P ) is the mean potential energy, and V∗(T, P ) is the mean volume; U∗(T, P ) and
V∗(T, P ) are measured by constant pressure simulations. The entropy at the reference state is
obtained by Stot(Tref , P ) = 〈Stot(Tref , V )〉T,P using the NV T ensemble scheme [44]. This treatment
for the reference state will be justified below.
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Glass entropy

To get the glass entropy, we use the generalised Frenkel-Ladd method which relies on the NV T
ensemble [45]. In general, one can smoothly connect NV T and NPT ensembles in terms of mean
values. For example, thermodynamics guarantees that S(T, P ) = S(T, 〈V 〉T,P ). However, special
attention should be paid if one uses the NV T ensemble scheme with trajectories generated by the
NPT ensemble for finite system size [101]. A related issue is discussed in Ref. [102]. Indeed, what
we can compute is 〈S(T, V )〉T,P . In general,

S(T, P ) = 〈S(T, V )〉T,P − 〈ln ρ(V |T, P )〉T,P . (16)

Therefore, we need to consider the second term in Eq. (16) as a correction term. We can evaluate
this term with Eq. (14):

− 1

N
〈ln ρ(V |T, P )〉T,P =

1

N
ln
√
2πeσ2V . (17)

Since σ2V ∼ N , this term vanishes in the thermodynamic limit, as expected. Indeed, for N = 1500

systems, we get negligible values, 1
N ln

√
2πeσ2V ' 0.0026 and 0.0013 at Tref = 7.0 and T = 0.37,

respectively. These values are small compared to the absolute value of Sconf/N ' 0.36−0.80. Thus
we can safely use S(T, P ) = 〈S(T, V )〉T,P . Especially we use the following equation, Sglass(T, P ) =
〈Sglass(T, V )〉T,P .

Appendix 2: Extrapolation of relaxation times towards Tg

Here we test the validity of the extrapolation of relaxation time from the numerical to the experi-
mental timescale using various fitting functions. The experimental data on which this is done have
kinetic fragility indexes similar to the simulation models.

Figure 8 shows various fits of the data performed over the simulation time window, τα ≤ 10−5 s,
and then extrapolated to lower temperatures down to Tg where τα = 100 s. In all three cases shown
in Fig. 8, the parabolic law is the best functional form that correctly predicts the actual data over
the experimental time window. All other functional forms, when fitted over the simulation time
window, tend to deviate from the actual data at low temperatures. Notice that the uncertainty on
the determination of Tg using the numerical time window and a parabolic fit is very small. This is
the strategy we have used in previous numerical studies [42, 43, 44].
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Figure 8: Extrapolation from simulation timescale (τα ≤ 10−5 sec.) to experimental timescale for
glycerol, propylene glycol, and 1-propanol, whose kinetic fragility index, m, takes comparable to
the simulation models employed in this paper. m = 53, 48, 35 for glycerol, propylene glycol, and
1-propanol, respectively.
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Chapter 6

Conclusions and Perspectives

This manuscript presents a series of works addressing fundamental questions about the forma-
tion and properties of amorphous solids. We provide the reader with general conclusions of these
studies, emphasizing the advances made in our understanding of the nature of glasses and the glass
transition. We also discuss some perspectives which emerge naturally from this work.

A large part of this work is devoted to improving our theoretical understanding of the nature
and properties of glassy solids. In particular, we explore the novel hypothesis that the properties
of amorphous solids are naturally explained by the existence of a new amorphous phase of matter.
Chapters 2 and 3 present original results in this direction.

Chapter 2 presents the mean field theory for dense assemblies of particles interacting via
a generic pair-potential, embedded in a space of large dimensions. The model analyzed is the
Weeks-Chandler-Andersen (WCA) model. Varying the external parameters of the model (packing
fraction, temperature), we continuously explore physical regimes relevant to describe dense liquids,
soft or hard colloidal suspensions, emulsions, and granular materials. We compute the free en-
ergy of glasses prepared in equilibrium, then brought adiabatically to another state point. In the
stable glass phase, a replica symmetric solution is employed. Upon some temperature or density
change, the replica symmetric solution destabilizes and a full replica symmetry breaking should be
employed to compute the free energy of the glass. In this case, the glass becomes marginally sta-
ble, and is characterized by a hierarchical free energy landscape. We explore the physical regimes
relevant to granular matter, foams, emulsions, hard and soft colloids, and atomic glasses, showing
that marginal stability may be found in all these materials. We provide for the first time the exact
mean field phase diagram for amorphous solids, locating the simple glass and marginally stable
glass phases, as well as the location of the jamming transition. The phase diagrams presented
in Chapter 2 provide a solid basis for computer simulations and experiments aimed at detecting
marginal stability in structural glasses.

