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Abstract

Polymer nanocomposites, systems of polymers containing nanoparticles (NPs), are fasci-
nating systems that have many applications in material science, biology and medicine, but
also pose challenges to theoretical physics. One of the fundamental problems in the physics
of nanocomposites is to understand how the structure and dynamics of the system depends
on key parameters, such as NP size and volume fraction and the typical size of the polymeric
mesh. In this thesis we use molecular dynamics simulations to study the structural and dyna-
mic properties of NPs embedded in liquid and solid polymer-nanocomposites. We observe
that when weakly attractive, well dispersed NPs are added to a dense polymer solution, both
the polymers and the NPs experience a dynamical slowing down. We find that, in qualitative
agreement with experiments, this dynamical slowing down is captured by a confinement pa-
rameter in the form h/λ, where h is the average distance between the surfaces of neighboring
NPs (interparticle distance). We are able to show that for the NPs, λ can be interpreted as
the hydrodynamic radius of the NP, whereas for the polymers it behaves as a cooperativity
length scale. Simulating disordered, polydisperse polymer networks containing purely repul-
sive NPs, we find that small NPs can freely diffuse through the entanglement mesh, while
large NPs are transiently trapped and can only move through a sequence of “jumps” (hop-
ping motion). We find that the parameter controlling NP localization is the ratio between the
NP diameter and the localization length of the crosslinks. Finally, we propose a new method
to characterize the geometrical mesh size in polymer liquids, a quantity that is important to
describe the diffusion of NP in a disordered medium.
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Résumé

Les nanocomposites de polymères, systèmes de polymères contenant des nanoparticules
(NP), sont des systèmes fascinants qui ont de nombreuses applications en science des maté-
riaux, en biologie et en médecine, mais qui posent également des défis en physique théorique.
L’un des problèmes fondamentaux de la physique des nanocomposites est de comprendre
comment la structure et la dynamique du système dépendent de paramètres clés, tels que la
taille et la fraction volumique des NP et la taille typique du maillage polymère. Dans cette
thèse, nous utilisons des simulations de dynamique moléculaire pour étudier les proprié-
tés structurelles et dynamiques des NP incorporées dans des nanocomposites de polymères
liquides et solides. Nous observons que lorsque des NP faiblement attractives et bien disper-
sées sont ajoutées à une solution de polymères dense, les polymères et les NP subissent un
ralentissement dynamique. Nous trouvons que, en accord qualitatif avec les expériences, ce
ralentissement dynamique est capturé par un paramètre de confinement sous la forme h/λ,
où h est la distance moyenne entre les surfaces des NP voisines (interparticle distance). Nous
pouvons montrer que pour les NP, λ peut être interprété comme le rayon hydrodynamique
des NP, alors que pour les polymères il se comporte comme une échelle de longueur de coo-
pérativité. En simulant des réseaux de polymères polydispersés désordonnés contenant des
NP purement répulsives, nous constatons que les petites NP peuvent diffuser librement à
travers le maillage d’enchevêtrement, tandis que les grosses NP sont piégées de façon tran-
sitoire et ne peuvent se déplacer que par une séquence de “sauts” (mouvement de hopping).
Nous constatons que le paramètre contrôlant la localisation des NP est le rapport entre le
diamètre des NP et la longueur de localisation des crosslinks. Enfin, nous proposons une
nouvelle méthode pour caractériser le maillage géométrique dans les liquides de polymères,
une quantité importante pour décrire la diffusion des NP dans un milieu désordonné.
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1
I N T R O D U C T I O N

This thesis is about polymers. It is customary for books and research papers on X to begin
by informing the reader that X is ubiquitous, and can be found everywhere in everyday life.
There are few subjects, however, for which this really holds true: Polymers are one of these
subjects. A polyester shirt, a plastic bottle, nylon stockings, rubber car tires, a beef steak, a
paper airplane, leather gloves, a silk dress: Most of the matter that we touch, see and even eat
everyday is made of or contains polymers. Our own body contains an enormous variety of
polymers, from the DNA which stores our genetic information, to proteins like actin, which
is essential for muscle contraction and is one of the main components of the cytoskeleton,
or hemoglobin, which is responsible for oxygen transport in blood cells. It is therefore clear
why the study of polymers is such an active area of research in many different fields, such as
engineering, material science, chemistry and biology.

Figura 1 – Entangled poly-
mers

Polymers (long molecules made of covalently bonded ele-
mentary units called monomers) are an extremely interesting su-
bject, however, also for a theoretical physicist. In (non-charged)
atomic or molecular liquids, spatial correlations are usually
short-ranged and the dynamical behavior of an atom/molecule
is mainly dictated (at length scales where hydrodynamics can
be neglected) by that of its close neighbors1. Polymer liquids,
however, have built-in long-range interactions originating from
the connectivity of the chains2,3. The dynamics of a monomer
in a polymer chain does not only depend on nearby molecules,
but also on each of the monomers which are part of the same
chain: If one extremity of the chain moves, the whole chain has
to follow. This can lead to very complex long-range correla-

tions in polymer liquids with long chains, as it is clear from the schematic representation in
Fig. 1. If we imagine to pull out a chain from such a system, we will quickly realize that this
is by no means easy: To pull out chain 1, we have first to pull out chains 2 and 3, but to pull
out chains 2 and 3 we have first to pull out chains 4, 5, 6, and 7, and so on. The task is almost
impossible, as those who have tried to remove tangled hair from a hair brush will know very
well. In polymer physics, this effect is known as entanglement (not to be confused with the
quantum effect!), and it is at the origin of many of the peculiar behaviors of polymeric liquids,
some of which are still not understood today.

Entanglements are one of the reasons why the “spherical molecule” approximation, which
is so dear to theoretical physicists, and can be quite successful in obtaining the main quali-
tative features of some molecular liquids, is bound to fail miserably if used to describe a
dense polymer liquid4. When the chains are shorter and/or the density lower, entanglemen-
ts disappear and a theoretical description of the system becomes somewhat easier2. Even
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in this case, however, the situation is complicated by the presence of several different length
and time scales: From the length scale of a single bond/monomer (' 1 Å) to the scale of
the persistence length5 (' 10 Å) and the scale of the whole chain (' 100 Å). In many-chain
systems, even larger length scales can intervene: Close to the critical point of demixing of
a polymer blend, density fluctuations with typical length scales of ' 1000 Å are predicted
and observed6. Whereas in an atomic liquid the only relevant length scale is in most cases
the atomic radius, in a polymeric liquid all these length scales are relevant and associated to
qualitatively different types of motion, which happens on very different time scales. Even for
an isolated polymer, the long-range interactions induced by the chain’s connectivity make
an exact theoretical treatment extremely challenging, to the point that even predicting the
chain conformation in 3D space is a very non-trivial task7. A detailed mathematical descrip-
tion of even a simple polymeric system is thus almost impossible: This is when computer
simulations come into play.

Figura 2 – A self-
avoiding random
walk in 2D.

Computer simulations allow to study polymeric systems with all
the essential details, but without the approximations which are usual-
ly introduced in analytical models in order to make the calculation
manageable. However, a full atomistic simulation of a polymer li-
quid, employing chemically realistic force fields, is only feasible for
very small systems6: This is apparently very troublesome, since, as
discussed above, the relevant length scales in such systems can be
much larger than the size of a monomer. Luckily, however, it turns
out that polymers have some universal properties which depend on
the existence of very few essential ingredients, such as chain con-
nectivity and excluded volume. These characteristics are easily in-
corporated in simulations by adopting a coarse-grained model6, i.e., a
simplified description of the polymer itself. Many of the essential uni-
versal properties of polymer liquids are present in simulations which
model the polymer simply as a chain of hard spheres connected by ri-
gid bonds (“pearl necklace” model6). Even a simple random walk on
a lattice with the condition that the walk cannot visit the same lattice site twice (self-avoiding
random walk; see Fig. 2) correctly predicts many properties of polymers with astonishing
precision6. This is because, as we mentioned above, some properties of polymeric systems
are universal and do not depend at all on the particular chemical structure of the polymer.

In recent years, the simulation approach has been fruitfully applied to all kinds of polymer
systems: melts, blends, polyelectrolytes, gels, films, et cetera. One class of polymeric material
which received a lot of attention, mainly because of technological applications, is that of
polymer nanocomposites (PNC): Polymer solutions, melts or gels (but most commonly melts)
containing nanoparticles (NP), i.e., particles of size between ' 1 and ' 100 nm. From a
theoretical point of view, these systems are even more challenging than purely polymeric
ones, since the presence of the NPs brings into the system other relevant length, time and
energy scales: NP size, size of NP aggregates, NP-polymer interaction energy, typical time
scale of NP diffusion etc. The situation can become even more complex when considering
more peculiar NP types, such as polymer-grafted NPs. The behavior of PNCs is extremely
rich, and far from being completely understood8.

In this thesis, we will use a simulation approach to study the properties of dense polymer
solutions and disordered gels containing spherical NPs. In particular, we will focus on the dy-
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namics of the polymer chains (in the case of solutions) and of the NPs, trying to understand
what are the relevant parameters controlling their diffusion, and what is the microscopic me-
chanism behind the observed behaviors. The thesis is organized as follows. In Chapter 2

we give a brief historical overview of the main events of theoretical polymer science from its
beginnings to the present day, focusing in particular on the figures of three scientists who
revolutionized this field. In Chapter 3, we summarize the main concepts of polymer science.
In Chapter 4, we discuss some of the salient characteristics of PNCs, concentrating on PNCs
containing spherical NPs, which are the theme of this work. We also give a short outline of
the main theories dealing with the dynamics of NPs and polymers in PNCs. In Chapter 5, we
report and discuss the results of molecular dynamics simulations of a dense polymer solution
containing spherical NPs. We show that the diffusion of both polymers and NPs is captured
by a confinement parameter in the form h/λ, where h is the mean interparticle distance and
λ is a parameter. We also show that for the NPs, this parameter can be interpreted as the
hydrodynamic radius of the NPs. In Chapter 6, we study the structural and dynamic proper-
ties of disordered, polydisperse, defect-free polymer networks. In Chapter 7, we simulate the
same networks studied in Chapter 6, but this time with embedded NPs. We show that the
dynamics of the NPs is controlled by the ratio Cr between NP size and crosslink localization
length: NPs of size Cr . 1 can freely diffuse in the system, whereas NPs of size Cr & 1
are transiently trapped by the crosslink/entanglement mesh and can only diffuse through a
series of sudden “jumps” separated by long intervals of localization. We conclude in Chap-
ter 9 with a summary of this work and a discussion of the results obtained and of possible
directions for future research. Finally, in Chapter 8, we propose a new method to precisely
characterize the mesh size in polymer solutions using the concept of pore size distribution.
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2
A B R I E F H I S T O RY O F P O LY M E R S C I E N C E

Figura 3 – Hermann Stau-
dinger (1881–1965)

The term “polymer” was coined in 1833 by Jöns Jacob Berze-
lius, one of the founding fathers of modern chemistry, to de-
scribe compounds of the same chemical composition that exhi-
bited very different properties9. Eleven years later, polymers
gained immense technological relevance with the discovery of
the vulcanization process by the American chemist and engi-
neer Charles Goodyear, which gave birth to the rubber indu-
stry. It was not until 1922, however, that the German physicist
Hermann Staudinger understood the true nature of polymers
as long chains of identical repeating units10a. This represented
a revolutionary concept for Staudinger’s contemporaries, who
where extremely reluctant to accept the existence of molecules
with molecular mass exceeding 4000 g mol−1 and considered
micellar-type aggregates to be responsible for the unusual pro-
perties of such materials9,11. The existence of polymers was
finally acknowledge by the majority of the scientific commu-
nity during the late 20s, also thanks to the brilliant work of J.

Meyer, H. F. Mark and W. H. Carothers, the inventor of nylon11. In 1953, the pioneering work
of Staudinger was rewarded with the Nobel Prize for Chemistry “for his discoveries in the
field of macromolecular chemistry”.

The concept of long molecules of repeating units bound by covalent bonds had scarcely
found root when in 1930 W. Kuhn published the first paper in which the methods of statistical
physics were applied to a polymeric system, deriving formulas expressing the molecular
weight distribution in degraded cellulose. This work was followed in the successive years
by those of P. J. W. Debye, H. M. James, E. Guth, L. R. G. Treloar, M. L. Huggins and others.
However, the person who almost single-handedly laid the theoretical foundations of polymer
science was a young researcher who in 1934 joined Carothers team at Dupont: Paul John
Flory.

Working at Dupont, the young Flory was able to solve the problem of molecular size distri-
bution in condensation polymerization, showing that the molecular weights are distributed
exponentially12. In the following years, Flory revolutionized the theoretical understanding
of polymers: He developed the first quantitative theory of gelation (later generalized by W.
Stockmayer), one of the first theories of rubber elasticity, the Flory-Huggins formula for the
entropy of mixing of polymer solutionsband a theoretical explanation for the fact that the ef-
fective radius of real chains is larger than what predicted by the simple random walk model.

a Staudinger was also the one who coined the term “macromolecule”.
b This result was obtained essentially simultaneously by M. L. Huggins by A. J. Staverman 12.
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Flory predicted that the exponent ν, which is currently called “Flory exponent”, relating the
molecular radius to the molecular weight, would have a value of 3/5, which is very close to
the actual value of ' 0.588 yielded by modern theoriesc. Flory also showed, however, that
there exist a special temperature, which he referred to as the θ (theta) temperature, at which
a real chain adopts an ideal, random-walk configuration.

Figura 4 – Paul John Flory
(1910–1985)

He also predicted that a polymer would also assume an
ideal configuration in a dense melt (Flory’s ideality hypothesis),
since “Although a chain molecule in the bulk state interferes
with itself, it has nothing to gain by expanding, for the decrea-
se in interaction with itself would be compensated by increased
interference with its neighbors”11. This hypothesis proved to
be extremely accurate and was confirmed in numerous expe-
riments. In 1953, he published his Principles of Polymer Chemi-
stry11, which after more than half a century remains still to-
day a massively relevant text in the field. In 1974, Flory was
awarded the Nobel Prize for Chemistry “for his fundamental
achievements, both theoretical and experimental, in the physi-
cal chemistry of the macromolecules”. The work of Flory laid
the foundations for the work of many theoretical physicists in
the years that followed his seminal works. Among this multitu-
de of scientist, however, two stand out as giants to almost rival
Flory’s own legacy.

Figura 5 – Sir Samuel Frede-
rick Edwards (1928–2015).
From Ref. 13.

Samuel Frederick Edwards begun his career at Harvard as
a student of Nobel Prize winner Julian Schwinger, working on
quantum electrodynamics and high energy physics13. In the
mid 1960s, as professor of Theoretical Physics at the University
of Manchester, Edwards met with Geoffrey Gee, head of chemi-
stry, to discuss the outstanding problems in his area in the hope
of finding new interesting problems that could provide him a
challenge. It happened like this that Edwards became intere-
sted in polymers. In his own words, the problems of polymer
physics

...had all been tackled in the Fifties by Flory, Huggins,
Zimm, Stockmayer, Rouse, Wall and Gee himself. The
outline of the subject was all there and I was coming
into it ten years late. But all these authors, impressive
as their work was, did not know the advances made in
field theories and I realized the long random chains of
polymers were a physical manifestation of field theories.

A polymer was a Feynman path, the density of a polymer suspension was a field variable13.

In 1965, Edwards published a paper7 on the statistical mechanics of a single polymer
chain in solution which “in one stroke founded the modern quantitative understanding of
polymer matter”14. One of the central problems in polymer physics was to determine, given

c It later turned out that this result was due to a fortuitous cancellation of errors. In particular, both the elastic energy
and the repulsion energy were largely overestimated 2.
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the number N of monomers in a chain, its configuration in 3D space, and in particular its
radius R. This is a complicated problem because real chains have excluded volume, which
prevents different chain sections from overlapping and disrupts chain conformation in a hi-
ghly nontrivial way. As mentioned above, Flory was able to provide a heuristic solution,
arriving at the conclusion that R is proportional to N3/5, instead of the N1/2 predicted by the
random walk model, which neglects the excluded volume altogether. Edwards was able to
solve the problem to excellent approximation by formulating it as a self-consistent field pro-
blem where the chain interacts with a mean field generated by its own density of monomers,
using the same technique as that used by Hartree to solve the problem of electron motion in
an atom. With this approach, he was also able to give the dependence of Flory’s exponent
on the dimensionality of space d, obtaining ν = 3/(d + 2). This relation, which in 3D gives
Flory’s exponent ν = 3/5, turns out to be exact in 1, 2 and 4 spatial dimensions13 d.

Following his work on chain conformation, Edwards tackled the problems of single and
multi-chain dynamics and chain constraint by crosslinks or topological entanglements. While
dealing with the latter, he invented the replica method13 (or “replica trick”) , which he would
later put to use in his work with P. W. Anderson on spin glasses15. In a 1967 paper16 he
addressed the problem of the effect of topological entanglements on the elastic properties
of rubber, setting the stage for the work of de Gennes. In 1973, in collaboration with J. W.
V. Grant, he predicted that the viscosity η in an entangled melt would scale as N3, which
is very close to the experimental result of N3.4. In Cambridge, working with M. Doi and
following upon de Gennes’s ideas, he laid out a comprehensive theory of polymer dynamics
and rheology, which culminated in 1985 with the publication of the monograph The Theory
of Polymer Dynamics3, which is still today one of the most influential textbooks on polymer
physics.

Figura 6 – Pierre-Gilles de Gen-
nes (1932–2007) Photo by Marc
Fermigier/ESPCI Paris.

The one who, alongside Edwards and Doi, more con-
tributed to the theoretical understanding of polymer dy-
namics was the French Pierre-Gilles de Gennes. After gra-
duating in 1955 from the École Normale Supérieure of Pa-
ris17, de Gennes worked first under A. Herpin in Saclay
and then under C. Kittel in Berkeley, conducting studies
on magnetism. de Gennes was deeply influenced by Kit-
tel, who thought that physical reasoning should always
accompany abstract mathematical calculations17. These
ideas drove him during his career to try his hardest to ma-
ke his ideas accessible also to the non-specialists. In 1961

he moved to Orsay, where he worked until 1971, giving
fundamental contributions to the fields of superconducti-
vity and liquid crystals, which resulted in the publications
of two books, Superconductivity of Metals and Alloys (1966)
and The Physics of Liquid Crystals (1974).

In 1971, de Gennes published his seminal paper18 on
the dynamics of crosslinked polymers, introducing the
concept of reptation, according to which a chain in a cros-
slinked network (or in an entangled solution/melt) is con-

d In more than 4 spatial dimensions, ν = 1/2 and the polymer is ideal.



8 a brief history of polymer science

fined to a tube-like region and can only slide along the tube e in a snake-like fashion. As
discussed above, this paper, which was based on previous ideas of Edwards16, paved the
way for the work of Edwards and Doi, who developed the full implications of it. One year
later, de Gennes made another contribution which shook the world of polymer science, sho-
wing in a one-page article that the behavior of a polymer chain is governed by the same
equations of a magnetic system with an n-dependent order parameter in the limit n → 020.
Using this analogy, de Gennes obtained the value ν = 0.597 for Flory’s exponent, which is
a (small) improvement on the ν = 3/5 result of Flory and Edwards (the real value being, as
mentioned above, ν ' 0.588). It was now possible to use K. Wilson’s renormalization group
techniques to study polymers. Quoting Joann and Cates:

To many theorists, this was a revelation: dirty-looking polymeric systems could now be
addressed using the elegant formal tools of statistical physics17.

This breakthrough got de Gennes the Nobel Prize for Physics in 1991, “for discovering
that methods developed for studying order phenomena in simple systems can be generalized
to more complex forms of matter, in particular to liquid crystals and polymers”. de Gen-
nes’s contributions to the field of polymer physics culminated in 1979 with the publication
of Scaling Concepts in Polymer Physics2. In this book, widely appreciated still today, deep
concepts of polymer physics are presented in a simple, elegant way, with the least possible
use of sophisticated mathematics. In this and many other ways, de Gennes’s book stands
as complementary to the work of Doi and Edwards. The scaling approach adopted by de
Gennes aimed at isolating the fundamental physics of a problem, without worrying for the
exact solutions (which he was, however, fully capable of working out). A striking example is
the prediction of the scaling behavior of density in a semidilute polymer solution, which can
be obtained from Flory’s ideality argument by considering the solution as a melt of “blobs”2.

Figura 7 – Configurations of the pri-
mitive path of a chain in a dense melt
(from Ref. 21).

Starting from the 80s, a new tool started to beco-
me predominant in polymer science: computer simu-
lations. Computational methods had been used in
polymer science since the early 50s by pioneers such
as F. T. Wall22. The Monte Carlo was born in 1946

by an idea of Stanislaw Ulam, who at the time was
working on nuclear weapons projects at the Los Ala-
mos National Laboratory23,24. Apparently, the idea
for the Monte Carlo method came to Ulam as he “was
convalescing from an illness and playing solitaires”23.
Ulam discussed his ideas with J. von Neumann, who
wrote the first Monte Carlo codes for ENIAC, the fir-
st electronic general-purpose computer. The Monte
Carlo method is perfectly suited for the study of the
conformational properties of polymers, since, as di-
scussed above, a polymer is essentially a self-avoiding
random walk, i.e., a random walk that doesn’t inter-

sect with itself. Already in 1959, Wall and Erpenbeck used Monte Carlo methods to calculate
Flory’s exponent ν with excellent accuracy, obtaining ν = 0.59 in 3D and ν = 0.75 in 2D25

e In a 1977 paper 19, Edwards will coin for the “axis ” of the tube along which the chain slides the term primitive path.
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f. In the following years, many different algorithms were developed, such as the pivot algo-
rithm, the slithering snake algorithm and the bond fluctuation model, which made Monte
Carlo simulations of polymers increasingly more efficient27. In the 80s and 90s, thanks to the
work of scientists such as K. Binder, K. Kremer, A. Sokal, W. Paul, D. Y. Yoon, J. Baschnagel,
D. W. Heermann, A. Milchev and D. P. Landau, Monte Carlo techniques became one of the
predominant tools of theoretical polymer science6.

In 1979, Bishop et al. performed the first molecular dynamics simulation of a polymer
system28, which was followed by the works of K. Kremer, G. Grest, J. H. R. Clarke, B. Dünweg,
M. J. Stevens, R. Everaers and many others6. Whereas Monte Carlo methods can mainly
probe the structural properties of a physical system, but are unable (except for some particular
cases) to study its dynamics, molecular dynamics simulations allow to do both. In 1988,
Kremer, Grest and Carmesin were the first to prove in molecular dynamics simulations the
existence, in entangled polymer melts, of a dynamic regime in which the mean-squared
displacement 〈r2(t)〉 of the monomers scales as t1/4, which had been been predicted by de
Gennes in his 1972 paper on reptation29. Moreover, simulations made it possible for the first
time to visualize the chain’s reptating motion directly21, as shown in Fig. 7. Today, Monte
Carlo and molecular dynamics simulations are an indispensable tool for theoretical polymer
science, and are responsible every year for many new and exciting discoveries.

f In 2010 a fast implementation of the pivot algorithm was used to obtain the astonishingly accurate estimate ν =
0.587597(7) for the Flory exponent by simulating self-avoiding walks of length N = 106 26.
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B A S I C C O N C E P T S O F P O LY M E R P H Y S I C S

In this Chapter, we review some basic concepts of polymer physics. In particular, we will
discuss the conformations of ideal and real chains (Sec. 3.1), the structural properties of
many-chains systems (Sec. 3.2), how structural properties can be obtained from scattering
experiments (Sec. 3.3), the dynamics of isolated chains and of polymer liquids (Sec. 3.4), the
physics of networks and gels (Sec. 3.5). We conclude this Chapter with a short overview of
simulations of polymer systems in Sec. 3.6. Most of what is discussed in this Chapter can be
found in standard textbooks2,3,5,11,30, but we feel that it is useful to report it here, in order to
give a self-contained and coherent presentation and also to introduce the notation that will
be used throughout this work.

A polymer is a large molecule (a macromolecule) composed of many covalently bonded
elementary units, called monomers5. The monomers can be either all identical (homopolymer)
or different from each other (heteropolymer). The process of polymer formation, in which
bonds between the monomers are formed, is called polymerization, and therefore the number
of monomers N in a polymer is called its degree of polymerization. The value of N is in
principle infinite, and polymers containing an enormous number of monomers can be found
in nature: The largest human chromosome, for example, contains approximately 220 million
base pairs31. Polymer can also have many different structures and topologies, as shown in
Fig. 8. In this Chapter, however, we will mainly focus on the simplest of all structures, i.e.,
the linear polymer (Fig. 8a).

From a physical point of view, many of the interesting and unique properties of polymers
come from the fact that they are fractal objects. To understand this concept, let us consider
a solid sphere in three dimensions: Its mass m is related to the radius R by the relation
m = 4πR3ρ/3, where ρ is the mass density. For a two-dimensional disk, we have m = ρπR2.
For a one-dimensional rod of length R, we have m = ρR. For a generic object which “lives”
in d spatial dimensions, we expect therefore that

a b c d

Figura 8 – Example of polymers with different structures: linear (a), ring (b), star (c),
randomly branched (d).
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Figura 9 – The Koch curve, a fractal with dimension ln(4)/ ln(3) ' 1.26.

m ∝ Rd. (1)

A polymer “lives” in three dimensions; however, the relation between its mass m and its
linear size R is not, in general, m ∝ R3, but rather m ∝ RD , where D changes continuously
from 1 in a stretched state, to ' 1.7 for a polymer in solutiona, to 2 for a polymer in a dense
melt, to 3 in a completely collapsed state5. Loosely speaking, an object that satisfies the
relation m ∝ RD , with D smaller than the dimension d of the space where the object “lives”,
is called a fractal32, and the exponent D is known as the fractal dimension of the object. The
fractal dimension of a polymer can therefore vary from 1 to 3. Moreover, since the mass of a
polymer is also proportional to its degree of polymerization, m ∝ N, a polymer satisfies the
relation

N ∝ RD D ∈ [1, 3]. (2)

Another characteristic of fractals is that they are self-similar: the parts they are made of re-
semble the whole. This property is apparent, for example, when considering the Koch curve
(Fig. 9). Polymers display self-similarity, although of course only on length scales which are
sufficiently larger than the monomer size. As we will see in Sec. 3.2, this property is extre-
mely important in polymer physics, since it implies that in many situations the conformation
of a large enough portion of a polymer chain is identical to the conformation of the whole
chain.

