
HAL Id: hal-02550157
https://hal.science/hal-02550157

Submitted on 22 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the spectrum of composite resonances
Michele Frigerio

To cite this version:
Michele Frigerio. On the spectrum of composite resonances. Strong dynamics for physics within
and beyond the Standard Model at LHC and Future Colliders, Sep 2019, Trento, Italy. pp.91-97.
�hal-02550157�

https://hal.science/hal-02550157
https://hal.archives-ouvertes.fr


Frascati Physics Series Vol. 70 (2019)
LFC19: Strong dynamics for physics within and beyond the Standard Model at LHC and Future Colliders

September 9-13, 2019

ON THE SPECTRUM OF COMPOSITE RESONANCES

Michele Frigerio
Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, Montpellier, France

Abstract

I discuss the infrared mass spectrum of strongly-coupled gauge theories, that induce the Higgs as a
composite pseudo-Nambu-Goldstone boson. The set of composite states accompanying the Higgs is
determined by the symmetries of the theory. Here we estimate their mass spectrum by non-perturbative
techniques inspired by QCD, as well as by exploiting gauge-gravity duality.

1 Composite Higgs: motivations and relevant energy scales

As the Large Hadron Collider (LHC) did not find new states significantly coupled to the Standard Model

(SM) below the TeV scale, any SM extension by such heavy states suffers from a little hierarchy problem,

as the mass of the scalar Higgs boson lies close to the 100 GeV scale. Still, some SM extensions have the

potential to address the big hierarchy between the TeV scale and the Planck scale. One possibility is to

avoid elementary scalar fields, and assume the observed Higgs is a composite object, with a compositeness

scale f & 1 TeV. This scenario requires a strongly-coupled sector, whose spectrum generically includes

several additional composite states besides the Higgs. The mass of the lowest-lying states cannot exceed

∼ 4πf , and some could be significantly lighter and within the LHC reach. Definite predictions for the

mass spectrum require to specify the strongly-coupled theory in the ultraviolet (UV). Here we will assume

it is a gauge theory of fermions, that confines in the infrared. We will estimate its mass spectrum in some

well-defined approximations, by employing non-perturbative techniques inspired by QCD 1), as well as

gauge-gravity duality techniques 2).

In models where the Higgs is a pseudo-Nambu-Goldstone boson (pNGB) the electroweak scale, v '
246 GeV, is induced in two steps. The theory has a global (flavour) symmtry GF , that is spontaneously

broken to a subgroup HF at the scale f . The electroweak symmetry SU(2)L × U(1)Y is embedded in
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HF , and the set of NGB includes the SM Higgs doublet. Weak sources of explicit symmetry breaking

– typically loops involving the top-quark Yukawa coupling – misalign the vacuum, inducing an effective

potential for h, whose minimum determines v. The electroweak precision parameters as well as the Higgs

couplings receive corrections of order v2/f2, and present data already imply f & 1 TeV.

If the scale f is induced by strong dynamics, it is protected from large radiative corrections from UV

physics, and the pNGB Higgs is a composite object. 3) The spectrum of composite resonances has typical

mass gap m∗ ∼ g∗f , where 1 . g∗ . 4π is the generic inter-resonance coupling. Since only resonances

significantly lighter than ∼ 4πf have chances to be discovered at the LHC, our aim is to investigate the

strong dynamics in order to find a rationale for the lightness of some composite states, besides the pNGB

Higgs. In some instances light states are also welcome to minimise the fine-tuning in the Higgs potential.

2 UV-complete composite-Higgs models

A prototypical strongly-coupled sector is provided by an asymptotically-free gauge theory, with a hyper-

colour gauge group GC and fermion matter fields only (no scalars). We will assume that the theory enters

a strongly-coupled, walking (approximately scale-invariant) regime at some UV scale ΛUV , and eventually

develops a mass gap at some IR scale m∗. A large walking region, that is, a hierarchy m∗ � ΛUV , is

required to induce the SM Yukawa couplings and to suppress flavour violation at the same time.

The choice of the appropriate gauge theory of fermions requires some exercise in group theory.