Chapter 3 presents an extensive study of the energy landscape of glasses by means of numerical
simulations in three dimensions. In the first work entitled ‘Absence of marginal stability in a struc-
tural glass’, we study marginal stability in a model for atomic glasses. The main conclusion is that
the marginally stable phase, predicted by mean field theory, is not observed in three dimensional
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simulations of a model atomic glass. We however detect ergodicity breaking at low temperature,
which is attributed to the presence of localized defects. The conclusion of this work contrasts with
previous numerical studies of three-dimensional hard spheres, in which strong evidence was put
forward for a marginally stable glass phase.

The apparent contradiction of the above results is clarified in the work ‘Nature of excitations
and defects in structural glasses’. This work parallels the mean field study of WCA glasses, and
provides the phase diagram of the WCA model obtained by three dimensional simulations. The
main outcome is that the structure of the energy landscape of glasses changes dramatically with the
physical regime, from atomic liquid, to soft and hard colloids. At finite temperature, and density
close to the jamming transition, the energy landscape is extremely complex, with a large number of
local minima, energy barriers of all sizes, corresponding to both localized and delocalized motion of
particles. We give evidence for a hierarchical structure of energy minima. These results echo those
found for hard spheres, in a regime close to the jamming transition. At high densities, relevant
to describe atomic glasses modeled by smooth long-ranged interactions, the energy landscape is
relatively much simpler. Less energy minima are identified, and the energy barriers separating two
distinct minima correspond to localized motion of particles, confirming the results of the above
work. We investigate the crossover between the two distinct regimes, showing that both localized
and delocalized excitations coexist at intermediate densities and temperatures. This work recon-
ciles a number of apparently contradictory results, providing a complete and coherent picture of
the energy landscape of glasses in a wide variety of physical regimes.

The work ‘Rejuvenation and memory effects in a structural glass’, builds on the previous study
and explores the consequences of marginal stability on the properties of glasses. Having identified
the region of the phase diagram in which the glass is marginally stable, we investigate the out-
of-equilibrium dynamics of glasses subject to temperature cycles. This type of protocol was used
more than 20 years ago on disordered magnets, which are known to have a hierarchical landscape.
We show that rejuvenation and memory effects, originally detected in disordered magnets, are also
observed in dense disordered assemblies of particles. Such effects were unsuccessfully searched in
experiments on molecular glasses. Our work rationalizes this failure: molecular and atomic glasses
are characterized by relatively simple landscapes. Rejuvenation and memory effects can only be
observed in systems which have a hierarchical landscape.

The last work of Chapter 3, ‘Depletion of two-level systems in ultrastable computer-generated
glasses’ was motivated by the findings of the first study ‘Absence of marginal stability in a struc-
tural glass’. While this first work established the absence of marginal stability in atomic glasses,
it evidenced the existence of localized defects in computer glasses. Indirect signs that the na-
ture of these defects change with the stability of the glasses was also provided. Building on these
preliminary results, and motivated by recent measurements of the density of TLS in ultrastable
vapor-deposited glasses, we analyze the classical and quantum nature of these defects in glasses.
We investigate computer samples which are prepared in hyperquenched, experimental, and ultra-
stable conditions. We show that the density of TLS decreases by two orders of magnitude from
the hyperquenched to ultrastable glasses. We unambiguously prove that the density of TLS, and
therefore the low-temperature transport properties of glasses are not intrinsic to their disordered
nature, and can be tuned with the preparation protocol.
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The results presented in Chapter 2 and 3 shed new light on our understanding of the energy
landscape of glasses. These results also motivate future work addressing the nature of the Gardner
transition, and two-level systems in glasses.

Perspectives on the Gardner transition. The discrepancy between the mean field prediction
of a Gardner transition towards a marginally stable phase in model atomic glasses, and its absence
in the three-dimensional counterpart raises new questions. In this work, we studied numerically
how marginal stability is recovered in 3d glasses by moving continuously from physical regimes
relevant to atomic glasses to that of colloidal glasses. It would be interesting to study how marginal
stability is recovered from 3d to the mean field theory in d = ∞ in model atomic glasses. Several
strategies could be employed to achieve this. A first strategy would be to investigate the Gardner
transition in the same model in spatial dimensions from d = 4 to above. From a practical point of
view, the algorithms needed to prepare stable glasses in spatial dimensions higher than three are at
hand [237]. A more elegant, alternative strategy would be to study the Mari-Kurchan (MK) version
of the atomic pair-potential in three dimensions [238]. In the MK model, the interparticle distance
used in the interaction potential is shifted by a random parameter which is tunable. Varying
this interaction parameter from zero to values comparable to the system size allows to interpolate
continuously from the original model to a three-dimensional version of it.

The absence of marginal stability evidenced in atomic glass-forming models is also in contrast
with a recent work, in which the marginal behavior of glasses is revealed by elastic avalanches [239].
In this article, the authors address this apparent conflict and suggest that the system sizes needed
to observe large scale avalanches at small strains could be prohibitively large, so that observed ex-
citations are limited to localised defects. It would be interesting to analyze the role of the localized
defects identified in our work in elastic avalanches under small strains.