3.1 conformations of polymer chains

3.1.1 Ideal chains

Consider a flexible linear homopolymer of N monomers. If ri is the position vector of (the
center of mass of) the ith monomer, we can define a bond vector bi = ri+1− ri, and an end-to-end
vector as

re ≡
N−1

∑
i=1

bi = rN − r1 (3)

a Under good solvent conditions 5.
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The thermodynamic (statistical) average of re is clearly zero: 〈re〉 = 0. We can consider,
however, the mean-squared end-to-end distance,

〈r2
e 〉 ≡ 〈re · re〉 =

N−1

∑
i=1

N−1

∑
j=1
〈bi · bj〉 (4)

If all the bond vectors have the same length, |bi| = ` ∀i, we can rewrite the above relation as

〈r2
e 〉 = `2

N−1

∑
i=1

N−1

∑
j=1
〈cos θi,j〉 (5)

where cos θi,j ≡ bi · bj/(|bi| |bj|) is the cosine of the angle between the i-th and j-th bond
vectors.

We can rewrite Eq. (5) as

〈r2
e 〉 = CN(N − 1)`2 (6)

where

CN ≡
1

N − 1

N−1

∑
i=1

N−1

∑
j=1
〈cos θi,j〉 (7)

The simplest polymer model is the freely jointed chain (FJC), for which there is no orienta-
tional correlation between different bonds and thus 〈cos θi,j〉 = δij (here δij is the Kronecker
delta). For a FJC we have therefore

〈r2
e 〉 = (N − 1)`2 (FJC) (8)

We note that Eq. (8) is formally identical to the expression for the mean-squared displacement
of a random walk, with N − 1 playing the role of the number of steps taken by the walker
and ` of the step length33.

If 〈cos θi,i+k〉 decays more rapidly than k−1 for large k (short-range orientational correla-
tion), then limN→∞ CN = C∞ is a finite number34, called Flory’s characteristic ratio. For large
enough N, we have therefore

〈r2
e 〉 = C∞(N − 1)`2 ' C∞N`2 (N large) (9)

We obtain therefore a relation which is identical to Eq. (8), with the only difference that
the bond length ` has been renormalized to an effective bond length b =

√
C∞`. A chain

that satisfies the relation 〈r2
e 〉 ∝ N is called an ideal chain. That the orientational correlation

〈cos θi,i+k〉 must decay more rapidly than k−1 is a necessary condition for a chain to be ideal.

Let us now introduce the contour length L ≡ (N − 1)`, so that we can rewrite Eq. (9) as
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〈r2
e 〉 ' C∞`L = `KL (L large) (10)

The constant `K ≡ C∞` = b2/` is called the Kuhn length. For a FJC, 〈r2
e 〉 ' `L for large

enough N. We see therefore that the Kuhn length can be interpreted as the bond length of
an equivalent freely-jointed chain, i.e., a FJC with bond length `K containing NK ≡ L/`K Kuhn
monomers: 〈r2

e 〉 ' `2
K NK.

The root-mean-squared (RMS) end-to-end vector of an ideal chain, Re ≡
√
〈r2

e 〉, satisfies,
for large enough N,

Re = bN1/2 (ideal chain) (11)

where b is an effective bond length. Since Re is a measure of the chain’s linear size, by
comparing Eq. (11) and Eq. (2) that an ideal chain has fractal dimension D = 2.

Another important quantity is the RMS radius of gyration (often called simply “radius of

gyration”), Rg ≡
√
〈r2

g〉, where

r2
g ≡

1
N

N

∑
i=1

(ri − rcm)2

=
1

2N2

N

∑
i,j=1

(ri − rj)
2

(12)

with rcm = 1
N ∑N

i=1 ri is the position vector of the chain’s center of mass. It can be shown that
for an ideal chain

〈r2
g〉 =

b2N
6

(13)

and therefore 〈r2
e 〉/〈r2

g〉 = 6.

3.1.2 Real chains

We have seen in Sec. 3.1.1 that a necessary condition for a chain to be ideal is that the orien-
tational correlation 〈cos θi,i+k〉 must decay faster than k−1. If 〈cos θi,i+k〉 ≡ 〈cos θ(k)〉 decays
as k−1 or more slowly, i.e., as k−α, with 0 < α < 1, we have, for large N 34,

R2
e ' N`2

∫ N

0
〈cos θ(k)〉dk ∝





N2−α 0 < α < 1

N ln N α = 1
(14)

Since 1 < 2− α < 2, we see that these long-range correlations lead to a swelling of the chain,
i.e.,
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Figura 10 – Schematic representation of a polymer solution in the dilute (a) and semidilute
(b) regimes. Circles denotes the blobs, of size ξb. The other relevant length scales are the
geometrical mesh size, ξ, and the polymer correlation length, ξc. In the semidilute regime,
these three length scales are very similar. In the dilute regime, however, ξ is very different
from the other two.

Re ∝





Nν 0 < α < 1

(N ln N)1/2 α = 1
(15)

where ν ≡ (2− α)/2 ∈ ( 1
2 , 1) is called the Flory exponent.

In real chains, long-range correlations are present because the monomers have an asso-
ciated excluded volume, i.e., one monomer cannot occupy the space which is already taken by
another. Because of this simple fact, it is incorrect to assume that the interaction between
monomers which are separated by a large chemical distance k is negligible. If we consider an
ideal chain with linear dimension R ∝ N1/2, the mean number of monomer-monomer contac-
ts inside the chain’s pervaded volume R3 will be proportional to N · (N/R3) ∝ N1/2: For long
chains, this number will therefore be quite large.

Solvents in which polymers assume swollen configurations are called good solvents, whe-
reas solvents in which chains assume a collapsed configuration are called poor solvents. In
good solvents, repulsion dominates the monomer-monomer interaction, while in poor sol-
vents attraction is more relevant. It has been shown both theoretically and experimentally
that a polymer in good solvent assumes a configuration corresponding to a self-avoiding ran-
dom walk (SAW)3,5, and that its RMS end-to-end distance (and every other measure of its
linear size) satisfies

Re ∝ Nν (16)

where ν ' 0.588 is a universal constant5,26. The fractal dimension of a swollen chain is
therefore D = 1/ν ' 1.70.
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3.2 many-chains systems

3.2.1 Solutions, melts and the concept of blob

In Sec 3.1 we have discussed the statistics of isolated chains. We will now briefly summarize
the properties of polymer solutions, in which many chains are immersed in a solvent. For
simplicity, we will consider the case of an “ideally good”, or athermal solvent5 of monodi-
sperse chains (N = const.). In an athermal solvent, the size R of an isolated chain, measured
either as the end-to-end distance Re or the radius of gyration Rg, satisfies the relation

R0 ≡ lim
ρ→0

R ≈ bNν. (17)

In the previous relation, and also in what follows, we use the symbol ≈ to indicate that two
quantities are proportional through a dimensionless factor of order 1, while we will use the
symbol ' when two quantities can be considered approximately equal.

In a dilute solution, the chains are far away from each other and their conformation
remains unperturbed; this condition is schematically represented in Fig. 10a. As the monomer
density ρ is increased, the chains will eventually start to overlap and the solution will enter
the semidilute regime (Fig. 10b). By considering the chains as spheres of radius R0, we can
estimate the density ρ∗ at which the chains start to interpenetrate (overlap density) by equating
ρ to the density of monomers inside the sphere:

ρ∗(N) ' N
4
3 πR3

0
≈ N

R3
0
≈ b−3N1−3ν. (18)

We note that

lim
N→∞

ρ∗(N) = 0, (19)

i.e., infinitely long chains are never in the dilute regime. For ρ > ρ∗, the chains overlap. The
understanding of this apparently complicated regime can be made easier via the concept of
blob, first introduced by de Gennes2. A blob is defined as a region of space of linear size ξb

which mostly contains monomers from a single chain and solvent (Fig. 10a-b). Inside the blob,
the monomers are unperturbed by the presence of other chains, and the chain conformation
is the same as in a dilute solution. It is evident from the definition that blobs are space-filling:
if Nb is the number of monomers inside a blob, we have

ρ ≈ Nb

ξ3
b

. (20)

Moreover, since the chain conformation inside a blob is that of a swollen chain, we have

ξb ≈ bNν
b (21)
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From Eqs. (20) and (21), we can derive the density dependence of the blob size ξb:

ξb ≈ b(b3ρ)−ν/(3ν−1)

≈ R0

(
ρ

ρ∗

)−ν/(3ν−1)
,

(22)

where the definitions of R0 and ρ∗ were used to obtain the second equation. We note that,
since ν ' 0.588, −ν/(3ν− 1) ' −0.770.

To understand what happens at length scales r > ξb, we will first turn our attention
to the case of a melt of chains, i.e., a system with no solvent, in which the monomers are
closely packed (monomer volume fraction φ ≈ b3ρ ≈ 1). A chain in a melt is subject to
two external potentials: one, Us, generated by monomers on the same chain, and another,
Ud, generated by the other chains. The potential Us is proportional to the local monomer
density, Us ∝ ρ(r), and has a peak around the chain’s center of mass: for an isolated chain,
this potential is responsible for the swelling of the chain and the decrease of the fractal
dimension from D = 2 to D ' 1.70. The potential Ud is also proportional to the local density;
however, in a dense melt the local density fluctuations are very small and ρ(r) ' const. As a
consequence, Utot = Us + Ud ' const.: the potential Ud has a well around the center of mass
of the chain, which perfectly cancels the effect of Us. As a result, chains in a melt have an
ideal conformation. This surprising result was first presented by Flory11, and it is therefore
known as the Flory ideality hypothesis or Flory theorem2b

In a semidilute solution, the blobs are space-filling: Therefore, a semidilute solution can
be considered as a closely packed system of blobs, since the blob volume fraction φb satisfies
(cfr. Eq. (20))

φb ≈
ρ

Nb
ξ3

b ≈ 1. (23)

Therefore, on length scales r > ξb we can consider the solution as a melt of blobs, and the chain
conformation is that of an ideal chain with the blob as fundamental unit:

R ≈ ξb

(
N
Nb

)1/2

≈ bN1/2(b3ρ)−(ν−1/2)/(3ν−1)

≈ R0

(
ρ

ρ∗

)−(ν−1/2)/(3ν−1)
,

(24)

where Eqs. (20) and (22) and the definitions of ρ∗ and R0 were used. Using the numerical
value ν ' 0.588, we find R ∝ ρ−0.115: The chain size decreases weakly with increasing density
in a semidilute solution.

If density is further increased, the solution will eventually become a melt. The transition
to the melt state takes place when the monomer volume fraction φ ≈ b3ρ becomes of order 1,
or equivalently when ρ ≈ b−3. The density at which the melt state is reached is sometimes

b The validity of Flory hypothesis has been verified in numerous experiments 35; however, we mention that it is
nowadays known that noticeable deviations from ideal behavior are actually observable in melts 36.
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denoted ρ∗∗. As discussed above, in a melt ξb ≈ b and chains are ideal on all length scales.
In the opposite limit we have a dilute solution, where chains do not overlap and therefore
ξb ≈ R0, (Fig. 10a). Between these two regimes, we find the semidilute behavior, given by
Eq. (22). We can thus summarize the scaling behavior of ξb as follows:

ξb ≈





R0 ρ < ρ∗

b(b3ρ)−ν/(3ν−1) ρ∗ < ρ < ρ∗∗

b ρ > ρ∗∗,

(25)

We note that imposing continuity between the three relations in Eq. (25), and recalling that
R0 ≈ bNν we obtain ρ∗ ≈ b−3N1−3ν and ρ∗∗ ≈ b−3, as expected. For the chain size, we have
from Eq. (24)

R
R0
≈





1 ρ < ρ∗

(ρ/ρ∗)−
ν−1/2
3ν−1 ρ∗ < ρ < ρ∗∗

N1/2−ν ρ > ρ∗∗,

(26)

where we have used the fact that for ρ > ρ∗∗ the chains are ideal, and therefore R ≈ bN1/2. Ex-
ploiting the relation R0 ≈ bNν and introducing the dimensionless scaling variable χ, defined
as37,38c

χ ≡ N(b3ρ)1/(3ν−1) ≈
(

ρ

ρ∗

)1/(3ν−1)
, (27)

we can rewrite Eq. (25) in the following dimensionless form:

ξb
R0
≈





1 χ < χ∗

χ−ν χ∗ < χ < χ∗∗

N−ν χ > χ∗∗.

(28)

It is easy to verify from the scaling relations for ρ∗ and ρ∗∗, that χ∗ ≡ χ(ρ∗) = 1 and
χ∗∗ ≡ χ(ρ∗∗) = N. We note that χ∗ is independent of N, whereas χ∗∗ depends on N.
Conversely, ρ∗ depends on N, whereas ρ∗∗ is independent of N.

The main drawback of the blob concept is that there is no quantity which can be measured
in experiments or simulations which unambiguously correspond to the blob size ξb. We will
see below that it is possible to introduce two different quantities, the density fluctuation
correlation length and the geometrical mesh size, which have the same scaling behavior as ξb

in the semidilute regime and are accessible from simulations or experimental data.

c We choose to use χ and not ρ/ρ∗ as a scaling variable since ρ∗ is not a sharply defined quantity.
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3.2.2 The geometrical mesh size

If we take a snapshot of a semidilute polymer solution, its structure will be very similar to
that of a network with a certain average geometrical mesh size (Fig. 10). This intuitive concept
can be made more precise by defining the geometrical mesh size ξ as the average linear size of
the pores (i.e., volumes containing only solvent) in the system. Based on this definition, it is
clear that in the semidilute regime the geometrical mesh size will be equivalent to the blob
size apart from a multiplicative factor:

ξ ≈ ξb (ρ∗ < ρ < ρ∗∗) (29)

However, if we want to maintain our definition of ξ as the average size of the pores, then it is
clear that the relation (29) cannot be extended outside of the semidilute regime. This can be
understood by considering that in the dilute regime ρ < ρ∗ the mesh size is nothing else than
the average distance between neighboring chains, i.e., ξ ≈ (ρ/N)−1/3, and becomes infinite
in the limit ρ → 0, whereas ξb ≈ R0. Moreover, in the concentrated regime ρ > ρ∗∗ the size
of the pores becomes vanishingly small, ξ → 0, while ξb ≈ b. To summarize, we expect the
following behavior for the geometrical mesh size ξ as a function of ρ:

ξ ≈





(ρ/N)−1/3 ρ < ρ∗

b(b3ρ)−ν/(3ν−1) ρ∗ < ρ < ρ∗∗

f (ρ) ρ > ρ∗∗,

(30)

where f (ρ) is a decreasing function of ρ for ρ > ρ∗∗. In terms of the scaling variable χ,

ξ

R0
≈





χ−ν+1/3 χ < χ∗

χ−ν χ∗ < χ < χ∗∗

f [ρ(χ)] χ > χ∗∗.

(31)

3.3 measurement of structural properties from scattering experiments

There are several ways to study the structural and dynamical properties of a polymer liquid
experimentally, but the most common are probably those based on static and dynamic scat-
tering techniques5,30. In this Section, we briefly review some theoretical results related to
scattering measurements of structural properties.

3.3.1 Single chain structure

When an electromagnetic wave of wave is incident on a system of M point particles with
position vectors r1, . . . , rM, the intensity of the coherent scattered radiation for a given wave-
vector q is proportional to a function S(q), called structure factor (or, sometimes, scattering
function)1,5,30:
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S(q) ≡ 1
M

M

∑
k,j=1
〈exp[−iq · (rk − rj)]〉. (32)

When studying isotropic systems, the spherically average structure factor, S(q) (with q ≡ |q|)
is often considered:

S(q) ≡ 1
4π

∫ 2π

0
dφ
∫ π

0
sin θdθ S(q) (33)

The real space counterpart of S(q) is the radial distribution function g(r), defined as1

g(r) ≡ 1
4πMρr2

M

∑
k=1
j 6=k

〈δ(|r + rk − rj|)〉, (34)

where ρ = M/V is the particle number density. Indeed, it can be shown that the two
quantities are related by a Fourier transform1:

S(q) = 1 + 4πρ
∫ ∞

0
[g(r)− 1]

sin(qr)
qr

r2dr (35a)

g(r) =
1

2π2ρ

∫ ∞

0
[S(q)− 1]

sin(qr)
qr

q2dq (35b)

The radial distribution function offers a more direct interpretation than the structure fac-
tor, since 4πρr2g(r)dr represents the probability to find a monomer at distance r < x <

r + dr from a randomly chosen particle. However, measuring g(r) experimentally is more
challenging than measuring S(q), and therefore we will focus our discussion on the latter.
The structure factor of a polymer solution/melt containing Nc chains of length N is30

S(q) =
1

NNc

Nc

∑
α,β=1

N

∑
k,j=1
〈exp[−iq · (rα,k − rβ,j)]〉

= S1(q) +
Nc − 1

N

N

∑
k,j=1
〈exp[−iq · (r1,k − r2,j)]〉

= NP(q) + (Nc − 1)S2(q)

(36)

where we have introduced the single-chain structure factor,

S1(q) ≡
1
N

N

∑
k,j=1
〈exp[−iq · (r1,k − r1,j)]〉, (37)

and the chain form factor P(q) ≡ S1(q)/N. Therefore, S(q) can be expressed as a single-chain
component, S1(q) plus a contribution from scattering between different chains, (Nc− 1)S2(q).
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The exponential term appearing in S2(q),

exp[−iq · (r1,k − r2,j)] = exp(−iq|r1,k − r2,j| cos θ), (38)

vanishes for q|r1,k − r2,j| � 1, i.e., when the distance between the chains is much larger than
the wavelength λ of the incident radiation (λ = 2π/q). For a dilute solution, we can therefore
write

S(q) ' S1(q) (dilute solution) (39)

For q|rk− rj| � 1 (i.e. small scattering angle), the exponential term in the single chain structure
factor can be expanded:

exp[−iq · (rk − rj)] = 1 + q · (rk − rj)−
1
2
[q · (rk − rj)]

2 + . . . (40)

By keeping terms up to the second order and using the fact that 〈rk − rj〉 = 0, in addition to
the isotropy of the chains, we obtain5,30

S1(q) ' N − 1
2N

N

∑
k,j=1
〈[q · (rk − rj)]

2〉

= N − q2

6N

N

∑
k,j=1
〈(rk − rj)

2〉

= N − 1
3
(qRg)

2

' N
1 + (qRg/

√
3)2

(41)

where the definitions of radius of gyration rg (Eq. (12)) and of RMS radius of gyration,

Rg ≡
√
〈r2

g〉, were used. Incidentally, we note that Eq. (41) implies that the isothermal

compressibility of a dilute polymer solution is κT = N/ρkBT, since κT = S(0)/ρkBT, where
S(0) ≡ limq→0 S(q)1d. The expansion performed in Eq. (41) is accurate if qRg � 1, or equi-
valently if Rg � λ: if this condition is satisfied, it is possible to measure the chain radius
of gyration by performing a scattering experiment on a dilute solution. Most of times light
scattering is used, since the wavelength of visible light, which goes from ' 380 to ' 740 nm,
is usually much larger than the chain size (' 10 nm).

For an ideal chain, S1(q) can be calculated explicitly. The result is S1(q) = NPD(qRg),
where5,30

PD(x) =
2
x4

(
e−x2

+ x2 − 1
)

(42)

d This result can also be obtained from the ideal gas equation. For a dilute polymer solution, we can write P =
ρckBT = ρkBT/N, were ρc = Nc/V is the density of chains and ρ = Nc N/V the density of monomers. Since

κT = 1
ρ

(
∂ρ
∂p

)
T,Nc

, we obtain κT = N/ρkBT.
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Figura 11 – Kratky plot from molecular dynamics simulations of Kremer-Grest bead-spring
chains of length N = 200. The overlap density for this system is ρ∗ ' 0.03, while ρ∗∗ ' 0.3.
The densities shown are ρ = 10−3 (red curve), 0.20 (green curve) and 0.85 (blue curve). The
latter corresponds to a dense melt. The dashed line is the Debye prediction, Eq. (42).

is called the Debye function. For qRg � 1, we have therefore for an ideal chain

S1(q) '
2N

(qRg)2 ∝ q−2 = q−D (qRg � 1) (43)

where D = 2 is the fractal dimension of the chain. It can be shown that the result S1(q) ∝ q−D

for qR� 1 is true for any value of the fractal dimension D = 1/ν 30.

Often, it is useful to consider the so-called Kratky plot, in which (qRg)2S1(q)/2N is plot-
ted as a function of qRg. The regime (43) results in this case in a Kratky plateau, since
(qRg)2S1(q)/2N ' 1. In Fig. 11, we show the Kratky plot of flexible chains of length
N = 200 at different monomer densities ρ, obtained from molecular dynamics simulations
of the Kremer-Grest model (see Sec. 3.6). We can see that the Debye function, Eq. (42), gives
a good approximation of the data at low qRg for all values of ρ. In the concentrated regime
(ρ > ρ∗∗) the chains assume more ideal conformations than for ρ < ρ∗∗, as predicted by the
Flory ideality theorem, and a feature similar to the Kratky plateau is developed. However,
relevant qualitative differences are still present even at such high densities. This, however,
should not come as a surprise, since a N = 200 chain is still rather short. Moreover, it is
known that chains in a melt actually show deviations from ideality, which are observable in
the Kratky plot even for very long N = O(104) chains36.

3.3.2 Solutions and melts: The correlation length

Let’s now consider scattering from single chains in solution, which can be studied in neutron
scattering experiments by introducing a small concentration of deuterated chains in a solution
of non-deuterated chains. We have seen in Chapter 3.2 that chains in solution have swollen
conformations on length scales r < ξb and ideal conformations on length scales r > ξb, where
ξb is the blob size.

For the discussion above about the q dependence of S1 at large values of q, we expect
therefore for a polymer in a semidilute solution2,5,37:
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Figura 12 – (a) Total structure factor from molecular dynamics simulations of Kremer-Grest
bead-spring chains of length N = 1000 in the semidilute regime (ρ/ρ∗ ' 2). The regimes
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(b) Ornstein-Zernike plot of the same quantity. With reference to Eq. (45), we have B =
S(0)/A− 1 and C = S(0)/A.

S1(q) '





N/[1 + (qRg)2/3] q < R−1
g

Aq−2 R−1
g � q� ξ−1

b

Bq−1/ν ξ−1
b � q� b−1

O(1) q� b−1,

(44)

where A, B > 0 are constants. We note that in concentrated solutions/melts ξb ≈ b, and
therefore the q−1/ν regime disappears, in agreement with Flory’s theorem (Sec. 3.2.1): The
chains are ideal at all length scales. In the dilute regime, on the other hand, ξb ≈ Rg, and
therefore it is the q−2 regime that disappears: The chains are swollen on all length scales.

The quantity which is most often measured in scattering experiments is the total structure
factor S(q), since it requires no special preparation of the sample. We have seen that in the
dilute regime S(q) ' S1(q); in the semidilute regime, we have2,5

S(q) '





S(0)/[1 + (qξc)2] q� ξ−1
c

A/[1 + (qξc)1/ν] ξ−1
c � q� b−1

O(1) q� b−1,

(45)

where A > 0 is a constant. In Fig. 12a, we show S(q) for a semidilute solution of polymers of
length N = 1000. The data are obtained from molecular dynamics simulations of the Kremer-
Grest model (see Sec. 3.6). The two regimes S(q) ∝ [1 + (qξc)2]−1 and S(q) ∝ [1 + (qξc)1/ν]−1

are highlighted. The peak at q ' 8 is due to correlations on the monomer scale, and it is
typical of all liquids39.

We will now discuss the interpretation of the quantity ξc appearing in Eq. (45). From
Eq. (45), we see that at low q the structure factor is described by the function
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S(q) =
S(0)

1 + (qξc)2 (q� ξ−1
b ), (46)

called the Ornstein-Zernike function2,5,30,40 (for a derivation of this expression, see Appen-
dix A). In Fig. 12b, we show an “Ornstein-Zernike” plot of the same structure factor shown
in Fig. 12a: here, S(0)/S(q)− 1 is plotted as a function of q2, resulting in a straight line with
slope ξ2

c .
From Eq. (46), we can obtain the large r behavior of the radial distribution function g(r),

using Eq. (35b)2,3,30,40e:

g(r) = 1 +
S(0)

4πξ2
c ρ

(
e−r/ξc

r

)
(r � ξb) (47)

Since, as mentioned above, 4πρr2g(r) represents the probability to find a monomer at distance
r < x < r + dr from a randomly chosen monomer, it is apparent from Eq. (47) that ξb must
be interpreted as the correlation length of the density fluctuations, i.e., it represents a density
fluctuation correlation length (or simply “correlation length”). We have seen in Sec. 3.2 that in
a semidilute solution, the only relevant length scale is the blob size ξb. It is therefore natural
to assume that ξb ≈ ξc in the semidilute regime5,30. Moreover, it is clear that in the dilute
regime we must have ξc ≈ R, with R the chain size. Indeed, since S(q) ' S1(q) in the dilute
regime, by comparing Eq. (41) and Eq. (46) we immediately get

ξc = Rg0/
√

3 (ρ < ρ∗) (48)

We are therefore lead to the conclusion that, for densities smaller than ρ∗∗ (the onset of the
concentrated/melt regime), the correlation length corresponds to the blob size

ξb ≈ ξc (ρ < ρ∗∗) (49)

This is a very relevant result, since it relates the blob size to a physically measurable quantity.
However, the relation ξb ≈ ξc loses its validity in the concentrated/melt regime. Indeed,
we have seen that for ρ > ρ∗∗ the blob size coincides with the monomer size: ξb ≈ b. The
structure of a polymer liquid at such high density is virtually the same as that of a dense
liquid41, and its correlation length can be evaluated from a modified version of Eq. (47)39,42,43:

g(r) = 1 +
B
r

e−r/ξc sin
(

2πr
λ

+ θ

)
, (50)

where B, λ > 0 and θ are constants. In dense liquids, the correlation length increases with
increasing density due to local packing constraints41. Therefore, for ρ > ρ∗∗ the correlation

e To be more precise, Eq. (46) follows formally from Eq. (35b) if g(r) = 1 + Ae−r/ξc /r− δ(r)/ρ. The presence of the
delta distribution is however only an artifact stemming from the fact that we are connecting the large r behavior of
g(r) with the small q behavior of S(q). In any case, since we are interested in the large r behavior, this factor can be
disregarded. For more details, see Appendix A.
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length of a polymer liquid is an increasing function of ρ and the relation ξb ≈ ξc loses its
meaning. To summarize, the behavior of ξc as a function of ρ is as follows:

ξc ≈





R0 ρ < ρ∗

b(b3ρ)−ν/(3ν−1) ρ∗ < ρ < ρ∗∗

h(ρ) ρ > ρ∗∗,

(51)

where h(ρ) is an increasing function of ρ for ρ > ρ∗∗.
In Fig. 13, we compare the RDFs of polymers of length N = 200 at different densities

by showing the quantity r|g(r)− 1|. Data are from molecular dynamics simulations of the
Kremer-Grest model; for this system, ρ∗ ' 0.03. One sees that at low density r|g(r) − 1|
decays exponentially, as per Eq. (47), whereas at high density it shows an oscillatory decay
with an exponential envelope, as per Eq. (50).