In order to correctly describe electroweak symmetry breaking and preserve the SM custodial symmetry

to a good approximation, the flavour-symmetry-breaking pattern should satisfy GF → HF ⊃ SU(2)L ×
SU(2)R, and the associated set of NGBs should include the Higgs transforming as h ∼ (2L, 2R). A generic

gauge theory of fermions has flavour symmetry GF = SU(N1) × · · · × SU(Nk) × U(1)k−1, where Ni is

the number of Weyl fermions in the representation Ri of the gauge group GC . The minimal possibility

satisfying the above requirements is provided by GF = SU(4) → HF = Sp(4), that corresponds to

four Weyl fermions in a pseudoreal representation of GC . The simplest pseudoreal representation is the

fundamental of a group Sp(2n). Thus, we are led to choose as hypercolour group GC = Sp(2NC), with

Weyl fermions ψa ∼ �Sp(2NC), where a = 1, 2, 3, 4 is the flavour index.

Once the hypercolour theory confines, the constituent degrees of freedom, ψa and the hypergluons,

are replaced by composite, hypercolour-singlet states. They are associated to operators constructed

out of the constituent fields, in given Lorentz and flavour representations. Let us limit ourselves to

fermion-bilinear operators, which excite several spin-0 and spin-1 composite states, including the NGB

Higgs, as illustrated in table 1. Scalars organise into a flavour-singlet σ ∼ 1Sp(4) and a flavour-multiplet

SÂ ∼ 5Sp(4), where Â runs over the five broken generators. Pseudoscalars sit in the same representations,

η′ ∼ 1Sp(4) and GÂ ∼ 5Sp(4). The latter is the NGB multiplet, that is massless in the chiral limit,

G = {h, η} ∼ {(2L, 2R), (1L, 1R)}: note that the Higgs doublet is accompanied by an electroweak singlet

state. On the other hand η′ is expected to be massive, because the associated flavour symmetry, an axial

U(1)ψ, is anomalous with respect to GC , in analogy with the axial U(1) in QCD. Coming to spin-one

states, vectors organise in a multiplet V Aµ ∼ 10Sp(4), where A runs over the ten unbroken generators.

Axial vectors transform as aµ ∼ 1Sp(4) and AÂµ ∼ 5Sp(4). It is also possible to establish spectral sum

rules 1), that relate the masses and decay constants of the various states.

Before discussing the dynamics, let us generalise the model to the case of a large number of flavours

NF . In fact, in a realistic model the group GF should contain several other symmetries besides SU(2)L×
SU(2)R. Firstly, in order to induce the SM Yukawa couplings, one needs to mix the SM fermions with

composite operators. The latter should have the same colour and electroweak charges as the various SM
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Lorentz Sp(2NC) SU(4) Sp(4)

ψai (1/2, 0) i 4a 4

ψai ≡ ψ†ajΩji (0, 1/2) i 4a 4∗

Mab ∼ (ψaψb) (0, 0) 1 6ab 5 + 1

Mab ∼ (ψaψb) (0, 0) 1 6ab 5 + 1

aµ ∼ (ψaσ
µψa) (1/2, 1/2) 1 1 1

(V µ, Aµ)ba ∼ (ψaσ
µψb) (1/2, 1/2) 1 15ab 10 + 5

Table 1: The transformation properties of the constituent fermions, and of the spin-0 and spin-1 fermion
bilinears, in the NF = 2 model. The hypercolour Sp(2NC) indexes i, j, . . . are contracted by the antisym-
metric invariant tensor Ωij , and brackets stand for hypercolour-invariant contractions. Spinor indexes
are understood, and a, b, . . . are flavour SU(4) indexes.

fermions, therefore the whole SU(3)c × SU(2)L × U(1)Y needs to be embedded within GF . Secondly,

the SM global symmetries, such as baryon and lepton number, or custodial, should be also included in

GF , to avoid that hypercolour dynamics violates these symmetries too strongly. Thus, one is led to

introduce additional constituent fermions, ψa ∼ �Sp(2NC), with a = 1, . . . , 2NF , corresponding to the

flavour-symmetry-breaking pattern GF = SU(2NF ) → HF = Sp(2NF ), with NF & 5 depending on

the model details. 2) One also needs 4, 1) to introduce constituents fermions X in larger representation

of Sp(2NC), in order to build hypercolour-singlet trilinear operators such as (ψψX), that interpolate

fermionic composite states, such as top-quark partners. We argue that, to preserve asymptotic freedom,

it is preferable to minimise the number of X flavours, and rather assign the required SM charges to the

2NF copies of ψ. Here we will neglect the X sector, and discuss only the spectrum of ψ-bilinear operators.