Our work clearly identifies physical regimes in which the energy landscape of glasses is char-
acterized by a complex, hierarchical organization, reminiscent of the mean field description of a
Gardner phase. The nature of the Gardner transition in finite-dimensional glasses is however not
settled. Addressing this question theoretically is challenging. While this problem is relatively new
to the field of structural glasses, it bears a twin in the field of spin-glasses in a field, and therefore
inherits more than 30 years of intense research. The existence of a thermodynamic spin-glass phase
transition is still debated, despite the construction of efficient supercomputer [240].

Finally, this work lays the ground for future experiments searching marginal stability and its
consequences. Existing results on granular and colloidal experiments bring evidence for marginal
stability in glasses, in line with the conclusions presented above. On the other hand, experiments
on molecular glasses are harder to interpret. Unpublished results on the non-linear susceptibility
of glycerol down to very low temperature also confirm the absence of marginal stability in this
physical regime.

Perspectives on low-temperature properties of glasses – We presented above the first
computer work successful at obtaining a direct sampling of active tunneling two-level systems with
sufficient statistics to avoid any kind of extrapolation. This achievement opens exciting directions
to study the low-temperature properties of glasses. More specifically, it would be interesting to
investigate the properties and density of TLS in the marginally stable glassy phase. Given the
extremely large number of energy minima and energy barriers identified above in this regime, we
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expect a much higher density of TLS.

A natural continuation of the work presented above on TLS in computer glasses would be to
refine and confirm the results. As a matter of fact, the tunnel splitting of the double-well potentials
is computed by solving the 1d Schrödinger equation for an effective particle. This is an approx-
imation, given the collective nature of the transitions, and it needs to be verified. Path-integral
molecular dynamics have been successfully used to compute tunnel splittings of symmetric double-
wells in small molecules. Applying this method to larger systems in order to compute exactly the
tunnel splitting is technically sophisticated by seems within reach.

Chapter 4 presents an important technical aspect of the present work, which requires the
synthesis of stable computer glasses. Building on recent computational developments, we devel-
oped a hybrid Molecular Dynamics/Monte Carlo algorithm. We implemented this algorithm in the
simulation package LAMMPS, making it accessible to a large community. The equilibrium con-
figurations produced allow to investigate a wide diversity of questions around the glass transition
and the properties of glassy solids. We presented in Chapter 3 some original works on the energy
landscape of glasses, which were made possible with this computational breakthrough.

Chapter 5 uses the computational advances presented in Chapter 4 to address recent thermo-
dynamic theories of glass formation. We describe state-of-the-art methods to estimate numerically
the configurational entropy of supercooled liquids. We assessed numerically the relation between
the dynamics of supercooled liquids, static lengthscales, and thermodynamic quantities, in par-
ticular the configurational entropy. Our main result is that the standard Adam-Gibbs relation
is generally not obeyed. A generalized relation, predicted by the most advanced theory, however
describes well the most accurate numerical and experimental data currently available.

Perspectives on ultrastable computer glasses – Recent computational and experimental
studies have shown that the most stable computer glasses created with the particle-swap algorithm
possess dynamic and thermodynamic properties similar to vapor-deposited glasses. Some of these
studies focus on the melting mechanism of ultrastable glasses. Experiments indirectly suggest that
two mechanisms compete: bulk melting and surface-initiated melting. This gives rise to a ‘giant’
crossover thickness of film, below which melting is dominated by surface-initiated fronts, and above
which bulk melting dominates the overall process [241]. The constant-velocity propagation of
melting front was confirmed by computational studies [242]. Little is known, both experimentally
and numerically, about the bulk melting mechanism in stable glasses. We are currently investigating
the bulk melting of stable glasses in two dimensions. Preliminary results indicate that this is a
two-step process. The first step corresponds to the nucleation of liquid droplets in the glassy solid,
which then grow at a pressure higher than the external pressure. In the second step, these droplets
percolate, and the pressure of the liquid drops to the external pressure.
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Chapter 7

Résumé

7.1 Motivations
Dans le chapitre d’introduction, nous présentons le contexte de recherche de cette thèse. Nous

introduisons certains aspects liés à la formation des solides amorphes, ainsi qu’à leurs propriétés
physiques. Dans cette section, nous nous concentrons brièvement sur certaines d’entre elles qui ont
été la principale source de motivation de ce travail.

Nous présentons dans la section 1.1 la phénoménologie associée à la transition vitreuse expéri-
mentale. La transition vitreuse est définie en tant que transition dynamique, par contraste avec
les transitions de phase usuelles, d’origine thermodynamique. Nous nous intéressons à deux ob-
servables, une dynamique et une autre thermodynamique, mesurées dans les liquides surfondus à
l’approche de la transition vitreuse. L’une est le temps de relaxation du liquide, qui indique un
ralentissement dramatique de la dynamique de ce dernier, ainsi que l’entropie configurationnelle.
Cette dernière joue un rôle important dans les théories thermodynamiques de la transition vitreuse,
explorées dans notre travail.