3.4 dynamics

3.4.1 Unentangled polymer dynamics: The Rouse model

One of the simplest models of polymer dynamics is the Rouse model: In this model, the chain
is represented as a collection of N beads (monomers) connected by springs, immersed in a
heat bath; each bead-spring unit is meant to represent a chain segment. The hydrodynamic
interactions between different beads are completely neglected, so that the total friction acting
on the chain is simply ζR = Nζ, where ζ is the friction that a single monomer feels by action
of the solvent5. From ζR it is possible to obtain the chain’s diffusion coefficient, DR, through
the Einstein relation44:

DR =
kBT
ζR

=
kBT
Nζ

(52)

In order to connect DR to the relaxation time of the chain, we consider the mean-squared
displacement (MSD) of the chain’s center of mass, defined as
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〈r2
cm(t)〉 ≡ 〈|rcm,α(t)− rcm,α(0)|2〉 = g3(t) (53)

where rcm,α is the center of mass of the α-th chain. This quantity is related to DR by another
relation due to Einstein44:

DR = lim
t→∞

〈r2
cm(t)〉

6t
(54)

From Eq. (52), we can derive a scaling estimate of the chain’s relaxation time τR, which is the
time needed for the chain to diffuse over a distance of the order of its size R (Rouse time):

τR ≈
R2

DR
≈ ζNR2

kBT
≈ ζb2

kBT
N2ν+1 ≈ τ0N2ν+1, (55)

where τ0 ≈ ζb2/kBT is the monomer relaxation time, i.e, the time a monomer would need to
diffuse a distance b if it were detached from the chain. Therefore, for an ideal chain (ν = 1/2),
τR ∝ N2.

In the Rouse model, the MSD of the chain’s center of mass is always linear in time3 f:

〈r2
cm(t)〉 ∝ t. (56)

A motion of this type is usually called diffusive.

The situation is more complicated, however, if we consider the MSD of the monomers,
defined as

〈r2(t)〉 ≡ 〈|rk(t)− rk(0)|2〉 = g1(t) (57)

with r the position vector of a monomer. Indeed, it is found that3

〈r2(t)〉 ∝





t t < τ0

t1/2 τ0 < t < τR

t t > τR.

(58)

For τ0 < t < τR, the MSD of the monomers satisfies the relation 〈r2(t)〉 ∝ tβ, with β =

1/2. Whenever a relation of this type, with 0 < β < 1, is obeyed, the motion is said to be
subdiffusive. To understand the origin of this subdiffusive regime, it is sufficient to consider
the following: since polymers are self-similar fractals, a section of an ideal chain containing
n monomers will have a (Rouse) relaxation time

f In reality, the dynamics of polymers in the absence of hydrodynamics interactions is not perfectly diffusive, since
a subdiffusive regime g3(t) ∝ tβ is present at intermediate times 21,45,45–47,47–49. Such a transient is most likely due
to non-Gaussian dynamics caused by intermolecular correlations 47; in simulations of polymer melts (ρ = 0.85), the
value of β was found to be ' 0.8 21,45,47–49.
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τn ≈ τ0n2 (59)

During the time τn, such a chain section will move a distance of the order of its own size,
which is ≈ bn1/2. The MSD of the monomers in the section can thus be estimated as

〈r2(τn)〉 ≈ b2n ≈ b2
(

τn

τ0

)1/2
(60)

In Fig. 14, we show the MSD of the monomers (g1) and of the chain’s center of mass (g3)
from molecular dynamics simulations of polymer chains of length N = 200. The MSD of the
center of mass goes from ballistic, 〈r2(t)〉 ∝ t2, to diffusive, whereas g1(t) clearly shows the
dynamical regimes of Eq. (58), despite the presence of finite chain length effects.

The Rouse model was developed to describe the motion of an isolated chain in solution.
Unfortunately, it turns out that neglecting the hydrodynamic interaction is too strong an ap-
proximation, and the Rouse model gives a very poor description of the motion of chains
in dilute solutions. However, it is found experimentally that this model gives a very good
description of the motion of short chains in a melt5. The reason is that in a melt hydrody-
namic interactions are screened by the presence of the neighboring chains, in the same way
as excluded volume interaction5. In a melt, the viscous friction experienced by a chain arises
from the presence of the other chains, and the friction coefficient ζR can be related to the melt
viscosity η:

ηR ∝ ζR = Nζ (61)

To sum up, the Rouse model predicts for a polymer melt (taking into account the fact that
the chains have ideal conformation, see Sec. 3.2) τR ∝ N2, DR ∝ N−1 and ηR ∝ N.
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3.4.2 The Zimm model

We have mentioned how the Rouse model gives the wrong results when hydrodynamic in-
teractions cannot be neglected, as in the case of dilute solutions. A theory which takes into
account hydrodynamic interactions was developed by Zimm3,5. In the Zimm theory, it is
assumed that any chain section drags with it the solvent in its pervaded volume. The friction
coefficient of the whole chain can therefore be estimated by using Stokes’s law1:

ζZ ≈ ηsR, (62)

where ηs is the viscosity of the solvent. As we have done for the Rouse model, from ζZ we
can estimate the diffusion coefficient DZ using the Einstein relation:

DZ ≈
kBT
ζZ
≈ kBT

ηsR
, (63)

and from DZ we can estimate the relaxation time (Zimm time):

τZ ≈
R2

DZ
≈ ηsR3

kBT
≈ τ0N3ν. (64)

Since ν ' 0.588, the Zimm time has a weaker N dependence than the Rouse time. With
arguments analogous to those used in the case of the Rouse model, it is possible to estimate
the time dependence of the monomer MSD 〈r2(t)〉3:

〈r2(t)〉 ∝





t t < τ0

t2/3 τ0 < t < τZ

t t > τZ.

(65)

Also in the Zimm model the monomer moves subdiffusively at intermediate times, but with
a subdiffusive exponent (2/3) which is larger than the one obtained from the Rouse model
(1/2). In semidilute solutions, the Zimm model applies for length scales up to ≈ ξb (blob
size); this is a consequence of the fact than hydrodynamic interactions and excluded volume
interactions are screened on similar length scales5. On larger length scales, the Rouse model
applies.

3.4.3 Entangled polymer dynamics

Despite the success in describing the dynamics of melts of short chains, the simple Rouse
model fails when the chains become longer than some critical value Ne. Indeed, for long
chains it is found that τ ∝ N3.4, D ∝ N−2.4 and η ∝ N3.4. A striking qualitative difference
is also observed in the stress relaxation modulus G(t), which describes the response of the
system to an imposed strain3,5 and is related to the viscosity by the relation5
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Figura 15 – Qualitative behavior of the stress relaxation modulus G(t) of two polymer melts
with different chain lengths N, N′, with N′ > N. At t < τe, G(t) ∝ (t/τe)−1/2 3. For t > τe
(entanglement time), G(t) displays a flat region called the rubbery plateau. The value of G(t)
in the rubbery plateau, G0, is called the plateau modulus. At t ≈ τd (disengagement time), G(t)
decays to zero, i.e., the system starts to flow.

η =
∫ ∞

0
G(t)dt. (66)

In the Rouse model, G(t) is given by the sum of exponentially decaying terms3,5,

G(t) =
ρkBT

N

N

∑
p=1

exp(−t/τp), (67)

where τp is the Rouse relaxation time of a (ideal) chain section containing N/p monomers
(see Eq. (59)):

τp ≈
ζb2

kBT

(
N
p

)2
≈ τ0

(
N
p

)2
. (68)

The longest relaxation time is of course the relaxation time of the whole chain, which corre-
sponds to the Rouse time, τR ≈ τ0N2. For t > τR, G(t) will have almost completely decayed
to zero. However, when a strain is applied to a melt of long chains, it is found that G(t)
exhibits a plateau at intermediate times before decaying completely, similarly to elastic solids
such as rubber3,5 (Fig. 15).

The first to shed some light on these peculiar behavior were Edwards16,19 and de Gen-
nes18. In his work on crosslinked polymers, Edwards realized that the fact that chains cannot
cross would lead to the confinement of every chain in a tube-like region, the Edwards tube. La-
ter, de Gennes realized that the same mechanism would govern the motion of long chains in
a melt, since most of the monomers are far from the chain ends and therefore at intermediate
time scales they don’t “realize” that the ends are free and not fixed. In de Gennes’s model,
the chain diffuses along its confining tube in a way analogous to the motion of a worm; this
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Figura 16 – MSD of the monomers (g1) and of the chain’s center of mass (g3) from molecular
dynamics simulations of systems of chains of length N = 500 (red symbols) and N = 2000
(green symbols) in a dense melt (ρ = 0.85). The dynamical regimes in Eqs. (72) and (73) are
clearly visible. Adapted from Ref. 52.

motion was called by de Gennes reptation, from the latin reptare, “to creep”.
The tube diameter, dT , can be connected to an entanglement length Ne by using ideal chain

statistics3:

dT ≈ bN1/2
e (69)

The average number of entanglements per chain is therefore given by N/Ne: if N < Ne, the
system is unentangled and the Rouse model applies, whereas for N > Ne de Gennes’s repta-
tion model applies. The value of the entanglement length Ne can be estimated by measuring
the value of the stress relaxation modulus G(t) in the rubbery plateau, G0, which is called
the plateau modulus (Fig. 15). Indeed, the reptation model predicts3

G0 =
4ρkBT

5Ne
(70)

At intermediate times, the chain performs Rouse motion along the tube, with diffusion coeffi-
cient De = kBT/Nζ. The tube itself, however, has a random walk conformation, with contour
length LT ≈ dT(N/Ne). Therefore, the relaxation time τd, i.e., the time needed for the chain
to reptate out of the tube and start diffusing (disengagement time), will satisfy

τd ≈
L2

T
De
≈ ζdT N3

kBTN2
e
≈ τ0

N3

Ne
∝ N3, (71)

which is close to the experimental behavior τd ∝ N3.4. The reptation model also predicts D ∝
N−2 and η ∝ τd ∝ N3, which are also in disagreement with experiments. This discrepancy is
partly due, as first recognized by Doi3,50,51, to the phenomenon of contour length fluctuations:
the contour length of the tube is not constant, but rather fluctuates in time, leading to a
stronger dependence of τd, D and η on N.

The reptation model prediction for 〈r2(t)〉 and 〈r2
cm(t)〉 is more complicated that the one

predicted by the Rouse model3:
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〈r2(t)〉 ∝





t t < τ0

t1/2 τ0 < t < τe

t1/4 τe < t < τR

t1/2 τR < t < τd

t t > τd

(72)

〈r2
cm(t)〉 ∝





t t < τe

t1/2 τe < t < τR

t τ > τR,

(73)

where τe ≈ τ0N2
e is the Rouse relaxation time of a portion of chain containing Ne monomers.

The 〈r2(t)〉 ∝ t1/4 and 〈r2
cm(t)〉 ∝ t1/2 regimes for τe < t < τR are due to the fact that the

chain performs an essentially one dimensional Rouse relaxation along the random-walk-like
tube region (a “random walk on a random walk"). We note that both in the Rouse and in
the reptation model, we expect 〈r2(t)〉 and 〈r2

cm(t)〉 to coincide for t longer than the longest
relaxation time of the system, since the whole chain moves coherently.

3.4.4 Experimental measurement of dynamic properties

Dynamic quantities such as 〈r2
cm(t)〉 and the diffusion coefficient can be measured expe-

rimentally via dynamic light scattering (DLS)3,5,30,53. The time autocorrelation function of
the scattered intensity is related to the intermediate scattering functiong F(q, t)1,53, which is
a generalization of the (static) structure factor S(q), Eq. (32):

F(q, t) ≡ 1
M

M

∑
k,j=1
〈exp[−iq · (rk(t)− rj(0))]〉, (74)

Analogously to what we have done in Sec. 3.3 for S1(q), for small scattering angles qRg � 1
we can expand the single-particle intermediate scattering function, F1(q, t)3,30:

F1(q) ' N − q2

6N

N

∑
k,j=1
〈(rk(t)− rj(0))2〉 (75)

For t > τrel, with τrel the relaxation time of the chain, it can be shown that30

〈(rk(t)− rj(0))2〉 ' 〈[rcm(t)− rcm(0)]2〉 = 〈r2
cm(t)〉 (76)

and therefore
g Some textbooks, such as Doi-Edwards 3 and Rubinstein-Colby 5 refer to F(q, t) as the dynamic structure factor. Here,

we adopt the terminology of Hansen-McDonald, where the term “dynamic structure factor” is used to denote the
temporal Fourier transform of the intermediate scattering function, S(q, ω) = 1

2π

∫
F(q, t)eiωtdt
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Figura 17 – A network of N2 = 46465 bifunctional particles (blue cylinders representing
their bonds) and N3 = 486 trifunctional particles (red spheres). Total number density
(N2 + N3)/V = 0.047, fraction of reacted sites pb = 0.9986. The network was generated
by simulating patchy particles (see Ch. 6). Data courtesy of L. Rovigatti.

F1(q, t) ' N
(

1− q2

6
〈r2

cm(t)〉
)

(qR� 1, t > τrel) (77)

In the limit t→ ∞, we obtain from Einstein’s relation (54)

F1(q, t) ' N(1− q2Dt) ' N exp
(
−q2Dt

)
(qR� 1, t→ ∞) (78)

3.5 networks and gels

In polymeric system, bonds can be present between different polymer chains (Fig. 17). These
bonds, called crosslinks, can either be physical, when they can be broken via thermal fluctua-
tions, or chemical, when they cannot (the typical case being that of covalent bond)5. When
inter-chain bonds are introduced in a polymeric system, a variety of different structures can
be formed, such as rings, dendrimers, combs, and randomly branched structures5 (see Fig. 8).
Also bond formation itself can proceed through different physical processes: for example,
a branched structure can be created by taking a mixture of bifunctional and f -functional
particles (the crosslinkers) with f > 2, and initiating polymerization reaction. Another me-
thod consists in taking a system containing already formed chains and initiating the cros-
slinking via some chemical agent, electromagnetic radiation (photo-crosslinking) or electron
irradiation54.

After a certain extent of reaction, a percolating network, i.e., a molecule spanning the
whole system, will appear. This “giant molecule” is called a gel, while the polydisperse
mixture of branched polymers which is not part of the giant molecule is called the solh. We
encounter many polymeric gels in everyday life, which can be either physical, like gelatin, or
chemical, like Epoxy glue and rubber.

h Sometimes, a distinction is made between (dry) polymer networks and gels, in which a gel is a network which is
swollen in a solvent 5.
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In the present Section, we will present a brief overview of the Flory-Stockmayer theory of
gel formation and of the main models to describe the elastic properties of gels.

3.5.1 Flory-Stockmayer theory of gelation

In the 1940s, Flory presented the first quantitative theory of gelation11,55–57, obtaining expli-
cit expressions for trifunctional –and partly also for tetrafunctional– branching units. This
theory was later generalized by Stockmayer58,59, who was able to obtain general formulas for
systems containing branching units of any given functionality.

The key assumptions of the Flory-Stockmayer (FS) theory are the following58:

1. Cyclic structures (loops) are assumed not to occur (“no-loops” assumption).

2. At any stage during the reaction, all unreacted functional groups are considered to be
equally reactive.

We will here consider the case of a system containing N2 bifunctional monomers and N f f -
functional monomers, with valence f > 2. The total number of monomers is Ntot = N2 + N f .
The total number of binding sites (also called functional groups) in the system is therefore
f N f + 2N2. For this case, the FS theory predicts that the number of molecules composed of
n f -functional monomers and k bifunctional monomers is

mnk = f N f pn−1
f (1− p f )

k pn+k−1
b (1− pb)

f n−2n+2
(

( f n− n + k)!
n!k!( f n− 2n + 2)!

)
, (79)

where we have introduced the fraction of binding sites belonging to the f -functional mono-
mers,

p f ≡
f N f

f N f + 2N2
, (80)

and the bond probability or extent of reaction (fraction of reacted sites),

pb ≡
2(Ntot −M)

f N f + 2N2
=

Nb
Nmax

b
, (81)

with M the total number of molecules:

M ≡ ∑
k,n≥0

mnk. (82)

In Eq. (81) we have also introduced the number of bonds, Nb = Ntot −M, and the maximum
number of bonds, Nmax

b = ( f N f + 2N2)/2.
The critical bond probability at which percolation occurs (gel point) is found to be58

pc
b =

1
1 + ( f − 2)p f

(83)
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Above the gel point, the giant molecule –the gel– appears. In the thermodynamic limit
Ntot → ∞, this molecule has infinite sizei.

In the case of N f identical f -functional monomers, with f ≥ 2, the above expressions are
greatly simplified. The number of molecules of size n can be obtained simply by taking k = 0
and p f = 1 in Eq. (79); the result is

mn = f N f pn−1
b (1− pb)

f n−2n+2
(

( f n− n)!
n!( f n− 2n + 2)!

)
(84)

and the critical bond probability becomes pc
b = ( f − 1)−1.

In the special case f = 2 ( linear polymers), one obtains

mn = N2(1− pb)
2 pn−1

b ( f = 2) (85)

Eq. (85) can also be used to derive an expression for the strand length distribution in a
polymer gel containing both bifunctional and f -functional particles. Indeed, this is equivalent
to remove all f -functional particles and analyze the size distribution of the resulting ensemble
of linear chains61, which formally amounts to replacing pb with p2 pb in Eq. (85), where

p2 ≡
2N2

f N f + 2N2
= 1− p f (86)

The result is therefore simply

mn = N2(1− pb p2)
2(pb p2)

n−1 = N2(1− pb p2)
2e−(n−1)| ln(pb p2)|. (87)

From Eq. (87) it is possible to calculate the average strand length 〈mn〉:

〈mn〉 = ∑∞
n=1 nmn

∑∞
n=1 mn

=
1

1− p2 pb
, (88)

Regarding the behavior of the system past the gel point, i.e., for pb > pc
b, the prediction of

Stockmayer is different from that of Flory. Flory assumes that the sol phase continues to
interact with the gel phase also past the gel point, whereas Stockmayer assumes that the gel
and the sol do not interact62. It turns out, as Stockmayer himself suspected58, that Flory’s
assumption (sometimes called Flory’s “post-gel” assumption) is the correct one, and that
Eq. (79) can be applied to the sol also past the gel point, as long as loops are not formed in
sol clusters (but the formation of loops is allowed in the gel)63,64. This implies that Eq. (87)
remains valid also for pb > pc

b, and in particular also in the fully-bonded ground state (pb = 1)
of the system63,64. In this case, we simply have

i We note that above the gel point the number of bonds cannot be calculated as Nb = Ntot − M anymore. Indeed,
this would imply that the number of molecules becomes zero (M = 0) for pb = Ntot/Nmax

b , which is clearly absurd.
The solution to this apparent contradiction is that for pb > pc

b the formation of loops is allowed in the gel (but only
there), and therefore forming a new bond doesn’t imply that M is reduced by 1 anymore 60,61.
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〈mn〉 =
1

1− p2
=

1
p f

= 1 +
2N2

f N f
(89)

3.5.2 Models of rubber elasticity

In this section, we will briefly review the main results of classical models of rubber elasticity.
These models aim to predict how a polymer network responds to a deformation. The funda-
mental quantity when studying how a solid responds to deformation is the elastic modulus E,
which is defined as the ratio between the applied stress σ (force per unit area) to the applied
strain γ (displacement per unit length)65:

E ≡ σ

γ
(90)

There are different kinds of moduli, depending on the type of deformation which is applied:

• The shear modulus G describes an object’s tendency to shear (the deformation of shape
at constant volume) when acted upon by opposing forces.

• The Young modulus Y describes tensile elasticity, or the tendency of an object to deform
along an axis when opposing forces are applied along that axis.

• The bulk modulus K describes volumetric elasticity, or the tendency of an object to deform
in all directions when uniformly loaded in all directions. It is related to the isothermal
compressibility κT ≡ − 1

V

(
∂V
∂P

)
T,N

, since κT = K−1 1.

The three moduli are connected by the following relation65:

Y(G + 3K) = 9KG (91)

The simplest model of rubber elasticity is the affine network model (ANM), which was by
Treloar starting from ideas of Kuhn66–68. The ANM assumes that69: (1) The network strands
are freely-jointed chains, (2) the end-to-end distance of the chains is the same as that of
chains in the un-crosslinked state, (3) there is no change in volume on deformation and (4)
the crosslinks displace affinely with macroscopic deformation. These assumptions lead to the
following prediction for the shear modulus5:

Gaffine = ρskBT =
ρkBT

Ns
(92)

where ρs is the number density of strands, ρ is the monomer density and Ns = ρ/ρs is the
effective strand length. In the affine network model, it is assumed that the ends of the strands
are fixed in space and displaced affinely with the whole network. In real networks, the
strand ends are attached to other strands via crosslinks, which can move around their average
positions. The simplest model to incorporate the crosslinks fluctuations is the phantom network
model (PNM) of James and Guth68,70–73. The PNM model assumes that69: (1) The chains are
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Figura 18 – Network with tetravalent crosslinks (red dots) and a Bethe lattice structure.

Gaussian, (2) there are no excluded volume interactions, so that the chains can freely pass
through one another (from this assumption comes the name “phantom network") and (3)
all crosslinks at the surface of the network are fixed and deform affinely with macroscopic
strain, while all crosslinks and chains inside the bulk of the network fluctuate around their
mean positions. In addition to these assumption, it is usually assumed in order to simplify
the calculations that (4) all the strands have the same length, and (5) the network has the
topology of a Bethe lattice5,69,74, as that shown in Fig. 18. The PNM predicts a smaller shear
modulus than the one predicted by the affine network model5:

Gphantom = ρskBT
(

1− 2
〈 f 〉

)
= Gaffine

(
1− 2
〈 f 〉

)
(93)

where 〈 f 〉 is the average crosslink functionality. Eq. (93) can also be expressed as

Gphantom = kBT(ρs − ρcl) (94)

where ρcl is the crosslink density, which is equal to 2ρs/〈 f 〉, since there are on average 〈 f 〉/2
strands per crosslink.

Both the ANM and the PNM assume that the network has no defects, i.e., no dangling
ends or similar structure, such as dangling loops, which are attached to the network by only
one end. These structures do not contribute to the modulus, since they do not respond to
deformations (they are elastically inactive). If the number density of elastically active strands
ρa is known, we can still use Eq. (94) and calculate the shear modulus as G = kBT(ρa − ρcl).

We note that in both models, we can express the shear modulus as

Gx = ρxkBT =
ρkBT

Nx
(95)

where ρx is the effective strand density and Nx is the effective strand length. In the ANM,
Nx = Ns, whereas in the PNM Nx = Ns〈 f 〉/(〈 f 〉 − 2).

Both the ANM and the PNM, however, share a fundamental flaw: In both models, the
strands are aware of the presence of other strands only through the presence of the cros-
slinks. In reality, however, as discussed in Sec. 3.4.3, the presence of other chains introduces
topological constraints called entanglements on any given strand. Since chains cannot move
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through each other, these entanglements act basically as additional crosslinks. We have seen
(Eq. (70)) that for an entangled melt the plateau modulus is Ge ≈ ρkBT/Ne. The modulus of
an entangled polymer network can be approximated as the sum of the contribution coming
from the crosslinks and that coming from the entanglements5:

G ' Gx + Ge = kBT(ρx + ρe) ≈ ρkBT
(

1
Nx

+
1

Ne

)
. (96)

The term ρx + ρe appearing in Eq. (96) can be interpreted as an effective strand density ρeff

and can be used, for example, to evaluate the size of the tube diameter in a system with
both crosslinks and entanglements. In an entangled, non-crosslinked system, d ≈ bN1/2

e =

b(ρ/ρe)1/2. It follows that if both crosslinks and entanglements are present, we can evaluate
the effective tube diameter as

deff ≈ b
(

ρ

ρeff

)1/2
= b

√
Nx Ne

Nx + Ne
. (97)

We note that Eqs. (96) and (97) can be rewritten as

G ≈ ρkbT
Neff (98a)

d ≈ b(Neff)1/2, (98b)

where Neff = Nx Ne/(Nx + Ne) is an effective strand length which takes into account both
the crosslinks and the entanglements. We note that if Ne � Nx, Neff ' Ne and if Nx � Ne,
Neff ' Nx, as expected.

3.6 computer simulations

Computer simulations provide an invaluable tool for the study of polymer liquids for many
reasons. First, they allow to get rid of undesired effects which are unavoidable in experimen-
ts, like chain length polydispersity, and to fully control the properties of the system. Second,
they allow to measure directly quantities which are extremely challenging to measure in ex-
periments, like the dynamics of single chain segments, while also allowing the measurement
of observables which are routinely studied in experiments. Simulations allow to submit the
system to unphysical transformations in order to study specific aspects: for example, chains
can be made to contract to measure the entanglement length75, or they can be made able
to cross each other in order to “turn off” the effect of topological entanglements76,77. The
drawback is that simulations are usually able to access system sizes and time scales which
are much smaller than those accessible in experiments. However, regarding time scales this is
not always true, as in the study of some specific properties simulations can access wider time
windows than those accessible in experiments78.
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3.6.1 Molecular Dynamics (MD)

The two main techniques used in simulations are Monte Carlo (MC) and molecular dynamics
(MD).