To go beyond the symmetry considerations above, and derive a quantitative estimate of the mass

spectrum, one needs to model the hypercolour dynamics, either numerically on the lattice, or by some

analytical approximations in the large-NC limit. We will show that the latter provide relatively rapid

and general estimates for the spectrum, complementarily to lattice computations, which are currently

limited to Sp(2NC) theories with NC = 1, 2. 5) In order to determine the spectrum of composite states

associated to a given operator, one has to determine the poles of the associated two-point correlation

function. Let us consider, for illustration, the case of vector currents,

i

∫
d4x eiq·x〈vac|T{J Aµ (x)J Bν (0)}|vac〉 = ΠV (q2)δAB(qµqν − ηµνq2) (1)

where J Aµ = ψσµT
Aψ. In the large-NC limit one expects the form factor to behave as a sum over

narrow resonances, ΠV (q2) ' ∑n f
2
V n(q2 −m2

V n)−1. Our aim is to estimate the position of the poles,

m2
V n, and similarly for other two-point correlators. We will discuss two methods that provide an analytic

approximation for such correlators.

3 Spectrum of mesons à la Nambu-Jona Lasinio

The Nambu-Jona Lasinio (NJL) model approximates strong dynamics by effective four-fermion inter-

actions. This corresponds to give a dynamical mass to the gauge bosons and decouple them, writing

an effective Lagrangian for the constituent fermions only. For the Sp(2NC) hypercolour theory, the
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SU(2NF )-invariant Lagrangian for NF = 2 reads 4)

Lscalar =
κA

2NC
(ψaψb)(ψa ψb)−

κB
8NC

[
εabcd(ψ

aψb)(ψcψd) + h.c.
]
, (2)

where for simplicity we included only scalar-scalar operators. The κA operator is induced by a tree-level

hypergluon exchange, while the κB operator accounts for the anomaly of the axial U(1)ψ symmetry. One

can show 4, 1) that this NJL Lagrangian can describe spontaneous breaking SU(4)→ Sp(4), by inducing

a non-zero mass gap, NCMψ = (κA + κB)〈ψψ〉 6= 0, where Mψ is the dynamical mass for the fermions.

To estimate two-point correlators, one can resum massive fermion loops, at leading order in 1/NC :

= + · · ·φ φ + + φφ φφφφ Kφ KφKφ

Here φ is the meson associated with a given fermion bilinear, Kφ is the corresponding four-fermion

coupling, and the resummation describes the composite meson propagator,

Πφ(q2) ≡ Π̃φ(q2)

1− 2KφΠ̃φ(q2)
, (3)

where Π̃φ is the one-loop function. The resummation of the geometric series induces a pole in the compos-

ite propagator Πφ, for some specific value of q2, that defines the meson mass in the NJL approximation.

In fig.1 we show our results for the pole of each meson correlator, as a function of the dimensionless

four-fermion coupling ξ ≡ (κA+κB)Λ2/(4π2), where Λ is the cutoff of the fermion loops. One can check 1)

that ξ ≥ 1 is needed to induce a non-zero Mψ and global symmetry breaking, while ξ ≤ (1 − ln 2)−1

is needed for the mass gap not to exceed the cutoff, Mψ ≤ Λ. The NGB decay constant f can also be

computed 1) as a function of ξ: in fig.1 the meson masses are given in units of f . Note the pole positions

do not scale with NC , however f ∼ N
1/2
C , therefore the physical masses decrease with the number of

colours if f ' TeV is kept fixed. The only exception is the η′ pole, that scales as N
−1/2
C , as the axial

anomaly vanishes in the large-NC limit.

Assuming the dynamics is dominated by a current-current operator (corresponding to a single hy-

pergluon exchange), one can relate the scalar-scalar and vector-vector operators by using Fierz identities:

this fixes the relative size of spin-zero and spin-one meson masses. The latter are always heavy, & 5f ,

while spin-zero mesons can become light in several cases. First, NGBs are massless, Mh = Mη = 0, as

we neglected possible sources of SU(4) explicit breaking. Second, the singlet pseudoscalar η′ also be-

comes light in the large-NC limit. Third, the singlet scalar σ becomes light as the four-fermion coupling

approaches the critical value ξ = 1. This lightness indicates that the four-fermion operator becomes

marginal as ξ → 1, that is, the explicit breaking of scale invariance vanishes, and σ can be interpreted as

an approximate dilaton.