Nous abordons ensuite les propriétés des verres sous la température de transition vitreuse. Les
verres sont des solides hors équilibre dont les propriétés évoluent au cours du temps, un comporte-
ment appelé vieillissement. Dans certains systèmes vitreux, tels les verres de spin, la dynamique
hors d’équilibre peut être encore plus spectaculaire, avec des effets de rajeunissement et de mémoire.
Dans ce travail, nous démontrons pour la première fois que de tels effets peuvent être observés dans
certains verres structuraux, tels que les verres colloïdaux. Nous discutons également les propriétés
des verres moléculaires ou atomiques à très basse temperature, aux alentours de 1 Kelvin. A ces
températures, les propriétés thermodynamiques et de transport des verres ont un comportement
différent de celui des solides cristallins, et violent en particulier la loi de Debye. Depuis leur décou-
verte dans les années 1970, ces anomalies sont expliquées dans un modele phénoménologique par la
présence de défauts dans les verres, appelés “systèmes à deux niveaux”. A très basse temperature,
les défauts peuvent être excités par effet tunnel, ce qui pourrait expliquer le comportement des
verres dans ce régime. Une compréhension théorique de ces défauts, en particulier de leur nature
microscopique, reste à obtenir.

Nous présentons par la suite une technique expérimentale récente, basée sur le dépôt physique
par phase vapeur, utilisée pour créer des verres “ultrastables”. Ces verres ont des propriétés
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physiques différentes des verres ordinaires crées par refroidissement du liquide. Ils ne présentent
en particulier pas les anomalies vitreuses à basse température, ont une entropie configurationnelle
bien plus faible que celle des liquides surfondus, et fondent par un mécanisme de nucléation et
croissance. L’étude expérimentale de ces échantillons ouvre de nouvelles perspectives sur l’étude
de la transition vitreuse, et sur les propriétés des verres.

Nous introduisons ensuite la transition de blocage, qui conduit à la formation de solides amorphes
dans assemblées de particules insensibles aux fluctuations thermiques. La transition de blocage
est conceptuellement distincte de la transition vitreuse. C’est une transition critique d’origine
géométrique. Les systèmes de sphères molles thermiques permet l’étude simultanée des deux types
de transitions, et l’élaboration d’un diagramme de phase en température et densité pour les solides
amorphes. Un tel diagramme de phase est présenté, et montre que la phase bloquée se situe au
sein de la phase vitreuse.

La théorie de champ moyen pour les liquides et les verres, obtenue dans la limite de grande
dimension est introduite. Cette théorie permet un traitement de la thermodynamique du liquide et
du verre. Dans le limite de champ moyen, il existe deux transitions qui ont lieu à des températures
distinctes. La transition dynamique est celle ayant lieu à plus haute température. Elle correspond
à l’apparition d’états métastables, qui se traduit par une divergence du temps de relaxation du
liquide. Une transition thermodynamique, dite de Kauzmann, a lieu à plus basse temperature.
Elle correspond à la disparition d’un nombre exponentiel d’états métastables, c’est-à-dire à une
entropie configurationnelle nulle. La théorie de champ moyen permet d’expliquer le ralentissement
dynamique par une raréfaction des états métastables. Une prédiction majeure de la théorie de
champ moyen est l’existence de deux phases vitreuses aux propriétés physiques distinctes. Le verre
peut se trouver dans la phase thermodynamiquement stable, ou dans une phase marginalement
stable. Dans cette dernière, une perturbation locale et infinitésimale induit des réarrangements du
système entier. Les deux phases sont séparées par une transition de Gardner. La phase marginale-
ment stable, dite de Gardner, a été découverte en 2014, peu avant le début de cette thèse. Ce travail
s’attache à déterminer dans quelles conditions physiques les verres sont marginalement stable, et
quelles en sont les conséquences pour leurs propriétés physiques.

La théorie de champ moyen pour les liquides et les verres structuraux est désormais bien établie,
et constitue un premier pas important vers une théorie microscopique des solides amorphes à
trois dimensions. Elle permet de décrire la transition vitreuse, qui correspond à un phénomène
dynamique, avec des observables purement statiques, en tant que transition thermodynamique
“cachée”. La principale difficulté consiste à transposer les concepts et outils de la théorie de champ
moyen à la description de liquides et verres évoluant en dimension finie. Dans les liquides surfondus,
il n’est pas évident d’établir une relation entre la thermodynamique et la dynamique, c’est-à-dire
entre les temps de relaxation et l’entropie configurationnelle. La théorie de champ moyen, aussi
appelée théorie RFOT, soutient une relation directe entre ces deux quantités. Nous employons des
résultats de simulations obtenus à des température extrêmement basses pour tester ces théories et
mesurer les exposants critiques introduits dans la théorie RFOT.