In MD simulations, the particles are assumed to interact through some (usually conti-
nuous) potential U , which depends on the particles’ positions {r} ≡ r1, . . . , rN . The potential
is usually taken to be two- or three-body. Newton’s equation, mi r̈i = −∇iU ({r}), is then
solved for every particle in the system using some integration scheme79–81. A good time
integrator should be numerically stable, time reversible and symplectic80,81: an example of
widely used integrator which possesses all these characteristics is the velocity Verlet integra-
tor82. A MD scheme which simply integrates Newton’s equations will sample the micro-
canonical (NVE) ensemble. Since most experiments are performed at constant temperature
and pressure (isothermal-isobaric or NPT ensemble) or at constant temperature and volume
(isothermal-isochoric or NVT ensemble), several schemes have been developed in order to
perform MD simulations which samples other ensembles79–81. Several techniques have also
been developed to perform MD simulations of molecules in a solvent without having to simu-
late explicitly an enormous number of solvent molecules. The simplest approach is Langevin
dynamics83, where instead of Newton’s equation, Langevin’s equation is integrated:

mi r̈i = −∇iU ({r})−miΓṙi +
√

2miΓkBT ζ(t). (99)

The second term on the right-hand side of Eq. (99) represents viscous friction, with Γ the
friction coefficient, and the third term is a stochasticj force which represents collisions with
solvent molecules (T is temperature). The ζ(t) vector satisfies

〈ζ(t)〉 = 0 (100a)

〈ζ(t) · ζ(t′)〉 = δ(t− t′). (100b)

Eq. (100b) tells us that the correlation time is infinitely short. We note that the prefactor√
2miΓkBT is derived from the fluctuation-dissipation theorem85. Langevin dynamics can

mimic the viscous friction exerted by the solvent on the molecules, but it doesn’t implement
solvent-mediated hydrodynamic interactions (HI) between molecules. When HI cannot be ne-
glected, more sophisticated schemes are needed, such as multi-particle collision dynamics86.
For a review of simulation methods which include HI, we refer to Ref. 87.

When the friction Γ is very large, the inertial term mi r̈i can be neglected compared to the
“viscous” term miΓṙi

79 and Eq. (99) becomes

γi ṙi = −∇iU ({r}) +
√

2γikBT ζ(t). (101)

where γi ≡ miΓ. This approximation corresponds to a very viscous solvent, in which inertia
is basically negligible88; the resulting dynamics is called Brownian dynamics or overdamped
Langevin dynamics.

j Usually a Gaussian distribution is chosen, but other choices are possible 84.
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The main limit of MD simulations when applied to polymer systems is that the relaxation
time of a polymer liquid grows very quickly with chain length N. Indeed, as discussed in
Sec. 3.4, the relaxation time of an unentangled polymer grows as N2, while for an entangled
polymer it grows as N3.4. For crosslinked polymers and star polymers the situation is even
worse, since the relaxation time increases exponentially respectively with chain length76,89

and with the (square root of the) number of arms90. Therefore, even with modern computers,
equilibrating systems of very long chains can be prohibitive. This constitutes a problem, since
very long chains are often needed in order to observe theoretically predicted behaviors52.

3.6.2 Monte Carlo (MC)

In MC simulations, the phase space of the system is randomly sampled following a rule that
reproduces the desired probability distribution79–81. The advantage of MC with respect to
MD is that unphysical moves can be performed, which can significantly speed up the equili-
bration of the system. The obvious drawback is that in most situations only static properties
can be studied, since MC “dynamics” is usually too different from the actual dynamics of the
system – even though this is not always the case91. MC simulations can be performed either
on a lattice or in the continuum. MC-based lattice models, such as the bond fluctuation mo-
del6,27,92 have been very successful in studying the static (and dynamic!) properties of dense
many chain systems in the pioneering times of polymer simulations37,38,93–95. For a detailed
discussion of the many MC techniques used in polymer science, several excellent reviews are
available: In particular, we refer to 27, 6 and 34.

3.6.3 Coarse-grained models

One possible approach to simulating a polymer liquid would be to perform an all-atom si-
mulation in which the atoms interact with each other through empirical potentials, whose
form can be inferred from quantum ab inito simulations96 (we note that a full ab initio simu-
lation of even a single, relatively short polymer would be very challenging even for modern
computers). This approach is valid, using modern computers, for relatively small systems
of short chains, but it quickly becomes unmanageable when the number of degrees of free-
dom grows. A possible solution is to introduce a coarse-grained model, in which groups of
atoms are replaced by “super atoms” which interact through effective potentials6,34,97. In a
typical coarse-grained model of a polymer, the “super atom” is meant to represent a polymer
segment of size comparable to the Kuhn length, containing several monomers.

In order for a coarse-grained model to reproduce successfully the behavior of real systems,
it is important for it to be able to mimic the main qualitative aspects of the interactions
between the different molecules present in the system. The most widely used coarse-grained
models for polymer systems fall into the category of the so-called bead-spring model: in
such models, every polymer segment (or monomer) is represented as a sphere, connected
to neighboring monomers along the chains with springs. The general form of a bead-spring
potential (neglecting torsion contributions) is
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Figura 19 – Comparison between the WCA potential (Eq. (104)), a combination of WCA and
harmonic potential (Eq. (105)) and a combination of WCA and FENE potential (Eq. (106)).
For the FENE potential, the values rmax = 1.5, k = 30 were used. For the harmonic potential,
r0 = 0.961 and k = 1000 (dash-dotted line), 500 (dash-double dotted line) and 300 (dotted
line).

U ({r}) = ∑
all pairs

Uall(rij) + ∑
bonded

pairs

Ubond(rij) + ∑
bonded
triplets

Ubend(ri, rj, rk), (102)

where rij ≡ |ri − rj|.
The term Uall acts between all pairs of polymer segments. A commonly used expression

for this interaction is the truncated and shifted Lennard-Jones (LJ) potential98,

ULJ(r) =





4ε
[(

σ
r
)12 −

(
σ
r
)6
]
+ E(rc) r ≤ rc

0 otherwise,
(103)

where rc is the cutoff radius and E(rc) ensures that ULJ(rc) = 0. Commonly used values
are rc = 2.4σ− 2.5σ 77,99 and rc = 2 · 21/6σ 100. These choices are a compromise between the
wish to include the major part of the attractive interaction and the need to keep the potential
short-ranged, in order to reduce the number of interactions to evaluate. When the cutoff
radius coincides with the minimum of the potential, rc = 21/6σ, the potential becomes purely
repulsive, and it is called Weeks-Chandler-Andersen (WCA) potential101 (Fig. 19):

UWCA(r) =





4ε
[(

σ
r
)12 −

(
σ
r
)6
]
+ 1 r ≤ 21/6

0 otherwise,
(104)

A purely repulsive potential allows to reproduce good/athermal solvent conditions, whereas
an attractive potential allows to simulate poor or theta solvent conditions34.

The term Ubond acts only between bonded segments and it represents stiff chemical bonds.
One of the simplest form is the harmonic bond with cutoffs38,
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UH(r) =





1
2 k(r− r0)

2 rmin ≤ r ≤ rmax

∞ otherwise,
(105)

where k is the spring constant. The cutoff radii rmin and rmax can be finite or respectively
0 and ∞ 102. More widely used is the so-called “finite extensible nonlinear elastic” (FENE)
potential28,103,104

UFENE(r) =




− 1

2 kr2
max ln

[
1− (r/rmax)

2
]

r ≤ rmax

∞ otherwise.
(106)

For small r/rmax, the FENE potential is harmonic: UFENE(r) ' kr2/2. The FENE potential
has two main advantages with respect to the harmonic potential: The first is that the FENE
is by definition finitely extensible, since it diverges for r → rmax, and therefore no cutoff is
needed104. Moreover, when using the FENE potential, chain crossing can be prevented with
a much smaller value of k compared to the harmonic potential (Fig. 19), meaning that the
forces generated are smaller and therefore a larger integration time step can be used.

Kremer and Grest21,105 proposed to use a combination of the WCA and FENE potential,
with k = 30ε/σ2 and rmax = 1.5σ, to study dense polymer meltsk (monomer density ρ '
0.85σ−3). With this choice of parameters, the equilibrium bond length at zero temperature is
re = 0.961. Nowadays, the Kremer-Grest model is by a large margin the most widely used
bead-spring model, having been employed in more than 800 simulation studies as of todayl.

The last term in Eq. (102), Ubend, represents a bond bending potential. In the original
Kremer-Grest model, the chains were taken to be fully flexible. However, in certain situa-
tions systems of fully flexible chains can show rather strong deviations from the theoretically
predicted behavior52, and it is therefore sometimes necessary to reduce the flexibility of the
chain by introducing an energy penalty associated with bond bending. The bond bending
potential is a function of the bond angle θ, which is defined for three consecutive monomers
i− 1, i and i + 1 along the chain as

θ ≡ arccos
(
− ri−1,i · ri,i+1

|ri−1,i| |ri,i+1|

)
, (107)

where ri,j ≡ ri − rj.

Several choices are possible for this potential, such as6,106–108:

Ub1(θ) = kθ [1 + cos(θ)] (108a)

Ub2(θ) =
1
2

kθ [cos(θ)− cos(θ0)]
2 (108b)

k We note that the same model had been already used by Bishop et al. in the very first MD simulation of a polymer 28,
although the value of rmax and k were different (rmax = 1.95σ, k = 20ε/σ2).

l Source: Google Scholar.
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Figura 20 – Comparison between the bending potentials of Eqs. (108). Continuous line:
Eq. (108a), with kθ = k′θ = 1. Dashed line: Eq. (108b), with kθ = 2k′θ and θ0 = 109.5◦ (te-
trahedral angle). Dash-dotted line: Eq. (109) with kθ = 2k′θ and θc = 120◦. The curve has
been shifted up by 2 for clarity. Cartoon: schematic representation of the angle θ (Eq. (107)).

It has been recently pointed out by Kremer and Hsu109 that the bending potential (108a) can
lead to rather artificial stretched chain conformations upon cooling, as it is evident from the
fact that θ = π (rod-like chain) in the ground state. To prevent these unphysical effects on
chain conformation in simulations at low temperature, they proposed the potential

Ub3(θ) =




−kθ sin2(πθ/θc) 0 < θ < θc

0 otherwise.
(109)

This potential prevents chain deformation upon cooling and also gives rise to conformations
which are in perfect agreement with the freely rotating chain model109. The potentials Ubk(θ),
k = 1, 2, 3 are shown in Fig. 20. We note that the potential Ub3(θ) has been shifted up by 2 in
order to make the comparison with the other two easier.

In conclusion, care should be taken when choosing the form of Ubend(θ), in that the
potential should be adapted to the simulated system.
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P O LY M E R N A N O C O M P O S I T E S

In the early 1990s, Toyota researcher showed that the adding ' 2 − 4 vol% of mica-type
nanoclay to nylon was sufficient to increase the yield and tensile strength of the material by
a factor of five, and its heat distortion temperature by almost 90 degrees110,111. Following
these pioneering studies, it became soon clear that the addition of nanoparticles (NP), i.e.,
particles of any shape with size between 1 and 100 nm112, to a polymeric system could be
used to obtain a drastic improvement not only of the mechanical, but also of the optical,
thermal, electrical, magnetic and transport properties of the material113–122. The possibility
for such numerous technological application, together with the growing availability of NPs
of specific size and shape (nanotubes, nanocubes, platelets, fullerenes, dendrimers, grafted
particles, etc.) sparked a great interest in these polymer nanocomposites (PNC), making them
the center of a very active field of research. From a physical point of view, nanocomposites
are interesting systems because of the extremely rich behaviors of their structural, dynamical,
mechanical and thermodynamic properties. Such a variety of different behaviors originates
from the interplay between many factors: NP size and shape, polymer length and rigidity,
polymer and NP volume fractions, polymer-NP interaction are all elements which strongly
influence the properties of the PNC, and changing a single parameter can lead to striking
qualitative changes122.

Despite the vastness of the literature on PNC currently available, we are still far from a
complete understanding of these fascinating systems, as many fundamental questions remain
unanswered8. One of the fundamental aspects that remains to be fully understood is how the
dynamics of the polymers and the NPs (e.g. their diffusion and its effect on the PNC viscosity)
depends on the microscopic details of the system. The importance of this problem is by no
means limited to technological applications: In biophysics, the dynamics of proteins in the
crowded cytoplasmatic environment can strongly influence cellular functions123,124, while in
medicine recent years have seen a growing interest in the development of new and more
efficient forms of NP-mediated drug delivery125–128. The dynamics of PNCs represents a
tough challenge for theoretical physics mainly because of the large number of length and time
scales introduced by the presence of the polymers. In a binary mixture of particles (molecules
or colloids), the only relevant length scales are the sizes of the two types of particles. In a
PNC, on the other hand, the length scales in play are many more, since apart from the NP
size σN we have to consider the monomer size σ, the Kuhn length `K, the mesh size ξ, the
tube diameter d and the chain size R. To each of these length scales, a different time scale is
associated: as a consequence, the behavior of the system will strongly depend on the length
and time scales at which it is probed.

In what follows, we will give a brief description of the structural and dynamic properties
of PNCs, discussing some of the numerous experimental and theoretical works on the subject.
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Since this is the topic of the present work, we will mainly discuss studies involving spherical,
non-grafted NPs. The aim is not to give an exhaustive review of the field of PNCs, but rather
to give a minimum amount of context to the following Chapters.

4.1 structure and phase behavior

The phase behavior of PNCs is extremely complex, so much so that even for model PNCs no
full phase diagram has been enunciated8. This is due to the fact that in conventional PNCs,
the NP size is smaller or comparable to the size of the polymer, i.e., RN . Rg, with RN the
NP radius and Rg the polymer radius of gyration. When RN . Rg, it is said that a system is
in the "nanoparticle" or "protein" limit129. The opposite regime, RN � Rg, called the "colloid"
limit, is relatively easy to handle, since the NP-NP interaction can be reduced to an effective
depletion pair potential mediated by the polymers130–133. The nanoparticle limit, however, is
much trickier, since an accurate description in terms of effective pair potentials is not possi-
ble134–136. In the present section, we will briefly discuss some of the most relevant structural
and thermodynamical properties of PNCs. For simplicity, we will limit our discussion to
systems of linear chains containing spherical NPs.

4.1.1 NP dispersion

Figura 21 – Cross-sectional TEM ima-
ge showing silica NPs (2 vol%) in a
polystyrene-silica PNC. Inset: cross-
sectional TEM image of the near
surface. Adapted from Ref. 137.

Although NP aggregation is desirable for some appli-
cations121,138,139, it greatly increases the difficulty of
understanding the general mechanisms governing the
physical properties of PNCs; therefore, in most expe-
rimental studies on model PNCs aimed at understan-
ding their general properties it is desirable to achieve
good (uniform) NP dispersion140,141 (Fig. 21). This
is because aggregation introduces size polydispersi-
ty and dynamical heterogeneity in the system. In
athermala PNCs, it has been established by theoreti-
cal142–145, experimental140,146 and simulation99,147–152

studies that the polymer-induced depletion interac-
tion acting on the NPs causes NP aggregation, and
eventually a macroscopic phase separation. This en-
tropic phase separation can be avoided either by intro-
ducing an attractive interaction between the polymers and the NPs (for example by introdu-
cing functional groups on NP surface122,141), or by grafting on the NP surface polymer chains
with the same chemical composition as the matrix polymers, which can sterically shield the
attractive depletion interaction8,99,122,153–158. It has also been shown the thermodynamic stabi-
lity of a NP dispersion is enhanced when the NP radius is smaller than the polymer’s radius
of gyration (RN < Rg), i.e., in the nanoparticle limit140.

a The term "athermal" is used here to denote a system where all the interactions are purely repulsive, but not
necessarily hard-sphere like.
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4.1.2 Chain conformation

Even today, it is still highly debated how the conformation of polymer chains in a PNC is
affected by the presence of the NPs122,158. It is clear that NP concentration, quality of NP
dispersion, NP-polymer size ratio, NP shape and polymer-NP interaction all play a role in
determining chain conformation. However, at present, no theoretical model has been able to
explain in a satisfactory way the results of all the experiment and simulations which have
probed this aspect of PNCs.

Nakatani et al.159 studied blends of silica NPs in PDMSb through neutron scattering,
observing chain expansion for Rg > RN and chain contraction for Rg ' RN

159.
Sen et al.160 studied PNCs of silica NPs in polystyrene, finding that chain dimensions re-

main unperturbed for NP volume fractions up to ' 30% and 0.57 . Rg/RN . 1.57. However,
it has been pointed out that TEM images seem to reveal that the NPs were not well dispersed
in the studied PNCs161. Later experimental studies, however, found analogous results in
PNCs with well-dispersed NPs162,163.

Mackay et al.140 and Tuteja et al.161 found up to 10− 20% chain expansion in polystyrene
PNCs containing well-dispersed polystyrene NPs at volume fractions φN . 10%. This effect
was only observed for Rg > RN , in agreement with the results of Ref. 159.

Using the SC/PRISM theory, Frischknecht et al.164 found that attractive NPs smaller than
the polymers cause chain expansion. Also from the point of view of computer simulations
there are contrasting results regarding the effect of NPs on chain conformation158.

Karatrantos et al.152 performed MD simulations of PNCs containing spherical NPs at vo-
lume fractions ranging from 10% to 40%, finding that polymer-NP interactions play a crucial
role both in NP dispersion and in the effect of NPs on chain conformations: Repulsive NPs
of size larger than some threshold value tend to aggregate and leave polymer dimensions
unperturbed, while attractive NPs are well dispersed and cause the polymer chains to be
stretched and flattened when Rg > RN . Large NPs (Rg < RN) leave polymer dimensions
unchanged irrespectively of the character of the polymer-NP interactions.

In conclusion, further theoretical and experimental studies are needed in order to gain
a satisfactory understanding of what are the fundamental parameters in controlling chain
conformation in PNCs, and what is the general mechanism behind the different observed
behaviors.

4.2 nanoparticle dynamics

Several approaches have been used to gain a theoretical understanding of the dynamics of
NPs in PNCs. Because of the complexity of these systems, most theories focused on the
problem of a single NP diffusing in a polymer solution or melt, a situation which corresponds
to the case of very low NP concentration in experiments and simulations. Moreover, most
theories consider the case of spherical NPs, which can be characterized by a single length scale
(the NP diameter σN), and are therefore easier to handle than more complex shapes such as
rods. We will briefly review the theories that have been most successful in interpreting the
experimental and simulation data. Among the models not described here, we mention the
geometric obstruction models165–167 and the hydrodynamic models168–173. For a review of
some of these models, we refer the reader to Ref. 174. All the theories described in this section

b polydimethylsiloxane
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only deal with the problem of a single NP in a polymer liquid. To the best of our knowledge,
no theoretical attempt has yet been carried out to tackle the much more challenging problem
of the diffusion of several interacting NPs in a polymer liquid.

4.2.1 Brochard-Wyart–de Gennes (BWdG) scaling theory

One of the earliest theoretical approach to the problem of NP diffusion in a polymer liquid
was carried out by Brochard-Wyart and de Gennes using scaling arguments175. Brochard-
Wyart and de Gennes, who considered entangled polymer melts, argued that, while particles
larger than the tube diameter d experience the macroscopic viscosity of the melt, particles
of diameter σN < d would experience a much smaller viscosity η ∝ σ2

N . This is because
such a small particle does not have to disentangle any chain in order to move, but rather it
must displace chain portions of size ≈ σN inside the tube. From ideal chain statistics, these
chain portions will contain n(σN) ≈ (σN/b)2 monomers, where b is the effective bond length.
The NP will therefore experience a σN-dependent viscosity which can be estimated using the
Rouse model (see Sec. 3.4.1):

η(σN) ≈ η(b)
(σN

b

)2
, (110)

where η(b) is the viscosity of a monomer liquid with the same density as the melt.

From the viscosity, we can obtain the viscous friction coefficient ζ using the Stokes relation,

ζ(σN) = f πη(σN)σN , (111)

where f is a numerical factor between 2 and 3 which depends on the hydrodynamic boundary
conditions, with f = 2 for pure slip and f = 3 for pure stick boundary conditions176. Finally,
from ζ we can obtain the diffusion coefficient D using the Einstein relation:

D =
kBT

ζ(σN)
=

kBTb2

f πη(b)σ3
N

∝ σ−3
N (112)

The conventional Stokes-Einstein equation,

D =
kBT

f πησN
∝ σ−1

N , (113)

valid for a spherical particle diffusing in a continuum solvent with viscosity η, is therefore not
valid for a small particle (σN < d) in an entangled melt. The violation of the Stokes-Einstein
relation has been observed in numerous experiments and simulations of polymer solutions
and melts77,177–183.
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4.2.2 Cai-Panyukov-Rubinstein (CPR) scaling theory

The BWdG scaling theory was extended by Cai, Panyukov and Rubinstein184, who included
in their discussion polymer solutions and also treated the intermediate time dynamics of
the NPs. Cai et al. distinguished between three dynamic regimes, depending on the ratio
between the NPs size and two relevant length scales of the solution/melt: the mesh size ξc

and the tube diameter d.

For σN < ξ (small size regime), the particle can slip through the mesh and it is therefore
barely affected by the presence of the polymers. Its motion will therefore be diffusive, with
diffusion coefficient

Ds ≈
kBT
ηsσN

(114)

where ηs is the solvent viscosity. In a melt, ξ < b < σN and this regime disappears.

For ξ < σN < d (intermediate size regime), the dynamics of the NP is not affected by the
entanglements, but it is coupled to the fluctuation modes of the chains. The motion of the
NP is diffusive up to a time

τξ ≈
ηsξ

3
b

kBT
≈ τ0

(
ξ

b

)3
, (115)

which corresponds to the Zimm relaxation time of a polymer strand of size ξb (see Sec. 3.4.2).
For times t > τξ , NP motion is coupled to that of the a polymer segment containing (t/τξ)

1/2

blobs (see Eq. (59)), and therefore the NP experiences a time-dependent effective viscosity (cf.
Eq. (110))

ηeff(t) ≈ ηs

(
t

τξ

)1/2
(116)

leading to an effective diffusion coefficient

Deff(t) ≈
kBT

ηeffσN
≈ Ds

(
t

τξ

)−1/2
, (117)

which in turn will lead to the following MSD for the NPs:

〈r2
N(t)〉 ≈ Deff(t)t ≈ Ds(τξt)1/2. (118)

Therefore, the theory predicts that for t > τξ the NPs will move subdiffusively, with an
exponent 1/2. The motion becomes diffusive only when the size of the chain sections control-

c The authors consider ξ as equivalent (in a scaling sense) to the blob size ξb, i.e. ξ ≈ ξb. However, as discussed in
Ch. 3.2.2, this is only strictly true in the semidilute regime. We will however follow the presentation of the authors
and consider ξ ≈ ξb in the present section.
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Figura 22 – Scaling behavior of the NP diffusion coefficient D in CPR theory, Eq. (125). The
theory predicts that the sudden jump at σN ≈ d is broadened by the hopping process184,185.

ling viscosity becomes comparable with the NP diameter; since these chain sections contain
(t/τξ)

1/2 blobs, this condition translates to

ξ

(
t

τξ

)1/4
≈ σN (119)

and therefore the motion of the NPs will become diffusive for t larger than τσN , where

τσN ≈ τξ

(
σN
ξ

)4
≈ τ0

σ4
N

b3ξ
(120)

The NP terminal diffusion coefficient can then be estimated from Eq. (118):

Deff(τσN ) ≈ Ds

(
τσN

τξ

)−1/2
≈ Ds

(
ξ

σN

)2
≈ kBTξ2

ηsσ3
N

(121)

In the case of a melt ξ ≈ bd and therefore we obtain the BWdG result, Eq. (112).
For σN > d (large size regime), the NPs are trapped by the entanglements, and they follow

the same subdiffusive regime as the intermediate size particles up to the relaxation time of
an entanglement strand,

τe ≈ τξ

(
d
ξ

)4
≈ τ0

d4

b3ξ
. (122)

For t > τe, large particles are trapped by the entanglements and their MSD reaches a plateau

d This is only strictly true for densities not too much larger than ρ∗∗, for which ξ ≈ ξb ≈ b. However, for ρ > ρ∗∗ the
mesh size ξ decreases monotonically with increasing ρ.
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〈r2
N(τe)〉 ≈ Deffτe ≈ Ds(τξτe)

1/2 ≈ d2ξ

σN
(123)

According to Cai et al., the motion of large particles can then proceed by two mechanisms.
The first one is constraint release, i.e., the reptation of the surrounding polymers leading to
the release of the entanglements. The second one is hopping, i.e., local fluctuations of the
entanglement mesh which can allow the NPs to “jump” from one entanglement cage to
another185. The release of the entanglements by reptation of the chains will happen at the
time t ≈ τd ≈ τe(N/Ne)3.4 (disengagement time – see Chapter 3.4.3). For t > τd, the dynamics
of the NPs is predicted to be diffusive, with diffusion coefficient given by the Stokes-Einstein
relation,

D ≈ kBT
ηbulkσN

, (124)

where ηbulk is the bulk viscosity of the solution, which has value ηbulk ≈ G0τd
5.

To summarize, the CPR prediction for the diffusion coefficient D of a NP of diameter σN

in an entangled polymer solution/melt is:

D
kBT

≈





η−1
s σ−1

N σN < ξ

η−1
s ξ2σ−3

N ξ < σN < d

η−1
bulkσ−1

N d < σN

(125)

These three regimes are also represented in Fig. 22. For unentangled systems, Eq. (125) must
be modified by replacing the tube diameter d with Rg, where Rg is the polymer’s radius of
gyration184.