4 Spectrum of mesons via gauge-gravity duality

If the hypercolour sector is close to a fixed point, it behaves as an approximately Conformal Field Theory

(CFT). The CFT in the limit of large number of colours, NC , and large ’t Hooft coupling, λ ≡ g2
CNC , has

a holographic description in terms of a five-dimensional (5d) theory of gravity in the classical and weakly-

coupled regime, with Anti-de Sitter (AdS) metric, ds2 = dr2 + e2A(r)dx2
1,3 with warp factor A(r) = r. 6)

Holography implications for composite Higgs scenarios are reviewed in Ref. 7).
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Figure 1: The masses of the spin-zero (blue) and spin-one (red) mesons in units of the Goldstone decay
constant f , as a function of the dimensionless four-fermion coupling ξ ≡ (κA+κB)Λ2/(4π2), for κB/κA =
0.1 and NC = 4. The Goldstone multiplet (not shown) is massless, MG = 0, and the two axial-vector

multiplets are degenerate, ma = MA. See Ref. 1) for more details.

According to the holographic dictionary, the CFT global symmetry corresponds to a 5d gauge

symmetry GF , and CFT operators OΦ are associated to 5d fields Φ, in the same GF representation

and with the same spin. Moreover, CFT correlators correspond to 5d correlators built from the bulk

action on-shell, Son−shellbulk , in particular they scale in the same way with NC and NF . 2) For example,

the glue-glue correlator 〈GijGij〉 ∼ N2
C can be extracted from a 5d gravity action, Sbulk[R] ∝ N2

C , with

R the Ricci scalar. On the other hand, the fermion-fermion correlator 〈ψai ψajΩij〉 ∼ NCNF is associated

to a 5d scalar action, Sbulk[Tr Φab] ∝ NCNF , with a 5d scalar Φab dual to the operator (ψaψb).

The CFT departure from scale invariance in the IR with a mass gap m∗ can be described by adding

a 5d scalar field with non-flat profile, σ(r). The latter back-reacts on the metric, inducing a warp factor

A(r) 6= r, that is, a departure from AdS. Let us consider the case σ(r) ≡ Tr [Φab(r)]/NF , that is, the

scalar associated to flavour-symmetry breaking. The gravity-scalar interplay is described by

Sbulk ⊃ N2
C

∫
d5x
√−g

[
R

4
− Λc

2
− xF

(
1

2
gMN∂Mσ∂Nσ + V (σ)

)]
(4)

where xF ≡ NF /NC and Λc a cosmological constant. We are interested in the large NF case, to ac-

commodate all the required SM global symmetries. Thus, we are led to consider the Veneziano limit,

with large NC and constant xF ∼ 1. This implies that the back-reaction of the flavour sector on the 5d

geometry is an order-one effect. Indeed, for some appropriate choice of the potential V (σ), motivated by

string theory compactifications, the equations of motion imply 2) that A(r) and σ(r) have a singularity

at some finite value r = rIR, which corresponds to the dynamical generation of a mass gap, m∗ 6= 0. This

opens the possibility to relate m∗ and the GF spontaneous-breaking scale f , that is associated to 〈Oσ〉.
The nature of scale-invariance breaking is determined by the UV behaviour of σ(r),

σ(r) '
r→∞

(
σ−e

−∆−r + σ+e
−∆+r

)
, ∆± = 2±

√
4 +m2

σ , (5)

where the bulk mass mσ as well as the values of σ± depend on the choice of V (σ). We are interested in the

regime −4 ≤ mσ ≤ 0, corresponding to a departure from scale-invariance in the IR. The dual operator Oσ
has scaling dimension ∆+. A non-zero σ− corresponds to a relevant deformation of the CFT, ∆LCFT =

σ−Oσ. This amounts to explicit breaking of scale invariance and GF : the CFT couplings acquire non-zero

β-functions, and there are no massless dilaton nor exact NGBs. A non-zero σ+ corresponds to a vacuum
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Figure 2: The masses of the flavour-singlet scalars (blue), flavour-multiplet scalars (blue triangles),
pseudoscalars (cyan), vectors (red), axial vectors (magenta) and spin-two glueballs (green), in units of
the lightest spin-two mass (left panel) and in units of the Goldstone decay constant f (right panel), as a
function of the anomalous dimension ∆.

expectation value, 〈Oσ〉 ∼ σ+, that controls spontaneous breaking of scale invariance and GF . In models

with σ− → 0 one then finds a massless dilaton as well as massless NGBs.