Nous avons discuté qu’un problème fondamental dans les études numériques des liquides sur-
fondus provient du fait que seulement quatre ou cinq ordres de ralentissement dynamique sont
accessibles à équilibre, par rapport aux 13 ordres de grandeur accessibles expérimentalement à
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l’équilibre. L’algorithme de SWAP a récemment été introduit afin de combler cet écart entre sim-
ulations et expériences. Cette méthode permet d’accélérer la thermalisation et étendre le régime
de simulation à des échelles de temps comparables a‘ celles accessibles expérimentalement. Nous
utilisons cette découverte afin de proposer un nouvel algorithme, alliant simulations Monte Carlo et
dynamique moléculaire. Cet algorithme est flexible, et implémenté dans LAMMPS, un programme
de dynamique moléculaire extrêmement répandu. Cet outil, développé au cours de cette thèse,
permet l’étude des liquides surfondus et des verres dans des régimes inexplorés, et l’obtention de
résultats originaux.

7.2 Résultats

Cette thèse a donné lieu à huit publications [175, 213, 214, 222, 226–228, 243]. Cinq d’entre
elles sont une production directe de cette thèse [214, 222, 226–228]. Les trois autres résultent
d’une plus large collaboration et incluent des résultats et des analyses développés dans cette
thèse [175, 213, 243]. Une autre publication est en cours de préparation. Il s’agit d’une étude
numérique du mécanisme de fusion des verres ultrastables. Cette étude est réalisée sur des verres
bidimensionnels relaxés par la méthode SWAP à des temperatures sous la transition vitreuse ex-
périmentale. Nous résumons dans cette section les résultats principaux de cette thèse.

Le chapitre 2 présente l’étude du diagramme de phase des solides amorphes, dans la limite de
dimension infinie. Nous résolvons la thermodynamique de verres formés sous la température de
transition dynamique. En utilisant un formalisme de “suivi d’état”, nous calculons les propriétés
thermodynamiques de ces verres lorsqu’ils sont amenés à un temperature et une densité différentes
de celles auxquelles le verre a été formé. Ces calculs sont fait dans l’hypothèse de symétrie des
répliques, autrement dit en en supposant que le verre est dans la phase stable. Nous étudions la
limite de stabilité du verre, qui permet de déterminer la transition de Gardner vers une phase vit-
reuse marginalement stable. Nous calculons le diagramme de phase de sphères molles thermiques,
qui interagissent via la potentiel de Weeks-Chandler-Andersen (WCA). En fonction des conditions
de température et de densité, ce modèle est pertinent pour décrire la physique de solides amorphes
aussi variés que les granulaires denses, les mousses, les émulsions, les suspensions de colloïdes mous
ou durs, ainsi que les verres moléculaires ou atomiques. Pour chaque régime physique, nous identi-
fions la limite de stabilité du verre simple. La théorie prédit notamment que les verres caractérisés
par des interactions à longue portée, qui modélisent des verres atomiques, sont marginalement sta-
bles à basse température. L’excès d’excitations basses associées à une phase de Gardner pourrait
fournir une nouvelle explication, basée sur les principes microscopique, de la violation de la théorie
de Debye dans les verres à basse température.

Nous montrons que dans la limite de champ moyen, la nouvelle phase vitreuse, celle marginale-
ment stable, est pertinente pour décrire tous les types de solides amorphes dans une région étendue
du diagramme de phase. Cela ouvre la possibilité d’une étude unifiée des anomalies vitreuses à
basse température.

Les résultats de ce chapitre ont conduit à la publication d’un article, Ref. [214].

Le chapitre 3 présente des résultats numériques qui portent sur l’analyse des propriétés des
verres en trois dimensions.

224



Résumé

Dans un premier travail, intitulé “Absence de stabilité marginale dans un verre structurel”,
nous comparons les résultats numériques et de champ moyen pour un modèle formateur de verre
caractérisé par des interactions répulsives à longue portée V (r) ∝ 1/r12. Cette étude est la première
étude numérique d’une transition de Gardner induite par refroidissement dans un modèle ne possé-
dant pas de transition de blocage. L’objectif était de déterminer si une transition Gardner pouvait
être induite loin de la transition de blocage dans des verres tridimensionnels. Afin de répondre à
cette question, nous avons étudié des verres numériques très stables, synthétisés par la méthode
SWAP décrite plus bas. Nous sondons le paysage d’énergie libre du verre en créant des clones de
celui-ci (mêmes positions des particules, mais vitesses initiales aléatoires). Nous nous intéressons à
la dynamique des clones après une trempe thermique. Nous mesurons en particulier le déplacement
quadratique moyen des clones, ainsi que la distance moyenne entre les clones. Nous définissons
une susceptibilité de type verre de spin qui quantifie le nombre de particules corrélées dans la dy-
namique vibrationnelle. Ces observables nous permettent de détecter une perte d’ergodicité au sein
du verre à basse température: les clones tombent dans des minima dynamiquement inaccessibles
à T < T ?. Cette perte d’ergodicité à l’intérieur d’un verre correspond à l’image du champ moyen
d’une transition de Gardner.