4.2.3 SCGLE theory

The CPR scaling theory represents a significative improvement with respect to the BWdG.
However, being a scaling theory, it is unable to predict numerical coefficients and does not
give a microscopic foundation to its predictions. One of the first attempts to develop a
microscopic theory of NP motion in polymer liquids was carried out by Egorov186 using
mode-coupling theory (MCT)1. Egorov, who limited his analysis to unentangled polymers,
stated that the diffusion coefficient of NPs of diameter σN < 2Rg scaled approximately as D ∝
σ−2

N , in contrast with the BWdG theory, which predicts D ∝ σ−3
N , although this is probably

due to the fact that the σN value he considered in his calculations were not small enough
to properly observe the D ∝ σ−3

N regime. In the same year, Yamamoto and Schweizer187

proposed a theoretical approach based on a combination of MCT ideas, Langevin dynamics
and PRISM theory188; in many respects, the theory of Yamamoto and Schweizer can be
regarded as an improved version of the theory of Egorov. In order to better address the
motion of small NPs in entangled melts, Yamamoto and Schweizer later proposed a more
general theory, which contained the previous one as a particular result189. The new theory
combined the self-consistent Langevin equation (SCLGE) theory1 with MCT ideas. One of
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the assumptions of SCLGE theory is that the NP diffusion coefficient can be approximated as
the sum of a non-hydrodynamic (Dnhd) plus a hydrodynamic (Dhd) contribution187,189:

D = Dnhd + Dhd. (126)

The term Dnhd comes from binary collisions between the NP and solvent molecules and from
the coupling of NP motion with the structural relaxation modes of the solvent, whereas the
Dhd term comes from coupling of the NP motion with the transverse current mode of the
solvent186,190 and can be approximated using the Stokes-Einstein (SE) relation187:

Dhd = DSE =
kBT

f πηbulkσN
(127)

where ηbulk is the bulk viscosity of the polymer liquid, which can be approximated as

ηbulk = ηR

[
1 +

(
N
Ne

)2
]

, (128)

where ηR = η(b)N is the Rouse viscosity. Eq. (128) is a “minimalist” analytic expression
that properly captures both the unentangled Rouse limit (N � Ne) and the entangled limit
(N � Ne)187. The main predictions of the theory are the following; in unentangled melts, Dnhd

is given for σN < 2Rg by

Dnhd =
3kBTRg

2

πηRσ3
N

∝ σ−3
N . (129)

This is in agreement with the BWdG scaling prediction. The SE behavior is recovered when
DSE ≥ Dnhd, i.e., for σN ≥ 3Rg.

In entangled melts, the diffusion constant scales as σ−3
N for σN < d. For σN & 2d there is

a continuous crossover towards SE behavior. The crossover from non-hydrodynamic to SE
behavior becomes sharper with increasing degree of entanglement N/Ne, and for heavily
entangled melts SE behavior is only recovered for rather large NP sizes, σN ≈ 10d. This is in
contrast with the BWdG and CPR scaling theories, which both predict a sharp crossover at
σN ≈ de. The above described behaviors are shown in Fig. 23.

When the effect of the entanglements is negligible, SCLGE theory also predict subdiffusive
NP motion at intermediate times, with subdiffusive exponent α = 1/2: 〈r2

N(t)〉 ∝ t1/2. It
has also been verified via numerical SCLGE calculations that this trend is followed by large
particles in an almost universal way189. However, comparison with simulations reveals severe
limitations of the theory in correctly predicting MSD slopes and crossover times (more details
can be found in Ref. 189).

e Cai-Panyukov-Rubinstein actually predict that this crossover is broadened by hopping processes, but even so it
remains fairly sharp (cf. Fig. 22).
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Figura 23 – Ratio between the NP diffusion coefficient and the SE prediction as a function of
the confinement ratio σN/d (here dT = d and R = σN/2), as predicted from SCLGE theory for
different values of N/Ne. From bottom to top, the solid lines correspond to N/Ne = 1, 2, 4, 8
and 16. Dashed lines are prediction from the theory of Ref. 187, where it was assumed that
NP transport is solely mediated by polymer relaxation also for small NPs (σN < d). Inset:
same quantity for unentangled melt; in this case, the confinement parameter is σN/2Rg. We
note that in both plots, the power-law decay at small confinement parameter values has slope
−2, i.e. D ∝ σ−3

N . From Ref. 189.

4.2.4 Activated hopping

In entangled polymer liquids, the motion of particles of size larger than the tube diameter
d can proceed through the release of the entanglements (constraint release), which happens
on time scales of the order of the disengagement time, τd ∝ N3.4. For very long chains, τd

can become larger than the experimental time, so that the NPs become permanently trapped
(on the experimental time scale). In polymer solids containing irreversible crosslinks, like
dry networks (e.g. rubbers) and gels, the situation becomes even more extreme, since the
constraint release mechanism is completely turned off. However, even in this case of extreme
confinement, the motion of NPs can still happen through the mechanism of hopping, i.e.,
activated motion triggered by local fluctuations of the entanglement/crosslink mesh.

Dell and Schweizer191 developed a theory of hopping based on the nonlinear Langevin
equation (NLE) theory192. In their work, they considered a general system containing both
crosslinks and entanglements, and defined a mean entanglement length Nx, which results
from both crosslinks and entanglements, from the plateau modulus, Nx ≈ ρkBT/G0. The
tube diameter can then be estimated as d ≈ bN1/2

x . The starting point of the theory is a
dynamic free energy F(r) (r = displacement of the particle from its initial position), which
is a rather complicated function of the system’s parameter and of the monomer-monomer
and monomer-NP pair correlation functions. This free energy assumes a simpler form in the
so-called “random structure model”, which assumes (1) that the monomers pack randomly
around the NPs, and (2) that the polymer structure factor S(q) can be approximated by its
long wavelength limit, i.e., S(q) ' limq→0 S(q) ≡ S0. In addition, (3) the NPs are treated as
hard spheres.

Under these approximations, F(r) can be evaluated analytically, and an expression which
depends only on d, RN = σN/2, S0, b and ρ is obtained. From F(r), we can define a localiza-
tion length rL (position of the first minimum of F), a barrier position rB (position of the first
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Figura 24 – Dynamic free energy F(r), in units of kBT, for various values of the confinement
parameter C = σN/d (here dT = d and R = σN/2) based on the random structure model
with ρ = 18b−2d−1 and S0 = 0.25. The onset of localization (appearance of the minimum in
F) happens at 2R/d ' 1.32. Localization length rL, barrier position rB and barrier height FB
are shown. From Ref. 191.

maximum of F) and a barrier height FB ≡ F(rB)− F(rL). A graphical representation of F(r)
and of these quantities is given in Fig. 24, which also gives us an intuitive interpretation of
F(r): In order to move through the mesh, a particle has to “jump” out of the free energy well.
We can therefore define a mean jump length ∆rh ≡ rB − rL and a mean hopping time

τh = 2βζ
∫ rB

rL

e−F(r)/kBTdr
∫ r

0
e−F(r′)/kBTdr′, (130)

where ζ is the short time friction constant. For polymer melts, the approximated theory
predicts the onset of localization (appearance of a minimum in F) to happen for NP diameters
σN ≈ d, as intuition would suggest. It is useful to introduce a confinement parameter C ≡
σN/d; we can then say that localization starts at a critical value Cc ≈ 1. Immediately after
the start of localization, the mean jump length ∆rh, the free energy barrier FB and the mean
hopping time, can be approximated, for ρ = 18b−2d−1 (a typical value for melts), by

∆rh ≈ σN(C− Cc)
α (131a)

FB
kBT

≈ (C− Cc)
β (131b)

τh ≈ τN exp[γ(C− Cc)] (131c)

where τN ≈ ζσ2
N/kBT is the NP short time scale. Eq. (131)a is approximately valid for

0 < C − Cc . 1, Eq. (131)b for 0 < C − Cc . 0.4 and Eq. (131)c for 0 < C − Cc . 0.3191.
In these ranges of validity, the exponents have value α ' 0.48, β ' 1.7 and γ ' 16. For
stronger confinement C � 1, ∆rh ∝ C2, FB/kBT ∝ C3 and the increase of τh is stronger than
exponential in C−Cc. The hopping diffusion constant can be estimated as Dh ≈ ∆r2

h/6τh; for
0 < C− Cc . 0.3, therefore, we can write the approximate expression
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Dh ≈
∆r2

h
6τh
≈ kBT

ζ
(C− Cc)

2α exp[−γ(C− Cc)] (0 < C− Cc . 0.3) (132)

The authors also estimated that in entangled liquids, considering experimentally accessible
values of the degree of entanglement, N/Nx . 200, hopping will only be observable in a
small range of confinement parameters, 1.5 . C . 1.8.

The problem of hopping diffusion was also considered by Cai, Panyukov and Rubinstein
using scaling arguments185. The authors considered both polymer solids (dry networks and
gels) and liquids; for the solids, they considered considered two different regimes, depending
on the relative magnitude of the entanglement length resulting from topological entanglemen-
ts, Ne, and that resulting from crosslinks, Nx

f: the entangled regime (Nx > Ne) and the unen-
tangled regime (Nx < Ne). In the entangled regime, the density of crosslinks, ρx ≈ ρ/Nx, is
larger than the density of entanglements, ρe ≈ ρ/Ne (here ρ is the total monomer density). In
the unentangled regime, the opposite is true.

For NPs of size σN > dx ≈ bN1/2
x (large NPs) in unentangled dry networks, the theory

predicts that jump length ∆rh, barrier height FB and hopping time τh are given respectively
by

∆rh,x ≈ b (133a)
FB,x

kBT
≈ C2

x (133b)

τh,x ≈ τ0N2
x Cx exp

(
C2

x

)
(133c)

where τ0 is the monomer relaxation time and Cx ≡ σN/dx is the confinement parameter.
Hopping diffusion is predicted to become experimentally observable at the time τnet

h,x =

τh,xdx/(bCx), and the hopping diffusion coefficient is given by

Dh,x ≈
b2

τh,x
≈ b2

τ0N2
x Cx

exp
(
−C2

x

)
. (134)

For particles of size σN > de ≈ bN1/2
e in entangled dry networks (Ne < Nx, or equivalently

de < dx), the CPR hopping theory predicts

∆rh,e ≈ b (135a)
FB,e

kBT
≈ Ce (135b)

τh,e ≈ τ0N2
e exp(Ce) (135c)

where Ce ≡ σN/de. Hopping becomes observable at time τnet
h,e ≈ τh,ede/(bCe), and the

hopping diffusion coefficient is given by

f We note that here Nx doesn’t have the same meaning as in Dell and Schweizer (Ref. 191). However, we use the same
notation in order to be more consistent with the notation of Cai, Panyukov and Rubinstein (Ref. 185).
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Dh,e ≈
b2

τh,e
≈ b2

τ0N2
e

exp(−Ce) (136)

By comparing Eqs. (133b) and (135b), we see that entanglement cages are “softer”, in the
sense that the free energy barrier depends less strongly on the confinement parameter. Qua-
litatively, this due to the fact that entanglements, unlike crosslinks, can move through the
sliding motion of a chain upon another, thereby loosening the local mesh.

The mobility of NPs of diameter dx < σN < d2
x/de is affected by both entanglements

and crosslinks, but dominated by the entanglements, since for these values of σN we have
FB,x < FB,e. However, at the diameter σN,e ≈ d2

x/de the two barriers become of comparable
size (FB,x ≈ FB,e), and for σN > σN,e NP mobility is dominated by the crosslinks. In conclusion,
we note that the above scaling analysis can be easily extended to entangled and unentangled
polymer gels by replacing the effective bond length b with the blob size ξb.

4.2.5 Experimental results

The breakdown of the Stokes-Einstein (SE) relation for particles with radius RN < Rg (in
unentangled solutions/melts) or RN < d (in entangled solutions/melts) predicted by the
BWdG, CPR and SCGLE theories has been observed in several experiments. Tuteja and
Mackay178 measured the diffusion coefficient DN of cadmium selenide NPs in an entangled
polystyrene (PS) melt where RN < d, finding D/DSE ' 200, with DSE = kBT/(6πRNηbulk)

the Stokes-Einstein prediction.
A similar result was obtained by Grabowski et al.180, who measured DN for gold NPs

two different PBMAg melts, one unentangled (N/Ne = 0.1) and one entangled (N/Ne = 7.2).
They found that in the entangled melt, the SE relation can predict quite accurately NP motion
(D/DSE ' 1), whereas in the entangled melt an much higher diffusivity than that predicted
by the SE was observed (D/DSE ' 250). In both cases, the NP were larger than the radius
of gyration of the chains (RN/Rg = 2.5 in the unentangled melt and RN/Rg ' 3.2 in the
entangled melt).

Similar results where reported by Omari et al.193 for the diffusion of gold NPs in semi-
dilute solutions of PS in toluene, for the case RN ≈ ξ < Rg. The author also found the
dependence of D on polymer concentration φ to be well described by the phenomenological
equation of Phillies168,169,194,

D = D0 exp(−αφν), (137)

with α ' 12 and ν ' 0.9.
Kohli and Mukhopadhyay181 studied the diffusion of gold NPs in semidilute PEGh-water,

finding a good agreement with CPR theory and identifying Rg as the crossover length scale
from the intermediate (D ∝ R−3

N ) to the large size regime (DN ' DSE ∝ R−1
N ).

Grabowski and Mukhopadhyay195 also studied the diffusion of gold NPs in entangled
PBMA melts for NPs in the size range 2RN/d ' 0.3− 3.5, a decrease of D as a function of

g Poly(n-butyl methacrylate).
h Poly(ethylene glycol).
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2RN/d but no trace of the sharp drop predicted by the BWdG theory. The data, however, did
not show particularly good agreement neither with CPR theory nor with SCGLE theory, and
it was not possible to determine whether activated hopping was relevant.

Very good agreement with the CPR prediction for the intermediate size regime was obser-
ved by Poling-Skutvik et al.183, who studied the diffusion of PS NPs in dilute and semidilute
solutions of partially hydrolyzed PAMi in a very wide size range, 2RN/ξb ' 0.4− 80. The
measured subdiffusive exponent α, however, was significantly higher than the CPR predic-
tion (α = 1/2) even for RN � ξ; the authors concluded therefore that NP dynamics is not
completely coupled to the relaxation modes of the polymers at short/intermediate times, as
predicted by CPR theory.

To summarize, it is beyond doubt that the SE relation is violated for small NPs in PNC
(RN . Rg in unentangled PNCs and 2RN . d in entangled PNCs). Much remains o be
understood, however, regarding the microscopic mechanism of this slowing down.

4.3 polymer dynamics

When NPs at high enough volume fraction are dispersed in a polymer liquid, it is observed
experimentally that the dynamics of the polymers undergoes noticeable changes. Understan-
ding how NPs influence polymer dynamics in a PNC is, however, a much more difficult task
than understanding the dynamics of a single NP in a PNC. This is because: (1) It is not possi-
ble, for the polymers, to consider the infinite dilution limit, unless we desire to study dilute
solutions containing NPs; (2) as discussed in Sec. 3.4, the dynamics of polymers is much more
complex than that of spherical particles, because of the many different length (and time) sca-
les that play a relevant role in the case of polymers. Therefore, the theories which have been
proposed to describe polymer diffusion in PNCs are mostly quite crude or semi-empirical.

4.3.1 Models

One of the oldest models for polymer diffusion in PNCs is the Maxwell-Fricke model196,197,
which was originally formulated to study electric conductivity in heterogeneous media. This
model assumes immobile, impenetrable obstacles (filler) suspended in a mobile solvent con-
tinuum198, and predicts the diffusion coefficient D of the solvent to be174,198

D
D0

=
1− (φ f + φnd)(

1 +
φ f +φnd

2

)
(1− φ f )

(138)

where D0 is the diffusion coefficient of pure solvent, φ f is the filler volume fraction and φnd

is the volume fraction of non-diffusing solvent. If φnd ' 0, Eq. (138) becomes

D
D0

=
1

1 + φ f /2
(139)

i Polyacrylamide.
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However, this model has a very limited applicability, since it works well only for small diffu-
sing molecules and low filler concentrations174, and it shows poor agreement with the data
for realistic PNCs199.

Muthukumar and Baumgärtner proposed a model for the translocation of polymers trou-
gh cubic pores connected by narrow parallelepipedal bottlenecks200,201, which has been sho-
wn to give a good qualitative description of the diffusion of polymers in PNCs containing
large, immobile NPs which interact with the polymers only through excluded volume137. In
this model, polymer diffusion is an activated process, and therefore the diffusivity has an
Arrhenius form:

D
D0

= exp
(
− ∆F

kBT

)
(140)

where ∆F = Fc − Fb is a free energy barrier, with Fc and Fb are the confinement free energies
for a chain in a cavity and in a bottleneck, respectively. Through scaling considerations, the
diffusion coefficient can be expressed as200

D
D0

= exp
{
−N

[
f d−1/ν

b +

(
1− f

z
− 1
)

d−1/ν
c

]}
(141)

where N is the chain length, f is the fraction of monomers in the bottleneck, db is the bottle-
neck diameter, ν is the Flory exponent, z is the average number of cavities which contain the
(1− f )N unconfined segments per bottleneck and dc is the cavity diameter200,201. This model
predicts therefore an exponential decay of D with N.

It has been proposed that this theory could be applied to PNC by identifying db with the
average interparticle distance h 137, which can be estimated as

h ' σN

[(
φM

N
φN

)1/3
− 1

]
, (142)

where σN is the NP diameter, φN is the NP volume fraction and φM
N represents the maximum

value that φN can reach (for φN = φM
N , we have h = 0).

Meth et al.202 proposed a model in which a PNC containing spherical NPs is represented
as a collection of parallel, rigid cylindrical pores, and the polymers as spheres diffusing
through these pores. The authors observe that the formal expression for the reduced diffusion
coefficient of a solid sphere of radius Rs suspended in a viscous fluid and moving through
a cylindrical pore of radius R is formally identical to the partition function Z(R/Rg) of a
Gaussian polymer chain confined within a cylinder (Rg = radius of gyration), provided that
Rs = Rg. They then calculate the reduced polymer diffusion coefficient as

D
D0

= (1− φN)

∫ ∞
0 Z(x)P(x)x2dx∫ ∞

0 P(x)x2dx
(143)

where φN is the NP volume fraction and P(x) is the two-dimensional pore size distribution203

describing the distribution of diameters of the effective cylinders, expressed as a function
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Figura 25 – Reduced polymer diffusion coefficient as a function of the confinement parameter
(here IDeff is the effective interparticle distance and deff is the effective NP diameter) for
systems of silica nanoparticles coated either with polymer brushes (soft NPs) or short ligands
(hard NPs). From Ref. 157.

of x = R/Rg, with R the cylinder radius. This model shows overall a good qualitative
agreement with experimental data for several different PNCs containing large, immobile
NPs202. However, the quantitative agreement with the data is quite poor, and becomes worse
at high NP loading. Moreover, the model is expected to fail for polymers smaller than the
NPs (2Rg < σN), and it is not clear if it would still be applicable to the case of mobile NPs.

At present, no model has been able to show an excellent quantitative agreement with
experimental data or to explain what is the microscopic mechanism behind the slowing down
of polymer chains in the presence of NPs. The difficulty, as it is usually the case for PNCs,
is that many different characteristics of the system, such as NP to polymer size ratio, NP
volume fraction, strength of NP-polymer interaction, presence or absence of entanglements
etc., are potentially relevant and must be taken into account.

4.3.2 Experimental and simulation results

In general, it is found experimentally that NP slow down polymer diffusion in unentangled
PNCs, independently of the nature of the polymer-NP interaction (attractive or repulsive)204.
Composto and coworkers studied polymer dynamics in PNCs extensively, considering sphe-
rical silica NPs with both repulsive137,205 and attractive141 polymer-NP interactions, spherical
polymer-grafted NPs157,206. In all cases, a reduction of polymer diffusivity was observed with
increasing NP volume fraction, and for spherical NPs it was observed that the data collapse
on a master curve when plotted as a function of the confinement parameter heff/2Rg (Fig. 25),
where heff ≡ h− (σN,eff − σN), where σN,eff is the effective NP diameter (i.e., σN,eff − σN is the
distance of closest approach between the polymer chain and the NP surface). In most of these
studies, the NPs were larger than the polymers (σN > 2Rg) and could be considered basically
immobile. The authors also studied polymer diffusion in PNCs containing immobile, thin
anisotropic NPs, such as nanorods, showing that in these systems polymer diffusivity can
change non-monotonically as a function of NP volume fraction φN , initially decreasing, then
reaching a minimum at the NP percolation threshold and finally increasing207–209.

In entangled PNCs, the presence of the NPs can disentangle the chains, as both expe-
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Figura 26 – Monomer-NP potential UNm(r) (expanded LJ) compared to a standard LJ poten-
tial ULJ(r) = 4[(σNm/r)12 − (σNm/r)6], where σNm = (σN + σ)/2. The expanded LJ potential
is cut and shifted at 2.5σ + (σN − σ)/2 and the LJ potential is cut and shifted at 2.5σNm. For
σN = σ, the two potentials coincide.

riments210,211 and simulations212,213 have shown. Chain disentanglement is manifested in
an increase of the tube diameter d, and results in a decrease of the disentanglement time
τd ∝ N3d−2 (Eq. (71)). However, the long-time diffusion coefficient of the chains is given
by the Rouse formula, DR ≈ kBT/Nζ (Eq. (52)) and is therefore independent of d. The pre-
sence of NPs can therefore reduce τd by disentangling the chains, but should not influence
the long-time diffusion coefficient (as confirmed by the experiments of Schneider et al.211).
Changes in the long-time chain dynamics have nevertheless been observed in simulations: Li
et al. observed an increase of the Rouse time τR ≈ R2/DR with increasing NP volume frac-
tion φN in PNCs with purely repulsive polymer-NP interactions. A slowing down of chain
dynamics with increasing φN was also observed in several studies of PNCs (both unentan-
gled and entangled) containing weakly attractive NPs199,213–216. Desai et al.217, on the other
hand, have reported that the polymer diffusion coefficient in a simulated lightly entangled
melt (N = 80, ρm = 0.85) containing repulsive/weakly attractive NPs initially increases with
φN , reaches a maximum around φN = 4% and decreases for higher values. In a study which
considered weakly attractive NPs in a polymer melt at low φN , Kalathi et al. observed, on the
other hand, an increase of the chain diffusion coefficient with respect to the neat system. The
increase was ' 40% for small NPs, whereas large NPs had basically no effect on the diffusion
coefficient of the chains. Although chain lengths from ' 0.2Ne to ' 9Ne where considered,
no significant dependence on chain length was observed.

From these examples, it is clear that the also from the point of view of experiments and
simulations, a general understanding of how the presence of NPs influences chain dynamics
is still missing. It is clear that the main factors influencing chain dynamics are NP volume
fraction/interparticle distancej and polymer-NP interaction. Chain length should play a mi-
nor role, since even in the case in which the NPs cause the disentanglement of the chains in
itself does not influence long-time chain diffusivity.

4.4 simulations of pncs

Computer simulations are an extremely useful tool for the study of PNCs, and these systems
have been the object of many Monte Carlo (MC)218–222 and MD77,148,179,199,212,215,216,223–232

j These two quantities are related, since h ' σN [Aφ−1/3 − 1], where A > 0 is a constant (see Sec. 4.1.1).
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studies in the past years. Excellent reviews on simulations studies of polymer structure and
dynamics in PNCs can be found in Refs. 158 and 233. While Monte Carlo (MC) simula-
tions are very often limited to the study of the structural properties, MD simulations have
also access to the dynamical properties, and for this reason are the preferred tool when stu-
dying such systems. All-atom MD simulations of PNCs can be performed228, but only for
very limited system sizes and short time scales. For this reason, most MD simulations of
PNCs employ coarse-grained models (see also Ch. 3.6.3). The coarse-grained model of choi-
ce for the polymers is usually the Kremer-Grest model (see Ch. 3.6.3), whereas for the NPs
several models have been used, from simple Lennard-Jones potentials199,226 to more sophisti-
cated pair potentials which model the NPs as smooth spheres made of uniformly distributed
beads77,217,227,234. In some cases, NPs are not modeled via a simple pair potential, but instead
they are represented as clusters of beads bound together215,216,223,224. The most widely used
model, however, is the one which we refer to as “expanded Lennard-Jones (LJ)”, in which the
interaction of the NP with the species α is modeled as148,164,179,230,235–237

UNα(r) =





4ε

[(
σ

r−∆Nα

)12
−
(

σ
r−∆Nα

)6
]
+ ENα r ≤ rc

Nα + ∆Nα

0 otherwise,
(144)

where for the NP-monomer (bead) interaction ∆Nm = (σN + σ)/2− σ = (σN − σ)/2 and for
the NP-NP interaction ∆NN = σN − σ. The addition of ENα insures that U (rc

Nα + ∆Nα) = 0.
As opposed to the standard LJ potential, in the expanded LJ potential the “softness” (slope)
of the potential and the interaction range do not change when the NP size varies, as one
can see in Fig. 26. Since experiments have shown that the thickness of the interfacial region
surrounding a NP in a polymer matrix changes only weakly with the size of the NP238, the
expanded LJ is a better choice than the standard LJ potential when simulating polymer-NP
mixtures.
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5

S T R U C T U R E A N D D Y N A M I C S O F A P N C : I N S I G H T S F R O M M D
S I M U L AT I O N S

Some ideas and figures present in this Chapter have appeared in Ref. 239 and Ref. 240 (addendum to
Ref. 239).

As discussed in Sec. 4.4, computer simulations are an invaluable tool for the study of
PNCs. Molecular dynamics (MD) simulations are in this respect particularly useful, since
–contrary to Monte Carlo (MC) simulations– they can access the dynamical properties of the
system in addition to the structural ones. However, with few exceptions179,199,215 most of the
previous simulation studies of polymer-NP mixtures have focused on the dynamics of single
NPs, considering the dilute NP regime (low NP volume fraction), in which the NPs can be
assumed to interact only weakly with each other and the properties of the polymer solution
are expected to be unchanged by the presence of the NPs. Given the scarcity of simulation
studies considering the much more challenging regime of finite NP volume fraction, we set
out to study the structural and dynamical properties of polymers and NPs in an unentangled,
semidilute polymer solution in a wide range of NP volume fractions and NP diameters, up
to values where the interaction between NPs cannot be neglected anymore.