In order to estimate the composite mass spectrum, let us extract the poles of two-point correlators

using the gauge-gravity duality. The solution of the equations of motion for A(r) and σ(r) fixes the 5d

background. One can expand Sbulk around such background, to quadratic order in the field fluctuations,

for any 5d field φi, dual to the CFT operator of interest Oi. Solving the equations of motion linear in the

fluctuations, one can compute Sbulk on shell. The latter determines the CFT correlators, according to

〈O1O2〉 = lim
r→∞

δ2Son−shellbulk [φi]

δφ1δφ2
. (6)

Let us consider the CFT correlator in momentum space, and call the 4d momentum q. The 5d field

fluctuations satisfy appropriate boundary conditions 2) only for discrete values of q2, that correspond to

the mass of the composite states. For example, the axial-vector transverse correlator takes the form

〈Jµ(q)Jν(−q)〉 = − lim
r→∞

δ2Son−shellbulk

δAµ(−q, r)δAν(q, r)
∼ lim
r→∞

[
e2A(r)(ηµν − qµqν/q2)

∂rAρ(q, r)

Aρ(q, r)

]
. (7)

In this case the poles are given by the values of q2 where the 5d gauge field vanishes asymptotically,

limr→∞Aρ(q, r) = 0. Moreover, the value of f2 is given by the residue of this correlator at q2 = 0.

In the left panel of fig.2 we show our preliminary result for the spectrum of bosonic resonances

(spin 0, 1 and 2), as a function of the parameter ∆, defined by σ(r) ∼ e−∆r for r → ∞, in units

of the smallest spin-two mass. The dilaton and NGBs remain massless for 2 < ∆ < 4 (spontaneous

symmetry breaking), while they are lifted for 0 < ∆ < 2 (explicit symmetry breaking). With the given

choice of model parameters the dilaton mass grows faster than the pNGB one. Scale invariance may

be broken explicitly by additional flavour-singlet sources, that raise the mass of the dilaton only. 2)

From the phenomenological perspective, one should include radiative corrections from SM couplings, in

particular the top quark Yukawa, before comparing the pNGB mass with the 125 GeV scalar observed

at the LHC. An even lighter dilaton cannot be excluded, as its couplings to the SM are suppressed. 8)

In the spontaneous breaking regime, one can estimate f and display the spectrum in units of f , see the
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right panel of fig.2. We remark that the exact value of f is determined by the overall normalisation of the

gauged-GF kinetic term. 2) While the f scaling with NC and NF is generic, the order-one normalisation

can be predicted only in a complete top-down model coming e.g. from a specific string theory.

5 Perspective

We showed that, in UV-complete models for the Higgs compositeness, a plethora of composite states are

expected to accompany the Higgs boson. We focused on the composite bosons of the hypercolour theory,

associated to fermion-bilinear operators. Similarly, one can consider composite fermions, associated to

fermion-trilinear operators, relevant to induce Yukawa couplings, especially the large top-quark one. In

order to study the strongly-coupled sector, one needs to model non-perturbative effects, making radical

assumptions to simplify the dynamics. We considered the NJL model and a gauge-gravity duality model,

showing that they catch several essential features of the mass spectrum, and thus provide an important

guidance for future searches, even though quantitative estimates are model-dependent. The crucial phe-

nomenological question is whether some new states could be significantly lighter than the compositeness

scale, m∗ ∼ 10 TeV. The rationale for light spin-zero states is to realise a hierarchically large (small)

spontaneous (explicit) breaking scale for global symmetries. Light spin-one-half states may occur in the

case of approximate chiral symmetries of the hypercolour theory. Our models provide exploratory tools

to characterise such composite physics at the high energy frontier.
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