Nous montrons cependant que la perte d’ergodicité n’est pas accompagnée par d’autres signes
attendus à une transition de Gardner. Aucun ralentissement de la dynamique vibrationnelle n’est
détecté à l’approche de T ?. La susceptibilité verre de spin est d’ordre un à tout temps et à toute
température, signalant une dynamique non corrélée. L’absence d’échelle de temps et de longueur
autour de T ? est observée pour tous les verres étudiés, indépendamment de leur stabilité initiale.
Nous démontrons que la perte d’ergodicité est due à des défauts localisés, qui correspondent à
quelques particules qui peuvent prendre au moins deux positions proches. A haute température, les
particules peuvent sauter d’un minimum à l’autre. Cette transition devient bloquée aux alentours
de T ?, induisant une perte d’ergodicité.

La conclusion principale de ce travail est que les verres tridimensionnels de type Lennard-Jones,
qui modélisent bien les verres atomiques, ne subissent pas de transition Gardner vers une phase
marginalement stable à basse température. Ce résultat contraste fortement avec ceux obtenus
pour des verres de type sphère dure, pour lesquels une transition de Gardner est prédite en trois
dimensions. Ce travail souligne la nécessité d’une exploration systématique de la phase vitreuse en
trois dimensions, afin de concilier l’existence et l’absence de stabilité marginale dans des verres à
interactions dures ou de type Lennard-Jones.

Ces résultats ont conduit à la publication d’un article, Ref. [222].

Les résultats d’une telle exploration systématique sont présentés dans un article “Nature des
défauts et des excitations dans les verres structuraux”. Nous explorons la phase vitreuse du modèle
WCA tridimensionnel. Le modèle WCA permet d’interpoler de manière continue entre le régime
sphère dure, retrouvé dans la limite de température nulle, et le régime du liquide dense, obtenu à
haute densité. Nous étudions les propriétés de verres préparés dans différents régimes physiques.

Une perte d’ergodicité est détectée dans tous les types de verres à basse température. Cela
suggère que tous les verres sont caractérisés par un paysage d’énergie libre rugueux, composé de
nombreux minima. Cette perte d’ergodicité peut être accompagnée ou non d’une augmentation
de l’échelle de longueur, de l’hétérogénéité dynamique et des effets de vieillissement, en fonction
du régime physique étudié. Notre principale constatation est que la nature du paysage énergé-
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tique dépend fortement du régime de densité et évolue continuellement en allant de la transition
de blocage (comportement de type sphère dure) à des densités et des températures plus élevées
(comportement de type Lennard-Jones).

A des densités élevées, dans le régime pertinent pour les verres moléculaires et atomiques, le
paysage est simple et caractérisé par peu de minima. La physique du verre est dictée par des défauts
très localisés. En revanche, aux plus faibles densités correspondant au voisinage de la transition de
blocage, ce qui est pertinent pour les matériaux granulaires, le paysage d’énergie à une structure
très complexe, voire hiérarchique. Nous trouvons des barrières avec une large gamme d’échelles
d’énergie et un degré de localisation allant de très localisés à très étendus, en accord avec les études
numériques antérieures.

Plus intéressant encore, dans le régime de densités intermédiaire pertinent pour les suspensions
de colloïdes mous et les émulsions, le paysage d’énergie possède tous les types de barrières (localisées,
délocalisées, grande et faible énergie). Nous trouvons des défauts localisés associés à des barrières
de haute énergie, responsables de la perte d’ergodicité du verre. A plus basse énergie, on trouve
une organisation complexe d’un grand nombre de minima. Les barrières entre ces minima sont de
faible énergie, et correspondent à un mouvement collectif d’un grand nombre de particules.

Nous fournissons la première preuve numérique de la transition de Gardner dans les sphères
molles thermiques en 3d. Lorsqu’elle est présente, la phase de Gardner forme un “dôme” en termes
de température et de densité autour de la transition de blocage. La phase de Gardner et le régime
critique de la transition de blocage ont une forme similaire, mais la région marginalement stable
est beaucoup plus étendue que celle de la criticalité de la transition de blocage.

Nous avons réussi à trouver dans quelles conditions physiques les verres tridimensionnels sont
marginalement stables, caractérisés par un paysage d’énergie hiérarchique. Cela ouvre la possibilité
d’explorer la physique et la dynamique à basse température de verres de structuraux caractérisés
par des paysages d’énergie complexes.