5.1 model and methods

We performed NVT molecular dynamics simulations of a system of Np = 500 polymer chains
of length N = 100 and a variable number NN of nanoparticles of different diameters σN .
The polymers are modeled as Kremer-Grest bead-spring chains (FENE+WCA potentials –
see Sec. 3.6.3), where the parameters of the FENE potential (Eq. (106)) are k = 30ε/σ2 and
rmax = 1.5σ. These values are chosen in order to prevent chain crossing at the thermodynamic
conditions considered here. In the present Chapter and in the rest of this work, all quantities
are given in Lennard-Jones (LJ) reduced units. The units of energy, length and mass are
respectively ε, σ and m, where ε, and σ are defined by Eq. (104) and m is the mass of a
monomer. The units of temperature, pressure, volume fraction and time are respectively
[T] = ε/kB, [P] = εσ−3, [φ] = σ−3 and [t] =

√
mσ2/ε.

For the interaction potentials involving the NPs, we use the “expanded Lennard-Jones”
(expanded LJ) potential introduced in Sec. 4.4 (Eq. (144)). With this choice, the “softness” of
the NPs is not changed when their diameter σN is changed. The cutoff radii are rc

Nm = 2.5
for the NP-monomer interaction and rc

NN = 21/6 for the NP-NP interaction. The interaction
between monomers and NPs is therefore attractive, while the interaction between NPs is pu-
rely repulsive. As discussed in Sec. 5.2.3, a moderate attractive interaction between polymers
and NPs is required in order to prevent aggregation (and eventually phase separation) of the
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Figura 27 – Mean-squared displacement (divided by time) of a particle of diameter σ and
mass m diffusing in pure (implicit) solvent at T = 1.0. The long-time diffusion coefficient
depends only on σ.

NPs. We considered NP diameters σN = 1, 2, 3, 4, 5, and 7σ. We assume that the NPs have
the same mass density as the monomers, ρmass = 6m/πσ3, and therefore the mass of the
NPs is mN = m(σN/σ)3. We define the NP volume fraction as φN = πσ3

N NN/6V, where V
is the total volume of the simulation box; the monomer volume fraction φm is defined in an
analogous way. In our simulations, φm is larger than the overlap volume fraction5, which can
be estimated from the polymer’s radius of gyration at infinite dilution (see Sec. 5.3.4) and
for the pure polymer system has the value φ∗m = 2.98 · 10−2. Moreover, as revealed by the
analysis of the dynamics of the chains (see Sec. 5.4.1), the system is unentangled.

All the simulations were carried out using the LAMMPS software241,242. The simulation
box is cubic and periodic boundary conditions are applied in all directions. The initial con-
figurations are prepared by randomly placing the polymers and the NPs in the box; initially,
the NPs have diameter equal to that of the monomers (σN = σ) and overlaps between particles
are allowed. The overlaps are then removed by using a soft potential whose strength is increa-
sed over a short amount of time ("fast push-off" method107). After the overlaps are removed,
the diameter of the NPs is gradually increased until the desired value is reached. After the
NP have reached the desired size, we perform an NPT run employing Nosé-Hoover chains81a

and allow the system to reach pressure P = 0.1 at temperature T = 1.0. In the pure polymer
systems, these parameters correspond to a monomer volume fraction φm = 0.147 (monomer
density ρm = 0.280). Finally, in order to have a more realistic dynamics81, we switch to the
NVT ensemble and perform an equilibration run before starting the production run. During
the NVT simulations, the pressure fluctuations are always less than 14%. The length of both
the equilibration and the production runs is 108δt = 3 · 105, where δt = 3 · 10−3 is the inte-
gration time step. Time integration is performed with the velocity Verlet algorithm79. In all
cases, we verified that during the equilibration runs the NPs (resp. polymers) diffused on
average over a distance equal to several times their diameter (resp. radius of gyration), and
that their motion became diffusive (see Sec. 5.4).

During the NVT runs, the temperature is kept fixed by means of a Langevin thermostat
(see Sec. 3.6.1). This thermostat acts as an implicit solvent, in which every particle interacts
independently with the solvent “molecules”, but hydrodynamic interactions between solute

a Additional information can be found in the LAMMPS manual page 243. During the NPT run, the box sides are
coupled to each other so that they fluctuate together (Lx = Ly = Lz = L).
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particles are not accounted forb. The force experienced by particle i is therefore

mα r̈α,i = −∇iU ({rα,k})−mαΓα ṙα,i +
√

2mαΓαkBT ζ(t), (145)

where α denotes the particle type (m = monomer, N = NP) and U ({rα,k}) is the total interac-
tion potential acting on the particle, with {rα,k} representing the set of coordinates of all the
particles in the system. The term

√
2mαΓαkBTζ(t) is a uniformly distributed random force

which represents collisions with solvent molecules, while Γα is a viscous friction coefficient,
which is related to the viscosity of the implicit solvent ηs by

Γα =
Cηsσα

mα
, (146)

where σα is the diameter of the particle and C a coefficient which depends on the hydrodyna-
mic boundary conditions.

The damping constant for the monomers is Γm = 0.1, while that of the NPs is chosen by
imposing that the viscosity of the pure solvent calculated via the Stokes formula (Eq. (146)),
i.e.,

ηs =
Γmm
Cσ

=
ΓNmN
CσN

= const.

→ ΓN = Γm

(
mσN
mNσ

)
= Γm

(
σ

σN

)2
.

(147)

With this choice of the friction coefficient, the long-time diffusion coefficient of a particle in
the pure (implicit) solvent Ds,α follows the Stokes-Einstein law with viscosity ηs:

Ds,α =
kBT

Γαmα
=

kBT
Cηsσα

. (148)

This way, Ds,α depends only on the diameter of the particle, and not on its mass, as we can see
from Fig. 27, where the mean-squared displacement (divided by time) of particles of various
masses and diameters in the pure solvent is shown. We note that since Γm = 0.1 and m, σ = 1,
if we assume stick boundary conditions (C = 3π), the numerical value of the solvent viscosity
is ηs = 0.1/3π = 1.06 · 10−2. Additional details on the simulated systems can be found in
Tab. 1 at the end of this Chapter.

5.2 static properties : nanoparticles

To give a feeling of what the simulated system looks like, we show in Fig. 28 some snapshots
for σN = 4 and different values of the NP volume fraction φN . We can see how the NP
dispersion, which is initially good (Figs. 28a-b), becomes progressively poorer as φN is in-
creased (Fig. 28c), until eventually large polymer-free regions are formed (Fig. 28d). In order

b We note that it has been recently pointed out that hydrodynamic interactions can affect the long-time dynamics
of NPs in a polymer solution even at high monomer volume fractions 230, an observation which warrants further
investigation.
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Figura 28 – Snapshots of systems containing NPs of diameter σN = 4 at different volume
fractions (yellow spheres: monomers, blue spheres: NPs). In systems (a) and (b), the disper-
sion of NPs is good, while in (c) and (d) it is poor. In system (d) the formation of large
polymer-free regions is evident. The length of the simulation box edges are respectively 57.45
(a), 59.15 (b), 67.13 (c), and 93.57 (d).

to characterize the structure of the systems when σN and φN are varied, we start by analyzing
some basic quantities, such as the radial distribution function (RDF) g(r) (Eq. (34)) and the
structure factor S(q) (Eq. (32)).

5.2.1 Radial distribution function

Figure 29 shows the NP-NP radial distribution function gNN(r) for σN = 2 and 4 and different
values of the NP volume fraction φN . For low values of φN , gNN shows a peak at

rs ≡ σN + (27/6 − 1) = σN + 1.245 (secondary peak), (149)

which corresponds to twice the distance at the minimum of the monomer-NP potential. This
indicates that the NPs are well dispersed in the polymer solution and configurations in
which two neighboring NPs are separated by a polymer strand are favored (this kind of
configuration is schematically represented in Fig. 29a). We call this peak secondary peak.

When φN increases, another peak appears at

rc ≡ σN + (21/6 − 1) = σN + 0.122 (contact peak), (150)

which corresponds to the cutoff of the NP-NP potential and represents a configuration in
which two NPs are touching; we therefore call it contact peak. Eventually, the contact peak
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Figura 30 – Monomer-NP radial distribution function at different NP volume fractions φN for
σN = 2 (a) and σN = 4 (b). The position of the main peak, rs = σN + 1.245, is independent of
φN .

becomes higher than the secondary peak, an evidence of the formation of large polymer-free
regions (Fig. 28d).

To gain a better understanding of the distribution of the NPs relative to the polymers, we
also study the monomer-NP radial distribution function. The radial distribution function for
a binary system containing particles of type a and b can be defined for a 6= b as244

gab(r) ≡
Ma + Mb

4πMa Mbρr2

Ma

∑
k=1

Mb

∑
j=1
〈δ(|r + rk − rj|)〉, (151)

where Ma(b) is the number of particles of type a (b) and ρ = (Ma + Mb)/V is the total density.
Fig. 30 shows the monomer-NP radial distribution function, gNm(r), for σN = 2 and 4 and
different values of the NP volume fraction φN . For all values of φN , gNm(r) shows a sharp
main peak at rs/2 ' σN/2 + 0.622, indicating direct contact between monomers and NPs is
always favored. Note that this observation is not in contrast with what we discussed above
regarding gNN , as the shifting of the main peak from rs to rc at high φN is due to the presence
of the polymer-free regions. The smaller peak at r ' rs/2 + 1 (r − σN/2 ' 1.622) is due to
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Figura 31 – NP-NP structure factor at different NP volume fractions φN for σN = 2 (a) and
σN = 4 (b).

the second layer of monomers. At larger values of r we observe a periodic modulation of
wavelength ' σN , which is clearly visible in Fig. 30b.

5.2.2 Structure factor

The structure factor was defined in Sec. 3.3. Since S(q) is related to g(r) via a Fourier tran-
sform (Eq. (35)), we can in principle find in the NP-NP structure factor SNN(q) the same
information that we find in gNN(r). If the position of the main peak of g(r) is r = r0, the
main peak of S(q) will be at q0 ' 2π/r0, although the precise value of q0 depends on tem-
perature and density39. Hence, we expect to find the main peak of SNN(q) at q ' 2π/rs at
low NP volume fraction and at q ' 2π/rc at high NP volume fraction, as we indeed observe
in Figs. 31a-b. We also notice that, while in the g(r) we can clearly distinguish two peaks at
intermediate values of φN (Fig. 29), in the S(q) their contributions interfere with each other
and result in a single peak that is shifted towards higher wavevectors as φN is increased.
Therefore, interpretation of SNN(q) might not always be straightforward.

5.2.3 NP dispersion: The interparticle distance

In the following sections, we will mainly consider those systems in which the NPs are well
dispersed in the polymer solution (Fig. 28a-b). As a qualitative criterion, we define a system
with good NP dispersion as one where the secondary peak of gNN(r) is higher than or
comparable to the contact peak. It should be noticed that the maximum volume fraction that
we can reach while keeping a good NP dispersion depends on the NP diameter σN . To see
this, we consider the interparticle distance h 137,141,157,205, which represents the average spacing
between the surfaces of neighboring nanoparticles. In the literature, the following expression
has often been used to estimate h 137,141,157,205:

hth. ≡ σN

[(
φM

N
φN

)1/3
− 1

]
, (152)

where φM
N is the maximum achievable NP volume fraction, for which h = 0205. There is

however an evident problem with the above expression: It is a priori not clear at all what
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Figura 32 – (a) Pore-size probability density function of the NPs for σN = 4. (b) Interparticle
distance as a function of the NP volume fraction φN . Filled symbols: systems with good NP
dispersion. Open symbols: systems with poor NP dispersion. Continuous lines: “theoretical”
interparticle distance hth., calculated from Eq. (152), with φM

N = 0.637.

value should be used for φM
N . Taking the NPs to behave approximately as hard spheres (an

approximation that in our case is justified by the very steep NP-NP potential), there are
several possibilities, like the close-packing value245 φcp = π/

√
18 ' 0.740, corresponding

to an fcc or hcp lattice, or the volume fraction of some other crystal lattice, like the bcc
(φbcc = π

√
3/8 ' 0.680) or the simple cubic (φsc = π/6 ' 0.524). The value φM

N = π/6
was used in Ref. 246, one of the first to apply Eq. (152) to polymer nanocomposites. More
recently, φrcp ' 0.637 ' 2/π, that should correspond to a random close packing (RCP) of
hard spheres, has often been invoked in the definition of h 137,141,157,205.

However, it has been shown by Torquato et al. that the concept of RCP is ill-defined,
and that different procedures can result in different values for φrcp, ranging from 0.6 to
0.68247. This issue could be solved, as suggested by Torquato et al., by replacing the ill-
defined concept of RCP with that of maximally random jammed (MRJ) structure247,248. For
monodispere hard spheres, this redefinition should lead to a unique value, φMRJ = 0.642248.
However, the problem of a priori assigning a certain value to φM

N remains.
We propose therefore a different way to define h, which relies on the concept of pore size di-

stribution (the definition used here is that of Torquato et. al.; see Chapter 8 for more details)203.
The pore size distribution (PSD) PT(r) of a system consisting of two phases is defined such
that PT(r)dr represents the probability that a randomly chosen point in the phase of interest
lies at a distance between r and r + dr of the nearest point on the interface between the two
phases203. It is clear from this definition that the typical interparticle distance h for the NPs
in a polymer nanocomposite should correspond approximately to the typical pore size.

There is another clue that suggests the identification of h with some quantity derived from
PT(r). For a system of randomly distributed overlapping spheres of radius R with number
density ρ, the PSD can be computed explicitly249 (see see Chapter 8):

POS
T (r) =

3φ

e−φR

( r
R
+ 1
)2

exp
[
−φ

( r
R
+ 1
)3
]

. (153)

In this expression, φ = π(2R)3ρ/6 is the "volume fraction" of the spheres (although since the
spheres can overlap, this does not correspond to their real volume fraction).

Let us now define rmax as the value of r for which PT(r) is maximized, i.e., PT(rmax) =
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maxr{PT(r)}. For this model, we have rOS
max = R[(2/3φ)1/3 − 1], and therefore we can define

a typical pore diameter as

2rOS
max = 2R

[(
2

3φ

)1/3
− 1

]
. (154)

By comparing Eqs. (152) and (154) and making the identifications 2R = σN and φ = φN , we
note that 2rOS

max = hth., provided that we choose φM
N = 2/3 ' 0.667. Given this quite remarka-

ble connection between 2rOS
max and hth., and given that the definition of rmax does not present

the same problems that affect Eq. (152), we are naturally lead to define the interparticle
distance as

h ≡ 2 rmax, (155)

where 2rmax is not computed using Eq (154), which is strictly valid only for the overlapping
spheres system, but rather evaluated directly from the PSD PT(r) obtained from the data.
Exhaustive details on how the pore size distribution is calculated will be given in Sec. 8. An
example of the PSD is show in Fig. 32a, where we report the PSD of the simulated systems
for σN = 4.

In Fig. 32b, we show the interparticle distance calculated from the pore size distribution
(Eq. (155)) versus the NP volume fraction: filled (open) symbols represent systems with a
good (poor) NP dispersion (according to the above defined criterion). We also report for com-
parison the "theoretical" interparticle distance hth., Eq. (152), with φM

N = 0.637 (continuous
lines); we note that the two quantities are very similar, with hth. being on average slightly
larger than h. This means that Eq. (152) can be used to obtain an estimate of the “true” inter-
particle distance, despite the problems affecting its definitionc. As we can see, NP dispersion
starts to become poor when h ' 1, i.e., when the average distance between the surface of
neighboring NPs becomes comparable with the monomer size, in qualitative agreement with
the snapshots shown in Fig. 28c-d.

5.3 static properties : polymers

5.3.1 Radial distribution function

In Fig. 33, we report the monomer-monomer radial distribution function gmm(r) for σN = 2
and 4. One sees that at low NP volume fraction the most prominent features of gmm(r) are
a sharp peak at r ' rb = 0.96 (first nearest neighbor distance in a chain) and a smaller one
at r ' 2rb = 1.92 (second nearest neighbor). When the NP volume fraction is increased, the
height of these two peaks increases. The reason is that, while the structure of the chain at the
length scale r . 2rb remains almost unchanged when φN increases, the monomer density ρm

decreases, because the volume increases and the number of monomers is fixed. Since gmm(r)
contains a factor ρ−1

m (Eq. (34)), this results in an increase of this function for r . 2rb.
c We note that Li et al. in Ref. 212 used Torquato’s definition of the PSD to define a quantity which is basically an

alternative definition of h (see Supplementary Material of Ref. 212). At the time of this work, however, we were not
aware of this article. Moreover, in Ref. 215 the mean pore radius of a PNC is calculated using the Euclidean distance
map. However, to evaluate the interparticle distance they used Eq. (152) with φM

N = 2/π.
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Figura 33 – Monomer-monomer radial distribution function for σN = 2 (a) and σN = 4 (b)
and different values of the NP volume fraction φN .

Since gmm(r) is dominated by the two peaks at rb and 2rb and shows only very small
fluctuations around gmm(r) = 1 at larger r, we plot in Figs. 33c-d the function |gmm(r)− 1|,
hence allowing to detect more easily the structure at large r. For σN = 4, Fig. 33d, |gmm(r)−
1| shows very clearly at intermediate and high φN a long-range modulation with typical
wavelength σN , due to the presence of the NPsd (compare to Fig. 30). For σN = 2, the
presence of this modulation is less clear, because the size of the NPs is close to the monomer
size and as a consequence the signal coming from the NPs cannot be distinguished well from
the one coming from the monomers themselves.

5.3.2 Structure factor

In Fig. 34 we report the monomer-monomer structure factor, Smm(q). Figure 34a, shows
Smm(q) for σN = 4. At φN = 0 (pure polymer solution), there is a small peak at q∗ ' 1.4
(inset of Fig. 34a), which in real space corresponds to a distance r∗ = 2π/q∗ ' 4.5. As this
peak reveals the presence of a typical length scale in the system250, one could be tempted to
associate r∗ to the geometrical mesh size ξ (see Sec. 3.2.2). However, an analysis of the PSD
of the monomers PG(r) (we use here the definition of Gubbins instead of that of Torquato –
see Chapter 8 for more details) reveals that the actual mesh size at φN = 0, calculated as the
average 〈r〉G of the PSD, is

d Note that, since we have taken the absolute value, the wavelength must be calculated as the distance between the
nth peak and the (n + 2)th.
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Figura 34 – (a) Monomer-monomer structure factor Smm(q) (log-lin scale) at different NP
volume fractions for σN = 4. Inset: Smm(q) in the pure polymer solution (linear scale) (b)
Comparison between the structure factors of monomers and NPs for σN = 4. For clarity, the
curves representing Smm(q) have been shifted up by a factor of 3.

ξ0 ≡ ξ(φN = 0) = 1.04, (156)

as shown in Fig. 35. We note that this means that the average diameter of the pores is 2ξ0 =

2.08e. Although ξ0 and r∗ are of the same order of magnitude, the information given by the
PSD is much more precise than that given by the structure factor, since the signal at q∗ ' 1.4
results from the superposition of many a priori unknown contributions. More details about
the estimation of the geometrical mesh size will be given in Chapter 8.

The main peak of Smm(q) is at q0 ' 7.8, which is close to 2π/rb = 6.5, where rb = 0.96 is
the average monomer-monomer bond length. For φN > 0, the spatial arrangement of the NPs
starts to be visible as a modulation in Smm(q), with a main peak appearing approximately at
the same wavevector as the main peak of SNN(q), as we can see from Fig. 34b, where Smm(q)
is compared to SNN(q). At even higher NP volume fraction, a signal starts to appear at q = 0,
due to the fact that the polymers are getting far from each other (see Fig. 28d). If φN was
increased even more, eventually the monomer volume fraction would become smaller than
the overlap volume fraction (dilute regime) and Smm(0) would saturate to N (see Sec. 3.3.2).

5.3.3 Single chain radial distribution function

The structure of the individual polymer chains can be characterized by the function

p(r) ≡ 4πr2ρg1(r)
(N − 1)

, (157)

where ρg1(r) is obtained by applying Eq. (34) to a single polymer chain. The quantity p(r)dr
represents the probability to find a monomer belonging to the same chain at distance between

e The PSD, and thus the value of ξ, will in general change when φN is increased. However, this behavior has not
been studied for the simulated systems. We expect, however, that in the presence of well-dispersed NPs of diameter
σN > 2ξ0, ξ will increase. This behavior is likely reversed in the presence of NPs of diameter σN < 2ξ0, as one can
also deduce from the fact that adding well-dispersed NPs of diameter σN = 1 to the system causes a decrease of the
system’s volume (see Sec. 5.5).
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r and r + dr from a given monomer.

For a Gaussian chain, p has the following expression30:

p(x) = pG(x) ≡ 8Nx√
π(N − 1)Rg

[√
π

2
(1 + 2x2)erfc(x)− xe−x2

]
, (158)

where x = r/2Rg and erfc(x) is the complementary error function251. This probability density
peaks at r ' 0.74Rg

30.

In Fig. 36a, we show p(r) for different values of σN and φN , along with pG for a Gaussian
chain, Eq. (158), with Rg0 = Rg(φN = 0) (dash-dotted line). The dashed lines correspond to
systems with poor NP dispersion, while the continuous lines correspond to systems with
good NP dispersion. We observe that, for small φN , pG provides a good approximation of
p at intermediate and large r (at small r, p(r) is dominated by excluded volume interaction
between nearest neighbors). For all values of φN , p(r) shows a very high peak at r ' rb =
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Figura 37 – Reduced radius of gyration of the polymers as a function of the NP volume
fraction φN (a) and of the interparticle distance h (b). Open symbols in (b): (V/V0)

1/3. Inset:
Rg/Rg0 as a function of the inverse interparticle distance 1/h. Continuous lines: Eq. (162).

0.96, corresponding to the first nearest neighbor, and a smaller peak at r ' 2rb = 1.92,
corresponding to the second nearest neighbor. For values of r larger than 2rb, this signal
gets washed out, and ultimately p(r) decays to zero. When φN increases, we observe two
effects: The third nearest neighbor peak becomes more pronounced and the curve becomes
broader. This indicates that the presence of the NPs stretches the chains, causing them to
become locally more ordered.

We also note that p(r) shows a modulation of wavelength ' σN + 1, the first peak of
which is clearly visible in Fig. 36a as a "bump" at r ' σN + 1 (colored arrows). The pre-
sence of this modulation can be better appreciated by plotting the ratio p(r)/p0(r), where
p0(r) = p(φN = 0, r). In Fig. 36b, we report p(r)/p0(r) for σN = 7: As we can see, the effect
of the NPs is to produce a “hole” in the range 0 . r . σN + 1, but also to stretch the chain,
increasing p(r) significantly at larger distances. The modulation is clearly visible, with two
bumps appearing at r ' σN + 1 and 2(σN + 1) (small arrows). As discussed in Sec. 4.1.2, chain
swelling in the presence of small NPs (σN < 2Rg) has already been predicted theoretically164

and observed in both simulations152 and experiments140,159,161.

5.3.4 Radius of gyration

In order to quantify the expansion of the chains, we measure the radius of gyration Rg =√
〈r2

g〉, where 〈r2
g〉 was defined in Eq. (12). In the pure polymer solution, we have

Rg0 ≡ Rg(φN = 0) = 6.28± 0.02. (159)

In Fig. 37a we present the reduced radius of gyration Rg/Rg0 as a function of NP volume
fraction for different values of σN . With the exception of σN = 1, there is a modest but clear
increase of Rg/Rg0 with increasing NP volume fraction. Assuming that the expansion of the
chain’s pervaded volume is uniform and identical to that of the system’s volume, we would
obtain



5.3 static properties : polymers 73

Rg

Rg0
=

(
V
V0

)1/3
(160)

where V0 = V(φN = 0) is the volume of the neat system. This quantity is reported in Fig. 37a
(open symbols): One can see that for σN > 2 the observed expansion is significantly smaller
than what predicted by this simple assumption, confirming that the chains do not expand
uniformly but rather are stretched, as discussed in the previous section. Only for σN = 2 the
approximation of Eq. (160) predicts the chain’s expansion to a good approximation.

Fig. 37a also shows that for σN = 1, Rg decreases with increasing NP volume fraction. The rea-
son is that NPs of this size have the largest surface-to-volume ratio, making the monomer-NP
interaction (which scales approximately with the NP surface) very relevant. The consequence
is that while in this range of φN the effect of the excluded volume is small, the effect of the
interaction is large: Small NPs produce an effective attractive interaction between the mono-
mers, which results in a decrease of Rg and of the overall monomer volume fraction φm (we
recall that all the simulations were performed at the same average pressure P = 0.1; see also
Sec. 5.5). We can therefore say that in this range of φN , the NPs of size σN = 1 act like a poor
solvent, promoting chain contraction.

We note that for σN > 1, the increase of Rg is stronger, at fixed volume fraction, for
smaller NPs. This behavior can be rationalized by plotting Rg as a function of the interparticle
distance h, as shown in Fig. 37b. We observe that for σN ≥ 3, the data fall on a master curve,
which can be approximated by the empirical expression (continuous line in Fig. 37b)

Rg

Rg0
= 1 + 0.0762 · h−2.26. (161)

Approximating h with the expression of Eq. (152), one obtains

Rg

Rg0
' 1 + 0.0762 ·

{
σN

[(
φM

N
φN

)1/3
− 1

]}−2.26

. (162)

From Eq. (162), we see that at fixed φN , the increase of Rg will be larger for smaller σN . The
fact that the behavior of Rg is captured by the interparticle distance h means that for σN ≥ 3
chain expansion is a purely geometrical effect, dominated by excluded volume: the NPs force
the chains to take less tortuous paths, therefore increasing their effective size. For σN = 1 and
2 the data do not fall on the master curve, for the reasons explained above (high surface-to-
volume ratio promotes chain contraction). To provide a better resolution for small values of
h, in the inset of Fig. 37b we plot Rg/Rg0 as a function of 1/h 164.

We can summarize our results by saying that NPs of size σN ≥ 2 act like a good solvent,
swelling the polymer chains, while NPs of size σN = 1 act like a poor solvent, causing them
to contract. We note that this effect is expected to depend on the strength of the monomer-NP
interaction: With stronger interactions, chain contraction could be observed also for σN > 1.
Further study is needed in order to clarify this point.
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Figura 38 – (a) MSD of the NPs divided by time. Dashed line: 〈r2(t)〉/t ∝ t−1/2, predicted by
the CPR theory (Sec. 4.2.2) for the subdiffusive regime of intermediate size NPs. Dash-dotted
line: 〈r2(t)〉/t ∝ t (ballistic regime). The curves for σN = 7 have been shifted downwards by a
factor 2 to facilitate the visualization. (b) MSD of the centers of mass of the chains divided by
time. Dashed line: 〈r2(t)〉/t ∝ t−0.13, i.e., 〈r2(t)〉 ∝ t0.87 (subdiffusive transient). The curves
for σN = 4 have been shifted down by a factor 2 and those for σN = 7 by a factor 8 for clarity.

5.4 dynamics

5.4.1 Mean squared displacement

To characterize the dynamics of the system, we study the mean squared displacement (MSD)
of the NPs and of the centers of mass (CM) of the chains, which we denote respectively
〈r2

N(t)〉 and 〈r2
p(t)〉 (see Eqs. (53) and (57)).

In order to clearly identify the transition between the short-time ballistic regime, 〈r2(t)〉 ∝
t2, and the long time diffusive regime, 〈r2(t)〉 ∝ t, we show in Fig. 38 the MSD divided by
time t for the NPs (Fig. 38a) and for the polymers (Fig. 38b). At low φN , the motion of the
NPs shows the same qualitative behavior for all the values of the NP diameter σN (Fig. 38a):
After the initial ballistic regime, the motion becomes almost immediately diffusive, with the
exception of the system with σN = 7, which shows a weak subdiffusive transient, 〈r2(t)〉 ∝
tβ (0 < β < 1), between these two regimes. A clear transient subdiffusive regime appears
between the ballistic and diffusive regimes at intermediate and high values of φN . The MSD
of the chains, on the other hand, shows a weak subdiffusive transient for all values of φN

and σN , with an exponent β ' 0.87 that is not much influenced by the value of φN (Fig. 38b).
This transient, which is most likely due to non-Gaussian dynamics caused by intermolecular
correlations47, has been previously observed in experiments45–47 and simulations21,45,47–49,252

of polymer melts, where the measured subdiffusive exponent was β ' 0.8. The fact that in our
case the exponent is slightly larger than 0.8 is likely due to the fact that the density considered
here is significantly smaller than that of a melt, ρ ' 0.85. The different regimes (ballistic,
subdiffusive, diffusive) and the transitions between them can also be studied systematically
through the following quantity, which represents the slope of the MSD in a log-log scale and
is a generalization of the subdiffusive exponent β:

βα(t) ≡
d log〈r2

α(t)〉
d log t

=
t

〈r2
α(t)〉

d〈r2
α(t)〉
dt

(163)



5.4 dynamics 75

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

t

0.0

1.0

2.0

3.0

4.0

5.0
β

N

σ
N
=7

σ
N
=5

σ
N
=4

σ
N
=3

σ
N
=2

σ
N
=1

a

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

t

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

β
p

σ
N
=1

σ
N
=2

σ
N
=3

σ
N
=4

σ
N
=5

σ
N
=7

0.87

b

Figura 39 – Slope of the MSD in log-log scale, βα (Eq. (163)), for the centers of mass of the NPs
(a) and for the polymers (b). For the sake of clarity, for σN < 7 every set of curves has been
shifted with respect to the previous one, by 0.5 in (a) and by 0.75 in (b). Different curves in
the same set correspond to different NP volume fractions φN . The dashed curves correspond
to the lowest φN , while the thick continuous curves correspond to the highest φN .

In Fig. 39a we report βN . As discussed above, the dynamics of the NPs is more strongly
influenced by the values of φN and σN than that of the polymers. For σN = 5, 7, we can
observe a subdiffusive transient (βN < 1) appearing very clearly at intermediate times. For
σN < 5, the effect is much smaller. In Fig. 39b we show βp for the simulated systems. The
presence of the transient subdiffusive regime with βp ' 0.87 is clearly visible. The dynamics
of the polymers becomes again diffusive (βp = 1) after a time t ' 104, which we identify
with the relaxation time of the chain5. We can observe that βp is not much affected by the
NP volume fraction φN and size σN .

We now compare our results with the CPR scaling theory (Sec. 4.2.2). Since at low NP
volume fraction in our system ξ ' ξ0 ' 2, based on the predictions of CPR theory one
expects the MSD of the NPs of diameter σN & 2 to show subdiffusive behavior with exponent
β = 1/2 at small φN . However, no such behavior is observed for any value of σN (Fig. 38).
For small NPs, this may be due to the fact that the time window in which the subdiffusive
behavior is expected to be present, i.e., τξ < t < τσN , is too small, since τσN ∝ τξ(σN/ξ)4. For
larger NPs, this time window regime should be large enough to observe subdiffusion, and
indeed for σN = 7 we observe a very weak subdiffusive transient, but the exponent β is close
to 1 (Fig 38a). This is in agreement with previous simulations, which have also found that β

is not always equal to 1/2 in the subdiffusive regime, but rather gradually approaches this
value as σN is increased229.

5.4.2 van Hove function

In order to investigate the heterogeneity of NP dynamics, we study the van Hove function
G(r, t)1, which is the real-space counterpartf of the intermediate scattering function introdu-
ced in Sec. 3.4.4. The van Hove function can be written as the sum of a self and a distinct
part: G(r, t) = Gs(r, t) + Gd(r, t), where

f The two quantities are related by a Fourier transform: F(q, t) =
∫

G(r, t)e−iq·rdr.
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Gs(r, t) = 〈δ[r− rk(t) + rk(0)]〉 (164)

and

Gd(r, t) =
1
M

M

∑
k=1
j 6=i

〈δ[r− rj(t) + rk(0)]〉. (165)

The self part of the van Hove function represents the time-dependent spatial autocorrelation
of a particle, while the distinct part represents the time-dependent spatial pair correlation.
Since the system is isotropic, we will consider the spherical average of these two quantities:
Gs(r, t) and Gd(r, t). The function 4πr2Gs(r, t) represents the probability to find a particle at
time t a distance r from its original position. We note that Gs(r, 0) = δ(r) and Gd(r, 0) = ρg(r),
where g(r) is the pair correlation function1.

For both small and large values of t, the self part of the van Hove function is a Gaussian1:

Gs(r, t) = Γs(r, t) =
(

3
2π〈r2(t)〉

)3/2
exp

(
− 3r2

2〈r2(t)〉

)
. (166)

We can therefore define a rescaled self van Hove function which also preserves the probability
with the following change of variables:

r′ = r ·
(

3
2〈r2(t)〉

)1/2

G′s = Gs ·
(

3
2〈r2(t)〉

)−3/2
(167)

If Gs is Gaussian, the result of the transformation (167) is

Γ′s(r
′) ≡ π−3/2e−r′2 , (168)

i.e., the distribution is independent of time.

In Fig. 40a, we show the rescaled van Hove function for the case σN = 1, φN = 0.05 (but
for other parameters we find the same qualitative behavior). In Fig. 40b, we report the ratio
between the rescaled self van Hove function G′s(r, t) of the NPs and the same quantity in the
Gaussian approximation Γ′s(r, t), for the same system. We observe that the shape of G′s(r, t)
at short and long times is indeed very close to a Gaussian (G′s(r, t) = Γ′s(r, t)), and that the
largest deviation from Gaussian behavior occurs when the dynamics of the NPs starts to be
diffusive (in this case, at t ' 1). These deviations are found to be most pronounced at large r,
i.e., the NPs move a bit further than expected from a Gaussian approximation.

To better quantify how dissimilar Gs(r, t) is from a Gaussian, it is customary to define a
non-Gaussian parameter253,
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Figura 40 – (a) Rescaled self part of the van Hove function as a function of r′2 (Eqs.(164)-(167))
for σN = 1, φN = 0.05 (b) Ratio between the rescaled self part of the van Hove function and
the same quantity in the Gaussian approximation (Eq. (168)) for the same system.

α2(t) ≡
3〈r4(t)〉
5〈r2(t)〉2 − 1, (169)

where

〈rn(t)〉 ≡ 〈|r(t)− r(0)|n〉 = 4π
∫ ∞

0
Gs(r, t) r2+ndr. (170)

If Gs(r, t) is Gaussian, Eq. (166), we have α2 = 0. Therefore, high values of |α2| indicate a
significant non-Gaussian behavior.

In Fig. 41, we show α2(t) of the NPs for several values of the NP diameter σN and of the
NP volume fraction φN . The largest departure from Gaussian behavior happens when the
dynamics of the NPs starts to be diffusive, in agreement with what is observed from G′s(r, t).
Both at short and long times α2 ' 0, as expected. We notice that the maximum deviation
from Gaussian behavior (the maximum of the curves in Fig. 41) becomes larger when φN

is increased. This trend shows that the structure of the surrounding polymer mesh and the
presence of nearby NPs both contribute to the non-Gaussian behavior. Moreover, increasing
the NP size at fixed φN generally reduces the magnitude of α2. This is reasonable, since
a large NP interacts with a large number of monomers and other NPs and thus “feels” an
averaged interaction, which results in a reduction of the dynamical fluctuations and therefore
of α2. One exception to this trend is σN = 7 at high NP volume fraction (Fig. 41d). However,
the reason for this is likely that the system is approaching crystallization (see Sec 5.5). Apart
from the case σN = 7, φN = 0.467, we always have |α2| < 0.2, and we can therefore state
that the dynamics of the NPs is, to a good approximation, Gaussian. The non-Gaussian
parameter of the polymer chains (not shown) always satisfies |α2| < 0.1, therefore also the
dynamics of the polymers is approximately Gaussian. We also mention that in this case no
clear dependence of α2 on φN and σN is observed.

Finally, we show in Fig. 42 the distinct part of the van Hove function, Gd(r, t), of the
NPs for some selected systems. The relaxation happens in a way which is very similar to
that observed in simple, non-supercooled liquids253, in that we observe that in all cases the
correlation hole at r = 0 is slowly filled as t is increased. Since there is no evidence for the
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Figura 41 – Non-Gaussian parameter α2, Eq. (169), for various NP diameters σN and NP
volume fractions.

presence of a peak at r = 0, we conclude that hopping dynamics is absent in the studied
systems254.

5.4.3 Polymer diffusion

In order to make a more quantitative characterization of the dynamical properties of the
polymers and the NPs as a function of NP diameter σN and volume fraction φN , we now
focus on the self diffusion coefficient D (which for simplicity we will refer to as "diffusion
coefficient"), which can be obtained from the MSD through Einstein’s relation, Eq. (54).

It is known that measurements of D in systems with periodic boundary conditions suffer
from finite-size effects because of long-ranged hydrodynamic interactions255,256. Although
an analytical expression for the correction to D is available255,256, it is not evident whether it
can be applied to the motion of polymer chains and NPs in a concentrated polymer solution.
For the NPs, such an expression is most likely not adequate when, as in our case, the NP size
is smaller than the polymer size77. Therefore, for consistency we choose not to apply any
finite size correction to the measured diffusion coefficients.

In the pure polymer system (φN = 0), the diffusion coefficient of the CM of the chains
is Dp0 = (1.14± 0.02) · 10−2. In Fig. 43a we plot the reduced diffusion coefficient of the po-
lymer chains Dp/Dp0 as a function of the NP volume fraction φN . We can observe that
Dp/Dp0 decreases with increasing NP volume fraction, with the decrease being stronger,
at fixed φN , for smaller NPs. The data can be fitted to the empirical functional formg

g No particular physical meaning should be attributed to this functional form, which is only chosen for mathematical
convenience.
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Figura 42 – Distinct part of the van Hove function, Eq. (165), for some selected systems.
The curves are equally spaced in logarithmic time (t). In (a) and (c), we have indicated
some of the t values associated to the curves. The minimum value of t is for all the figures
tmin = δt = 0.003 (integration time step), while the maximum value, tmax, is reported in the
legend.

Dp = Dp0[1− (φN/φN0)
α], where α increases weakly with NP size. By using this relation, we

can interpolate between the data points and plot Dp/Dp0 as a function of the NP diameter σN

for different volume fractions (Fig. 43b) and we observe that Dp/Dp0 increases monotonically
with σN at fixed φN . There are two possible causes (or a combination of the two) that can
lead to the slowing down of the chains with increasing NP volume fraction: the increase of
the number of obstacles to polymer motion and the increase of polymer-NP interfacial area,
which, since the interaction between polymers and NPs is attractive, can result in a reduced
chain mobility. A predominance of the first effect would imply that the slowing down of
the polymers is a mostly entropic effect, while if the second effect is the most important the
dynamics of the polymers is mainly controlled by enthalpy.

Composto and coworkers137,141,157,205 observed a similar slowing down of chain motion in
a series of experimental studies on polymer nanocomposites containing large NPs (σN & 2Rg).
They found that the reduced diffusion coefficient of the polymers falls on a master curve
when plotted versus a “confinement parameter”, defined as h/2Rg, where h is the interpar-
ticle distance, which the authors computed using Eq. (152) with φM

N = 2/π (see Sec. 4.3.1).
Since the collapse of the data was independent of the strength of the polymer-NP interac-
tion141, the authors concluded that the slowing down of the polymers is entropic in origin,
caused by the reduction of chain entropy as the chain passes through bottlenecks formed by
neighboring NPs (entropic barrier model)137. An analogous reduction in polymer mobility
due to the presence of NPs was observed by Li et al.215 in molecular dynamics simulations of
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Figura 43 – (a) Reduced diffusion coefficient of the centers of mass (CM) of the chains
Dp/Dp0 as a function of NP volume fraction, where Dp0 = Dp(φN = 0) . Continuous li-
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Figura 44 – Reduced diffusion coefficient of the centers of mass (CM) of the chains as a
function of the static confinement parameter h/2Rg (a) and of the dynamic confinement
parameter h/λd (b) for different values of the NP diameter σN . Continuous and dash-dotted
lines in (a): Dp = Dp0[1− exp(−a · h/2Rg)], with a respectively equal to 5.44 and to 3.22.
Continuous line in (b): Eq. (171).

unentangled melts of short chains (N = 35, ρm = 0.85) containing repulsive NPs. The slowing
down was weaker than that observed by Composto and coworkers in Refs. 137,205, an effect
which the authors attributed to the absence of chain entanglements. Karatrantos et al.199 also
observed a monotonic decrease in the polymer diffusion coefficient with increasing NP volu-
me fraction in molecular dynamics simulations of NPs in unentangled and weakly entangled
melts, and attributed this phenomenon to the increase in the polymer-NP interfacial area. An
enhancement of chain diffusivity at low φN has also been observed in simulations by Kalathi
et al.77, possibly because attractive monomer-monomer interactions were considered in their
work. It is therefore clear that, despite the fact that some general trends can be identified,
the dynamics of the polymers can depend strongly on the details of the system (see also
Sec. 4.3.2).

Following Composto and coworkers137,141,157,205, we plot in Fig. 44a the reduced diffusion
coefficient of the chains as a function of the confinement parameter h/2Rg. We recall that in
our case h is not defined by Eq. (152), but rather computed from the pore size distribution
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(Sec. 5.2.3). In addition to the T = 1.0 data, we also show the results from simulations at
T = 0.7 with σN = 3. The first observation is that, with the exception of σN = 1, all the
T = 1.0 data fall on the same master curve, which is well approximated by the empirical
expression Dp = Dp0[1− exp(−ah/2Rg)], with a = 5.44 (continuous line in Fig. 44a). The
fact that also in our case Dp/Dp0 is only a function of the confinement parameter is rather
surprising, since Composto and coworkers mainly considered NPs of size comparable to
that of the polymers or larger, which could be considered as basically immobile137,141,157,205,
whereas in our case σN < 2Rg and the NPs diffuse faster than the chains in almost all the
systems considered, as it will be shown in Sec. 5.4.7.

We notice, however, two important differences: The first one is that while in our case the
diffusion coefficient of the pure polymer solution (Dp/Dp0 = 1) is recovered at h/2Rg ' 1, in
Refs. 137,141,157,205 it is recovered only at much higher values of the confinement parameter,
h/2Rg ' 20. Our finding is similar to what observed by Li et al.215, who attributed the
discrepancy between their data and those of Composto and coworkers to the absence of
entanglement in their simulated system. The second difference is that the T = 0.7 data
clearly do not fall on the same master curve. Since a decrease in temperature is approximately
equivalent to an increase in the strength of the polymer-NP interaction, this result suggests
that in our system the polymer-NP interaction plays a relevant role, in contrast with Ref. 141,
where the authors concluded that the confinement parameter captures the polymer slowing
down independently of the polymer-NP interactions. We propose in the following a possible
solution to these discrepancies.

The confinement parameter h/2Rg is a purely static quantity, which only depends on the
spatial configuration of the polymers and the NPs in the system. However, there are several
cases in condensed matter physics in which two systems with very similar structure show a
completely different dynamics: A well-known example is that of the glass transition, where
a supercooled liquid shows structural properties similar to those of a liquid at higher tem-
perature, but completely different dynamical properties244,257,258. It seems therefore more
appropriate to introduce a dynamic confinement parameter h/λd, where λd is a dynamic length
scale which will in general depend on temperature, density and on the details of the sy-
stem. We have already seen that the T = 1.0 data are well approximated by the function
Dp = Dp0[1− exp(−ah/2Rg)], with a = 5.44 (continuous line in Fig. 44a); the T = 0.7 data
are well approximated by the same functional form, but with a different coefficient, a = 3.22.
In light of what we discussed above, we make the hypothesis that the reduced diffusion
coefficient of the polymers can be expressed as

Dp = Dp0

[
1− exp

(
− h

λd(T)

)]
, (171)

where we have explicitly reported the dependence of λd on temperature. Since Rg does not
change more than 8% with respect to the pure polymer solution value Rg0 (see Fig. 37), we
can estimate λd as λd = 2Rg0/a: This gives λd(1.0) = 2.31 and λd(0.7) = 3.90. We show
Dp/Dp0 as a function of h/λd in Fig. 44b: In this plot, the data for different temperatures fall
on the same master curve, showing that the dynamic confinement parameter h/λd is more
successful than the "static" confinement parameter h/2Rg in capturing the slowing down of
the polymers (Fig. 44a). However, one question remains: What does the dynamic length
scale λd represent exactly, and why does it increase when temperature is decreased? Our
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answer is that λd is a cooperativity length scale, i.e., it represents the typical length scale of
the spatial rearrangement needed for a polymer segment to escape its local cage. Similarly
to what happens in a supercooled liquid257,259, this cooperative length scale is expected to
increase when T is decreased. In our system, an important role could also be played by the
attractive polymer-NP interactions, which become more relevant when T is decreased and
could reduce the mobility of polymer segments close to the polymer-NP interface. We also
expect λd to increase with monomer density, since a higher density naturally leads to a locally
more constrained dynamics: This could explain why the data of Li et al.215, who simulate NPs
in a dense melt, are compatible with a larger cooperativity length scale. Another factor that
is expected to play a major role is the stiffness of the chain, with stiffer chains expected to
lead to a larger λd.

To summarize, we propose a modification of the confinement parameter theory of Com-
posto and coworkers137,141,157,205: our hypothesis is that the dynamics of the polymers is
controlled by a dynamic confinement parameter h/λd, where λd is a cooperativity length
scale which will depend in general on the thermodynamic parameters and on the details of
the model. Further study is required to test the validity of this hypothesis, and to understand
how λd depends on the properties of the physical system.

5.4.4 Single nanoparticle diffusion

The diffusion coefficient of a hard-sphere probe particle of diameter σN in a continuum
solvent with shear viscosity η is given by the Stokes-Einstein equation1:

DN0 =
kBT

f πησN
, (172)

where f is a number between 2 and 3 which depends on the choice of the hydrodynamic boun-
dary conditions: f = 2 for pure slip and f = 3 for pure stick boundary conditions176. If the
particle is not a perfect hard sphere, for example because its shape is not perfectly spherical
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or because there is adsorption of solvent molecules on its surface, σN must be replaced with
an effective hydrodynamic diameter σh

260,261. As discussed in Sec. 4.2, Eq. (172) is inadequate
to describe the motion of particles smaller than the polymer size in a polymer solution/melt,
since the continuum assumption breaks down when the size of the probe particle becomes
comparable to the characteristic length scale of the solvent. The mechanism behind the vio-
lation of the Stokes-Einstein relation has been discussed in detail in Sections 4.2.1, 4.2.2 and
4.2.3.

To test the validity of the Stokes-Einstein formula, Liu et al.179 have used MD simulations
to measure the single particle diffusion coefficient of NPs in a dense, unentangled melt (N =

60, ρm = 0.84). The results of their simulations are shown in Fig. 45 (red symbols, dashed
lines). The authors argued that the effective hydrodynamic radius of the particle, Rh = σh/2,
should have the value Rh = (σN + 1)/2, which would correspond to the contact distance
between a NP and a monomer if they were hard spheresh. By fitting their data in the size
range σN < 2Rg with a power law DN0 ∝ R−γ

h , they found γ ' 3 (red squares in Fig. 45), and
for diameters σN > 2Rg they recovered the Stokes-Einstein relation. The results of Ref. 179

are therefore in agreement with the prediction that DN0 ∝ σ−3
N (see Sec. 4.2) if one replaces

the NP diameter σN with the effective hydrodynamic diameter σh = σN + 1. However, when
plotting DN0 as a function of σN instead of σN + 1 and fitting with a power law DN0 ∝ σ

−γ
N ,

one obtains instead γ ' 2 (red circles in Fig. 45). Hence one must conclude that the value
of the exponent γ depends on the exact definition of the effective NP diameter, which makes
the comparison of simulation data with theoretical predictions a delicate matter, especially
when the size of the NP is of the same order of magnitude as the monomer size (for large
NPs, σN + 1 ' σN).

Since the identification of σN + 1 with the effective hydrodynamic diameter is rigorously
justified only for hard-sphere interactions, we propose instead to define σh from the monomer-
NP radial distribution, gNm(r) (see Fig. 30). As discussed in Sec. 5.2.1, for all the values of
φN and σN , gNm(r) displays a main peak at

r =
rs

2
≡ σN + (27/6 − 1)

2
' σN + 1.245

2
=

σN
2

+ 0.622 (173)

The position of this peak shows almost no change also when T is changed. Given the ro-
bustness of rs, and the fact that it can be obtained directly by analyzing the configurations
(with no assumption on the monomer-NP interaction potential) we propose to define the
hydrodynamic diameter of the NPs as

σh = 2Rh ≡ rs ' σN + 1.245 (174)

The choice to define σh in this manner instead of simply using the value σN + 1 has impli-
cations which are, of course, more conceptual than practical, since the numerical values are
very similar.

In order to test the theoretical predictions discussed above, we have performed additional
simulations at low NP volume fraction (φN < 0.015) for σN = 10, 12, and 14. In Fig. 45 we
show DN0d as a function of d/2Rg, with d alternatively defined as σN , σN + 1 and rs (blue

h The same argument can be found in Ref. 262.
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Figura 46 – Mean squared displacement of the NPs when varying the NP mass mN at fixed
diameter σN , in the case σN = 2, φN = 0.024 (a) and σN = 7, φN = 0.092 (b).

symbols, continuous lines). Also included are the data from Ref. 179 (red symbols, dashed
lines). We can see that DN0 decreases continuously for d < 2Rg, whereas at σh ' 2Rg Stokes-
Einstein behavior, DN0d = const., is recovered. Taking d = σN + 1 or d = rs, we find in
the range 0.6 . d/2Rg . 1 a slope of approximately −2, which agrees with the theoretical
predictions. However, the range in which we observe this slope is rather small and hence
we cannot claim that our data confirm the theory. However, a caveat is in order: We have
verified that, as also reported in previous studies177,179,217, the diffusion coefficient of small
NPs decreases when the NP mass increases at fixed NP volume, i.e., when the mass density is
increased. The effect becomes progressively weaker as σN is increased, and at σN = 7 no mass
density dependence is observed. Nevertheless, this effect should be taken into account when
comparing the results of simulations to those of experiments or to theoretical predictions. The
mass dependence of polymer and NP diffusivities is discussed in detail in the next Section.

Another possibility is that the observed discrepancy between the data and CPR theory
is due to the absence of hydrodynamic interactions in our simulations. In Ref. 229, the au-
thors simulated polymer solutions containing spherical NPs using both Langevin dynamics
and multi-particle collision dynamics (MPCD), which accounts for hydrodynamic interac-
tions. They found that the agreement between the data and CPR theory is rather poor for
the simulations employing Langevin dynamics, whereas it is almost perfect for the MPCD
simulations.

5.4.5 Mass dependence of NP and polymer diffusivities

In previous studies of polymer nanocomposites179,217 and binary soft-sphere liquids177 it has
been shown that outside of the Stokes-Einstein regime not only the diameter, but also the
mass density of a particle can affect its dynamics. In order to study this effect, we performed
some simulations at low NP volume fraction and changed the NP mass while leaving the
diameter fixed. The results for the mean squared displacement (MSD) 〈r2(t)〉 of the particles
are reported in Fig. 46 for the cases σN = 2, φN = 0.024 and σN = 7, φN = 0.092. At short
times, the motion of the particles is ballistic and the mass dependence of the MSD follows
trivially from the equipartition theorem263:
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Figura 47 – Diffusion coefficient of the NPs (a) and of the polymers (b) when varying the NP
mass mN at fixed diameter σN . The values of the NP volume fraction φN are 0.024, 0.054 and
0.092 respectively for σN = 2, 4 and 7. Open symbols: simulation without rescaling of the
viscous friction coefficient ΓN . Dashed lines: slopes −0.25 (a) and −0.03 (b). These slopes are
reported only for reference.

〈r2
N(t)〉 = 〈v2

N〉t2 =
3kBT
mN

t2, (175)

where 〈v2
N〉 is the mean squared speed of the NPs. At longer times, when the motion becomes

diffusive, i.e. 〈r2(t)〉 ∝ t, we can observe a much more interesting effect: While the motion
of the larger NPs is unaffected by a change in the mass (Fig. 46b), the motion of smaller NPs
presents a clear mass dependence (Fig. 46a).

This result can be better appreciated in Fig. 47a, where we show the NP diffusion coeffi-
cient DN as a function of the NP mass for different values of σN and φN (here also the case
σN = 4, φN = 0.054 is shown). One recognizes that the mass dependence of the diffusion coef-
ficient becomes weaker when the NP diameter is increased, and for σN = 7 it has disappea-
red almost completely. The observation that the mass dependence of the long time diffusion
coefficient is stronger for smaller particles is in agreement with previous studies177,179.