Ces résultats ont conduit à la publication d’un article, Ref. [226].

Dans le troisième travail de ce chapitre, intitulé “Effets de rajeunissement et de mémoire dans
un verre structurel”, nous tirons profit des résultats ci-dessus afin d’étudier la dynamique hors
d’équilibre des verres évoluant dans un paysage hiérarchique. Nous étudions l’influence de variations
cycliques de la température sur la dynamique des verres. Nous étudions des verres WCA préparés
à densité intermédiaire, pour lesquels une phase de Gardner a été trouvée à basse température.
Le fluide à haute température est soudainement refroidi à T1 dans la phase vitreuse, où il vieillit
pendant un temps t1. Le verre est ensuite refroidi à une température T2 < T1. Pour T2 suffisamment
bas, la dynamique du vieillissement redémarre. Cet effet non trivial de “rajeunissement” est dû à la
structure hiérarchique du paysage d’énergie du verre. Le verre reste durant t2 = t1 à la température
T2, avant d’être réchauffé à T1. à T1, le verre a gardé une “mémoire” de son état, et la dynamique
de vieillissement reprend comme si rien ne s’était passé à T2.

Les effets de rajeunissement et de mémoire ont été utilisés dans le passé pour comparer et classer
différents types de verres. Nous démontrons que dans certaines conditions, les verres structurels
tels que les verres colloïdaux et granulaires se comportent comme des verres de spin plutôt que
des verres moléculaires. Nos trois études numériques rationalisent l’absence d’effets de mémoire
et de rajeunissement dans les verres atomiques et moléculaires. Leur comportement est dominé
par la présence de quelques défauts localisés et non par une distribution hiérarchique des barrières
d’énergie correspondant à des défauts étendus.
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Ces résultats ont conduit à la publication d’un article, Ref. [227].

Dans le quatrième travail de ce Chapitre, “Dépletion des systèmes à deux niveaux dans des
verres ultrastables numériques”, nous étudions les propriétés classiques et quantiques d’effet tunnel
des défauts localisés identifiés dans le travail “Absence de stabilité marginale dans un verre struc-
turel”.

Pendant les années 70, des experiences ont eu lieu afin de d’observer les propriétés de transport
des verres de température ambiante jusqu’à basse température, vers environ 1 K. Alors que la
théorie de Debye pour les solides cristallins prédit que la chaleur spécifique varie comme T 3 à
basse température, les mesures montrent qu’elle varie comme T de faćon quasi universelle dans
les verres [48]. Cela implique qu’il existe des excitations autres que les phonons dans les verres
à très basse température. Peu après la publication de ces résultats expérimentaux, un modèle
phénoménologique a été proposé pour les rationaliser [51]. Depuis, l’idée selon laquelle le désordre
inhérent aux verres donne lieu a des défauts supplémentaires, appelés systèmes à deux niveaux
(TLS), est largement répandue et acceptée. Ces défauts correspondent à un ensemble de particules
qui peuvent prendre deux configurations proches en énergie, qui peuvent être excitées par effet
tunnel à basse température. Ces défauts ne sont pas observables directement dans les expériences,
ce qui limite notre compréhension. Notre étude numérique est motivée par le fait que les verres
préparés par dépôt physique en phase vapeur à une température de 0.85 Tg, ne présentent pas ces
anomalies soit-disant “universelles” [69]. Par ailleurs, il semblerait que ces verres déposés en phase
vapeur (VD) se trouvent profond dans le paysage d’énergie [229]. D’autres mesures indiquent que
les verres ultrastables sont anisotropes. La question actuelle est de savoir si la suppression des TLS
est due à l’anisotropie des verres, ou à leur faible enthalpie.

Nous apportons un nouvel éclairage sur ces questions à la fois anciennes et récentes. Nous
utilisons la méthode présentée dans le chapitre 4 pour préparer des verres numériques dans une
gamme de stabilités sans précédent. Cela revient à ajuster le taux de trempe utilisé lors de la
préparation du verre. Nous nous concentrons en particulier sur trois stabilités du verre, appelées
hyper-trempé, liquide refroidi, et ultrastable.

Nous développons une méthode permettant d’identifier les minima proches dans le paysage
d’énergie potentielle, ou “double puits” (DWP). Nous étudions les paramètres classiques des DWPs,
en particulier la barrière énergétique, l’asymétrie, le nombre de particules impliquées dans le fran-
chissement de la barrière. Nous analysons ensuite les propriétés quantiques des DWP, en résolvant
l’équation de Schrödinger unidimensionnelle pour le chemin d’énergie minimum reliant les deux
minima. Nous calculons la levée de dégénérescence δE des DWPs, sa distribution de probabilité,
et identifions ceux qui sont actifs en dessous de 1 K et qui correspondent à des systèmes à deux
niveaux (TLS). Nous montrons que la densité des TLS diminue avec la stabilité du verre, confirmant
les résultats expérimentaux récents. Les verres numériques étant isotropes, nous concluons que la
densité des TLS est directement reliée à la stabilité du verre. L’universalité des anomalies vitreuses
proviendrait de la similarité des protocoles utilisés (trempe d’un liquide), et ne serait donc pas une
caractéristique universelle des solides désordonnés.

Ces résultats ont conduit à la publication d’un article, Ref. [228].
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Le chapitre 4 présente l’élaboration d’un nouvel algorithme numérique capable d’équilibrer des
liquides surfondus sous la température de transition vitreuse expérimentale.

Le développement de l’algorithme SWAP Monte Carlo a ouvert la voie à des études numériques
de liquides surfondus dans un régime de température auparavant inaccessible. La plupart des
travaux numériques présentés dans cette thèse ont été rendus possibles par cette avancée récente.
Dans ce travail, nous développons un algorithme alliant simulations par dynamique moléculaire
et Monte Carlo. L’algorithme consiste en une succession de courts blocs de simulations par dy-
namique moléculaires, dans lesquelles les diamètres des particules sont constants, et de courts blocs
de simulations swap Monte Carlo, pendant lesquels les diamètres des particules sont échangés selon
un critère de Metropolis. Cet algorithme est implémenté dans le logiciel de simulations numériques
LAMMPS, largement utilisé en simulations numériques. L’objectif de mettre au point un algo-
rithme flexible, accessible et efficace a été atteint. La dynamique moléculaire peut être parallelisée,
c’est-à-dire exécutée sur plusieurs processeurs à la fois, ce qui permet une réduction du temps de
calcul. Nous optimisons l’algorithme et ses paramètres pour obtenir la meilleure efficacité, que
nous comparons à la méthode SWAP Monte Carlo. Nous trouvons que cette méthode est aussi effi-
cace que SWAP MC lorsqu’elle est exécutée en série (un processeur). Notre implémentation dans le
package LAMMPS rend l’algorithme accessible à une large communauté d’utilisateurs. Cependant,
lorsqu’elle est exécutée en parallèle, la version actuelle de l’algorithme ne permet pas de gagner en
efficacité. L’accélération du temps de calcul obtenue dans la dynamique moléculaire de l’algorithme
est contrebalancée par un coût plus élevé de la parallélisation du code Monte Carlo. Cette méthode
hybride est utilisée pour préparer les configurations de verres étudiées dans le chapitre 3. Cette
méthode permet de faire facilement des simulations à pression constante, dont les résultats sont
présentés dans le chapitre 5.

Ces résultats ont conduit à la publication d’un article, Ref. [213].

Dans le chapitre 5, nous employons la capacité développée pour équilibrer des liquides à des
températures avoisinant la transition vitreuse expérimentale pour examiner les théories thermody-
namique pour la formation du verre.

Dans le travail “La relation Adam-Gibbs est-elle valable dans des liquides surfondus simulés?”,
nous traitons de la validité de la relation Adam-Gibbs (AG) qui relie l’entropie configurationnelle
et le temps de relaxation du liquide surfondu. Nous abordons également la relation généralisée
Adam-Gibbs (gAG), obtenue au sein de la théorie Random First Order Transition (RFOT). Cette
dernière fait intervenir des exposants non triviaux θ et ψ qui correspondent respectivement à un
terme d’interface et un exposant dynamique. En utilisant l’accélération de la thermalisation, nous
revisitons les tests numériques des relations d’AG. Plus important encore, nous abordons leur va-
lidité dans un vaste régime de température, pertinent pour tester les prévisions théoriques. Nous
employons des mesures d’entropie configurationnelle, de longueur point-to-set et de temps de relax-
ation pour mettre à l’épreuve les prédictions théoriques. Nous montrons que pour quatre modèles
formateurs de verre, étudiés en deux ou trois dimensions, la prédiction Adam-Gibbs est erronée.
L’introduction de deux exposants, l’un reliant l’entropie configurationnelle à la taille typique des
régions amorphes corrélées, et l’autre reliant la longueur des régions amorphes corrélées au temps
de relaxation du liquide. Ces deux exposants sont mesurés numériquement, et nous obtenons des
valeurs en accord avec les prédictions théoriques. Nous constatons que l’introduction d’un terme
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de surface qui reflète l’existence d’un ordre amorphe est un ingrédient nécessaire à une descrip-
tion correcte du ralentissement dynamique. Enfin, nous utilisons des données expérimentales pour
fournir une base solide à notre résultat. Nous trouvons qu’une étude fine des résultats expérimen-
taux valide notre conclusion, à savoir que la relation d’Adam-Gibbs n’est pas vérifiée lorsqu’elle est
considérée sur une large gamme de températures.

Ces résultats ont conduit à la publication d’un article, Ref. [243].
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