Our interpretation of this result is that large particles are forced to wait for the polymers
to relax in order to diffuse through the solution: The constraints on their motion are purely
geometric, and mass plays no role. Smaller particles, on the other hand, can slip through
the polymeric mesh; the probability that they find a passage to slip through in a certain time
interval increases with their average velocity, which at equilibrium decreases as m−1/2

N , as
it follows from the equipartition of energy263: 〈v2

N〉 = 3kBT/mN . We expect this effect to
be strongly suppressed when the polymer density is increased, and to be negligible for the
motion of NPs of diameter σN & σ in a melt.

Although in Refs. 177,179 it was claimed that the mass dependence disappears for high
values of mN , in our case for σN = 2 there is no hint that the mass dependence vanishes
for larger mass values. In the case of Ref. 177, however, the disappearance of the mass
dependence for high values of the mass is only apparent, as it becomes clear once the data
are plotted in double logarithmic instead of linear scale (not shown). We believe that this
could also be the case for Ref. 179, since also there the data are only reported in linear
scale. From the analysis of our data and of those of Ref. 177, it seems that not only the
mass dependence does not disappear when mN is increased, but on the contrary it becomes
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stronger.

The diffusion coefficient of the polymer chains Dp is almost unaffected by changes in the
NP mass density, as we can observe from Fig. 47b, although it is possible to see a very weak
decrease of Dp for σN = 2. It is possible that the slowing down of the NPs has an effect on
the dynamics of the polymers, but this effect is very weak at low NP concentrations. Further
study should be dedicated to clarifying this point.

Finally, we have made some tests to determine whether the observed mass dependence
is an artifact resulting from the scaling of the friction coefficient of the Langevin thermostat.
To this aim, we ran some simulations where the friction coefficient of the NPs, ΓN , was kept
constant and equal to that of the monomers: ΓN = Γm = 0.1. The result is included in
Fig. 47 (open blue circles). One sees that the effect of mass density is still present, but using
ΓN = 0.1 (fixed) has the effect of reducing the diffusion coefficient of the NPs, as one expects
since this means that more massive NPs experience a higher solvent viscosity (we recall that
ηs ∝ ΓNmN/σN).

In conclusion, we have shown that the effect of mass density on the dynamical properties
should be taken into careful consideration when performing Langevin dynamics simulations
of multi-component systems, such as polymer mixtures, binary fluids and solutions with
explicit solvents. A possible way to avoid this effect may be to perform Brownian dynamics
(Sec. 3.6.1) , in which inertial effects are absent by construction.

5.4.6 Nanoparticle diffusion

In the previous section, we have dealt with the motion of a single NP in the polymer solution,
i.e., we have considered the dilute NP limit: We will now discuss the dynamics of NPs at
higher NP volume fraction φN .

Only few simulation studies have considered high NP volume fractions. Liu et al.179 ha-
ve observed a reduction of the NP diffusion coefficient with increasing φN , and attributed
the phenomenon to polymer-mediated interactions, i.e., to the formation of chain bridges bet-
ween neighboring NPs that would hinder NP motion; it is not clear, however, what the typical
lifetime of such bridges should be, and thus whether this explanation is correct. Karatrantos
et al.199 have observed a similar reduction in NP mobility and argued that it is due “to both
nanoparticle-polymer surface area and nanoparticle volume fraction”199, implying that pure geome-
try and polymer-NP attraction both play a role. The importance of polymer-NP interaction
in NP dynamics is beyond dispute: Patti226 showed that the diffusion coefficient of NPs in an
unentangled melt decreases monotonically when the strength of the polymer-NP interaction
is increased, with the decrease being stronger for smaller NPs. A monotonic decrease of NP
diffusivity with the strength of the polymer-NP interaction was also observed by Liu et al.179.
We mention, however, that this trend can be reversed (NP diffusivity increasing with increa-
sing interaction strength) in strongly entangled systems, where the dynamics of the NPs is
dominated by density fluctuations on length scales of the order of the tube diameter187.

In Fig. 48a, we show the reduced diffusion coefficient of the NPs, DN/DN0, where DN0

is the diffusion coefficient of a single NP in the polymer solution, as a function of the NP
volume fraction φN ; also shown are data for σN = 3 and T = 0.7. Similarly to the diffusion
coefficient of the chains, DN decreases with increasing NP volume fraction. The decrease of
DN/DN0 with the NP volume fraction is rather quick: Already at the modest volume fraction
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Figura 48 – Reduced NP diffusion coefficient as a function of the NP volume fraction φN (a)
and of NP diameter σN (b). The continuous line and the dashed line in (a) represent Eq. (176),
with C = −1.180 (slip BC) and C = −2.097 (stick BC), respectively.

of φN = 0.1, the diffusion coefficient is reduced by ' 40% for NPs of diameter σN = 2 and 3,
and by ' 30% for NPs of diameter σN ≥ 3.

Cichocki and Felderhof264 calculated the self diffusion coefficient of hard spheres perfor-
ming Brownian motion in an incompressible fluid, finding for low φN

D = D0(1− CφN), (176a)

where C is a constant that has value C = −2.097 for pure stick boundary conditions (BC) and
C = −1.180 for pure slip BC. We compare these predictions with our data in Fig. 48a. One can
see that Eq. (176) gives a good approximation of the data for low φN and large σN when the
value of C corresponding to stick BC is chosen, whereas the agreement is poor for the value
corresponding to slip BC. This is reasonable, since the monomer-NP interaction is attractive.
When σN is decreased, the agreement between Eq. (176) and the data becomes progressively
poorer: This is also reasonable, since when the size of the NP becomes comparable to the
monomer size we cannot treat the polymer solution as a continuum, as we have also seen
in Sec. 5.4.4. Despite this, for large σN Eq. (176) gives a surprisingly good description of the
data for small φN .

In order to study the dependence of DN/DN0 on σN at fixed φN , we interpolated between
the points in Fig. 48a in order to obtain approximately the reduced NP diffusion coefficient
as a function of the NP diameter σN at constant φN . The result is shown in Fig. 48b: The
ratio DN(σN)/DN0 shows an initial increase with increasing σN , then an inflection point at
σN ' 2.5, and finally it reaches a plateau for σN & 4. Such a peculiar behavior can be
interpreted in the following manner: At σN ' 1, increasing the NP diameter at fixed volume
fraction has the effect of reducing the total polymer-NP interface, and therefore decreasing the
interaction energy between polymers and NPs, resulting in an enhanced NP diffusion. When
the NP size becomes larger than the average poer diameter 2ξ ' 2.1 (the exact value depends
on φm), the motion of NPs starts to be geometrically hindered by the polymer segments175,184,
and as a result the dependence of DN/DN0 on the NP size weakens. Then, when the NPs
become large enough, since the surface-to-volume ratio becomes smaller, the importance of
the energetic contribution to the diffusion coefficient starts to decrease, resulting in another
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Figura 49 – Reduced NP diffusion coefficient DN/DN0 as a function of h/Rh, where h is the
interparticle distance and Rh = (σN + 1.245)/2 is the hydrodynamic radius of the NPs.

increase in the diffusion coefficient. Finally, for large NPs energy becomes irrelevant and
DN/DN0 is completely controlled by geometry, and therefore is constant at constant NP
volume fraction.

In Sec. 5.4.3, we showed that the reduced diffusion coefficient of the polymers Dp/Dp0

collapses on a master curve when plotted as a function of h/λd, where h is the interparticle
distance and λd is a fit parameter depending on temperature, which should be interpreted as
a dynamic length scale associated to polymer motion. Applying the same line of reasoning to
the NP diffusion coefficient, we fitted DN/DN0 to the expression 1− exp(−h/λN

d ). We found
that this expression fits the data rather well, and that the best fit parameter is λN

d ' σN + 1.2.
We argue that this value should be interpreted as the hydrodynamic radius of the NPs, i.e.,
λN

d = Rh (defined in Eq. (174)). In Fig. 49a we show DN/DN0 as a function of h/Rh. The
continuous line is the expression

DN = DN0

[
1− exp

(
− h

Rh

)]
. (177)

We stress that here Rh was not used as a fit parameter to produce the graph of Fig. 49, but
instead it was calculated from Eq. (174). However, we would also like to clarify, in the absence
of any theoretical model that justifies it, that we believe that Eq. (177) should be considered
as no more than a good approximation (much like Eq. (171)).

5.4.7 Comparison of polymer and NP diffusivities

In Fig. 50a, we show the ratio DN/Dp. One sees that, in almost all the systems we considered,
DN/Dp > 1, i.e. the NPs diffuse faster than the polymer chains. An exception is σN = 7 at
high densities; however, we know that at higher NP volume fraction the NPs form in this
case a crystal (see next Section) and therefore DN becomes very small.

Figure 50b shows the NP diffusion coefficient DN as a function of the polymer center of
mass diffusion coefficient Dp. One can observe that there is a strong correlation between
DN and Dp, which can be approximated by a power law, DN ∝ Dα

p, where α increases with
increasing NP diameter (inset of Fig. 50b). This correlation suggests that there is a coupling
between the long time diffusivities of the NPs and of the centers of mass of the polymers, as
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Figura 50 – (a) Ratio between the NP and polymer diffusion coefficients as a function of
the NP volume fraction and for different values of the NP diameter σN . (b) NP diffusion
coefficient DN versus the chain CM diffusion coefficient Dp. The correlation between DN and
Dp takes the form of a power law, DN ∝ Dα

p, where α increases with the NP diameter. Inset:
α as a function of the NP diameter.
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it was proposed by Chen et al.229.

5.5 higher nanoparticle volume fractions

If we keep increasing the number of NPs NN while keeping pressure and number of polymers
constant, the volume of the simulation box will eventually start to increase proportionally to
NN . As a consequence, the NP volume fraction φN will reach a plateau, φN = φmax

N (σN) (see
Fig. 52b below), which corresponds to the value of φN for a pure NP system at temperature
T = 1.0 and pressure P = 0.1. This situation corresponds approximately to the one depicted
in Fig. 28d. If a standard LJ potential was used for the NP-NP interaction, φmax

N would not
depend on σN , since the interaction potential would only depend on the ratio σN/r and all
systems would be equivalent apart from a trivial distance rescaling. However, the expanded
LJ potential, Eq. (144), does not simply depend on σN/r; therefore, pure NPs systems with
the same T and P are not equivalent.

This is shown in Fig. 51, where we show the NP-NP radial distribution function, gNN(r),
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Figura 52 – (a) Expansion factor (V − V0)/V0, with V0 ≡ V(φN = 0) and V the volume of
the simulation box, as a function of the total NP volume VN ≡ NNπσ3

N/6. Dash-dotted line:
Eq. (178). Inset: Same plot as in the main figure, but in double-logarithmic scale. Data for
σN = 1 are not shown for clarity. Dash-dotted line: Eq. (178). Dashed line: Eq. (179) for
σN = 3 (φmax

N ' 0.3). (b) NP volume fraction as a function of the number of NPs NN . Dashed
lines: φN = πσ3

N NN/6V0. Dash-dotted line: φmax
N (σN = 3).

of systems purely composed of NPs (NN = 104) of different diameter σN at T = 1.0 and
P = 0.1. We note a pure NP system can be interpreted as the result of taking limit NN → ∞
in the nanocomposite; this is because, as discussed above, V ∝ NN for large NN and the
number of polymers is constant, and therefore limNN→∞ φm = 0. For σN = 2 and 3, the RDF
shows the typical structure of a liquid, with a peak at σN = rc (see Sec. 5.2.1) followed by a
periodic modulation of wavelength rc. As σN is increased, the value of gNN(rc) increases, and
for σN = 5 reaches the value gNN(r) ' 5, while at the same time a shoulder appears in the
second neighbor peak at 2rc, signaling that the system is very dense (although still a liquid).
The σN = 7 system, on the other hand, clearly crystallizes, as we can see from the extremely
high value of gNN(rc) and from the sequence of peaks typical of long range order (see also
the inset of Fig. 51).

In Fig. 52a, we show the expansion factor (V − V0)/V0, where V0 ≡ V(φN = 0) (volume
of the neat system) and V is the volume of the simulation box, as a function of the total NP
volume VN ≡ NNπσ3

N/6 = VφN , for different values of σN . For small VN , we expect that the
system’s volume is simply V = V0 + VN , and therefore

V −V0

V0
' VN

V0
. (178)

Eq. (178) is represented in Fig. 52a by the dash-dotted line. As one can see, for σN ≥ 4 this
approximation describes the data very well, meaning that in this range of NP diameters the
expansion of the system is purely due to the excluded volume of the NPs. This is also shown
in the inset of Fig. 52a, where we show (V−V0)/V0 as a function of VN in double-logarithmic
scale. For σN = 3, the observed expansion is smaller than what predicted by Eq. (178). For
σN = 2, and even more so for σN = 1, the behavior is qualitatively very different, as there is
a range of VN values in which we observe a decrease in volume, an effect which we ascribe
to the greater relevance of the polymer-NP interaction for this NP sizes. The behavior of
the system’s volume should be compared with the one of the radius of gyration, which was
discussed in Sec. 5.3.4. We recall that chain expansion was observed for σN ≥ 2 and chain



5.5 higher nanoparticle volume fractions 91

0.0 0.1 0.2 0.3 0.4 0.5
φ

N

0.0

0.5

1.0

1.5

D
 /
 D

0

σ
N
=1

σ
N
=2

σ
N
=3

σ
N
=4

σ
N
=5

σ
N
=7

D
N
 / D

N0

D
p
 / D

p0

φ
N

max
(σ

N
=3)

Figura 53 – Normalized diffusion coefficient of NPs and polymers as a function of NP volume
fraction for different values of the NP diameter σN . Filled symbols: good NP dispersion.
Open symbols: poor NP dispersion. Dashed line: approximate value of φmax

N for σN = 3. The
data for DN/DN0 have been shifted up by 0.6 for clarity.

contraction for σN = 1, so that the behavior of the single chains is qualitatively similar to the
behavior of the whole system.

For large VN , we can neglect the volume of the polymers. The system’s volume is thus
V ' VN/φmax

N , where φmax
N is the volume fraction of a pure NP system at temperature T = 1.0

and pressure P = 0.1. We have therefore

V −V0

V0
' VN

φmax
N V0

− 1. (179)

Eq. (179) is represented in the inset Fig. 52a by the dashed line for σN = 3, for which φmax
n '

0.3 (see Fig. 52b). In Fig. 52b we show the NP volume fraction φN as a function of NN . Initially,
the expansion is very small and therefore φN ' πσ3

N NN/6V0 (dashed lines). Then, for larger
values of NN , the volume starts to increase proportionally to NN and φN reaches the plateau
φN = φmax

N (σN).
Since the number of polymer chains is constant, the increase of the volume at large NN

results in a decrease of polymer volume fraction φm, and therefore in a decrease of the
polymer-NP interface per unit volume. This in turn causes a weakening of the polymer-
mediated attractive interaction between NPs and consequently an increase of the free volume
Vfree = V[1− (φN + φm)]. Both of these mechanisms result in an increase in the polymer
and NP diffusivities. We can observe this effect in Fig. 53, where we show the normalized
diffusion coefficient of both polymers and NPs for all the simulated systems, including those
where good NP dispersion is not realized (open symbols): D/D0 reaches a minimum corre-
sponding to the value of φN at which the volume starts to increase, and it continues to grow
as φmax

N is approached. We note however that for σN = 7, D/D0 shows a monotonic decrease.
While in all the other cases we found that the pure NP system at T = 1.0 and P = 0.1 is a
liquid, for σN = 7 it is a crystal, which means that as we approach φmax

N the ratio D/D0 will
decrease and eventually settle to a very small value.
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Table 1: Details of the simulated systems. NN : number of NPs.
σN : NP diameter. L: simulation box length. φm: monomer vo-
lume fraction. φN : NP volume fraction. DN : NP diffusion coef-
ficient. Dp: polymer diffusion coefficient. Rg: radius of gyra-
tion. h: interparticle distance. Systems in which there is poor NP
dispersion (p.d.) are denoted by an asterisk in the last column.

NN σN L φm φN DN Dp Rg h p. d.

0 − 56.32 0.1466 0.0000 − 0.0114 6.282 − -

30000 1 57.08 0.1408 0.0845 0.2793 0.0046 6.4681 0.8980 *
15000 1 54.03 0.1660 0.0498 0.2824 0.0050 6.2133 1.2760
7500 1 54.57 0.1611 0.0242 0.3477 0.0072 6.2358 1.9194
3000 1 55.64 0.1520 0.0091 0.3949 0.0096 6.2452 3.1421
1000 1 56.11 0.1482 0.0030 0.4221 0.0111 6.2688 5.0730
300 1 56.28 0.1468 0.0009 0.4199 0.0114 6.2535 8.1108
100 1 56.11 0.1482 0.0003 0.4380 0.0111 6.2621 12.0997
50 1 56.18 0.1476 0.0001 0.4400 0.0109 6.2639 15.5146

20000 2 73.92 0.0648 0.2074 0.1174 0.0063 7.1314 0.7926 *
15000 2 67.76 0.0842 0.2020 0.0964 0.0049 6.9420 0.8338 *
10000 2 61.64 0.1118 0.1789 0.0805 0.0040 6.6559 0.9663 *
7500 2 59.00 0.1275 0.1530 0.0807 0.0043 6.4846 1.1229 *
5000 2 57.13 0.1404 0.1123 0.0886 0.0050 6.3783 1.4177
4000 2 56.61 0.1443 0.0923 0.0971 0.0057 6.3390 1.6361
3000 2 56.31 0.1466 0.0704 0.1085 0.0067 6.3218 1.9785
1800 2 56.05 0.1487 0.0428 0.1222 0.0078 6.2599 2.7735
1000 2 56.18 0.1477 0.0236 0.1392 0.0095 6.2879 3.9275
500 2 56.23 0.1472 0.0118 0.1526 0.0104 6.2609 5.5744
100 2 56.30 0.1467 0.0023 0.1566 0.0114 6.2632 11.2290
50 2 56.31 0.1466 0.0012 0.1473 0.0114 6.2605 14.5222

20000 3 95.84 0.0297 0.3212 0.0589 0.0071 7.6393 0.6161 *
10000 3 76.81 0.0578 0.3120 0.0410 0.0048 7.2650 0.6705 *
5000 3 64.66 0.0968 0.2614 0.0329 0.0040 6.7890 0.9414 *
4000 3 62.21 0.1087 0.2348 0.0334 0.0040 6.5920 1.0718 *
3000 3 60.14 0.1204 0.1950 0.0382 0.0046 6.5102 1.3057
2300 3 58.75 0.1291 0.1604 0.0428 0.0054 6.4311 1.5429
1600 3 57.87 0.1351 0.1167 0.0524 0.0070 6.3742 2.0149
1000 3 57.07 0.1408 0.0761 0.0618 0.0080 6.3179 2.8246
500 3 56.64 0.1441 0.0389 0.0731 0.0095 6.2917 4.4527
100 3 56.37 0.1461 0.0079 0.0908 0.0110 6.2921 10.0294
50 3 56.35 0.1463 0.0040 0.0875 0.0112 6.2624 13.5295

10000 4 93.57 0.0320 0.4090 0.0200 0.0047 7.7135 0.5071 *
5000 4 75.96 0.0597 0.3823 0.0150 0.0036 7.2264 0.6233 *
3000 4 67.13 0.0865 0.3323 0.0145 0.0034 6.8100 0.8860 *
2000 4 62.90 0.1052 0.2694 0.0176 0.0045 6.6007 1.2091
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1600 4 61.18 0.1143 0.2342 0.0205 0.0051 6.5100 1.3929
1000 4 59.15 0.1265 0.1619 0.0306 0.0067 6.3726 1.9771
700 4 58.12 0.1334 0.1195 0.0343 0.0076 6.3358 2.6185
500 4 57.45 0.1381 0.0884 0.0372 0.0085 6.3197 3.3626
300 4 57.21 0.1398 0.0537 0.0458 0.0099 6.3056 4.8379
100 4 56.56 0.1447 0.0185 0.0481 0.0110 6.2800 8.8842

2000 5 69.65 0.0775 0.3874 0.0071 0.0034 6.9309 0.8357 *
1600 5 66.72 0.0882 0.3526 0.0081 0.0040 6.7538 1.0106
1000 5 62.36 0.1080 0.2699 0.0130 0.0052 6.5122 1.4406
750 5 60.60 0.1176 0.2206 0.0165 0.0061 6.4122 1.7888
500 5 59.15 0.1265 0.1581 0.0222 0.0082 6.3587 2.5069
300 5 57.99 0.1342 0.1007 0.0273 0.0092 6.3333 3.8062
200 5 57.44 0.1381 0.0691 0.0301 0.0101 6.3126 5.1301
100 5 56.87 0.1423 0.0356 0.0329 0.0105 6.2973 7.7382
50 5 56.59 0.1444 0.0181 0.0354 0.0111 6.2820 11.2616
30 5 56.48 0.1453 0.0109 0.0383 0.0112 6.2879 14.4058
15 5 56.40 0.1459 0.0055 0.0389 0.0114 6.2622 19.9009

1000 7 72.71 0.0681 0.4672 0.0009 0.0029 6.9195 0.7881 *
750 7 68.71 0.0807 0.4153 0.0022 0.0039 6.7000 1.0633
500 7 64.51 0.0975 0.3345 0.0049 0.0054 6.5015 1.5040
300 7 61.26 0.1139 0.2344 0.0097 0.0073 6.3621 2.2690
200 7 59.65 0.1234 0.1692 0.0123 0.0088 6.3070 3.2795
100 7 58.00 0.1341 0.0920 0.0162 0.0101 6.2774 5.7758
50 7 57.17 0.1401 0.0481 0.0177 0.0107 6.2980 9.1238
30 7 56.83 0.1426 0.0294 0.0191 0.0109 6.2728 12.4074
15 7 56.57 0.1446 0.0149 0.0202 0.0115 6.2612 17.5854
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6
S T R U C T U R E , D Y N A M I C S A N D E L A S T I C I T Y O F P O LY D I S P E R S E
D I S O R D E R E D N E T W O R K S

The data and considerations presented in this Chapter are the result of ongoing research and are thus
in some parts incomplete, and/or will be subject to revision. Simulations and data analysis have been
carried out in collaboration with Andrea Ninarello, Lorenzo Rovigatti and Josè Ruiz-Franco and will
be the subject of one or more future publications265. The primitive path analysis data shown in Fig. 67
have been provided by Cristian Micheletti. Walter Kob, Emanuela Zaccarelli and Virginie Hugouvieux
supervised this project and contributed with very useful discussion.

As discussed in Chapter 4, understanding the physical mechanisms governing the diffu-
sion of nanoparticles in polymer systems is fundamental not only for the obvious technolo-
gical application, but also for the insights it allows us to gain on biological systems. One
obvious example is the diffusion of proteins and other biomolecules in the crowded cellular
environment, which is fundamental for its strong influence on cellular functions, such as en-
zymatic reactions and self-assembly of cellular structures123,124. As we have seen, in the past
years many steps have been taken towards a comprehensive understanding of this problem.
Computer simulations, in particular, have proven fundamental for the insight that they provi-
de in the microscopic structural and dynamical properties of polymer nanocomposites (PNC),
shedding light on the role played by properties which are difficult to control precisely in ex-
periments, such as the interaction between the nanoparticles and the polymeric matrix. Most
of these simulation studies, however, focused on PNCs containing free linear chains, whereas
much less attention has been given to systems of chemically or physically crosslinked poly-
mers, despite the ubiquity of polymeric networks and gels in synthetic and biological systems.
Examples of biological systems include the actin and chromatin networks in cells266–268, the
bacterial matrix in biofilms269, the extracellular matrix in living tissues270, whereas hydrogels
are of prime importance when considering technological applications271–275.

The main issue when simulating the diffusion of probe particles in a polymer network is
to determine which kind of structure to adopt for the network. In some of the earliest studies,
the network was simply modeled as an array of fixed obstacles276, which is clearly very far
from a physically realistic description. Other authors attempted to incorporate connectivity
and flexibility in the network model, but most of them resorted to regular structures, in which
the crosslinks are placed on the vertices of a regular lattice and connected either by chain seg-
ments277,278 or directly by springs279–281. In the latter case, the resulting system can be hardly
called a “polymer network”, since there is no actual strand connecting the crosslinks, and the-
refore strand dynamics and entanglement effects are not accounted for. Moreover, real-life
networks are usually disordered and polydisperse, with a continuous (in the thermodynamic
limit) distribution of strand lengths. A notable exception is provided by Ref. 282, where
the motion of a single particle in a disordered, polydisperse tetravalent network283 has been
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studied via Brownian dynamics simulations of a system with spherical boundary conditions
(SBC)284. It would be desirable, however, to have a model which does not rely on SBC, since
periodic boundary conditions are the de facto standard for simulations of polymer systems,
as confirmed also by the fact that the more widely used molecular dynamics packages, as
LAMMPS241 and ESPResSo285, currently do not support SBC. Models of polymer networks
which overcome all or some of the above mentioned shortcomings (monodispersity, ordered
structure, absence of chain dynamics, absence of entanglement effects) have been proposed
over the years76,286–295: However, to the best of our knowledge, none of these models have
been used to study the problem of nanoparticle diffusion.

In the present Chapter we will introduce a novel model of disordered, polydisperse and
defect-free network of bead-spring chains, which has originally been developed for the study
of microgels296–301, and use molecular dynamics simulations to study its static, dynamic and
elastic properties for different system parameters. In Chapter 7, we will show how the same
model can be used effectively to study the problem of nanoparticle diffusion in disordered
polymeric networks.

6.1 model and methods

There are several possible methods to generate a model polymer network. One possibility is
starting with a system of (mono- or polydisperse) precursor chains and then crosslink them th-
rough some procedure. The crosslinking can be allowed only between chain ends76,288,292–295

(end-linking) or between any pair of monomers286,287 (random crosslinking). However, these
methods suffer from kinetic limitations, in that it can be quite difficult to reach a perfect (fully-
bonded) configuration because of the slow dynamics of the chains76,288,294. Ad hoc methods
can be used to increase the number of bonded sites76,294. Using these methods is however not
completely satisfactory, since the final structure will in principle depend on the exact method
that was used to force the formation of more bonds. Another option is to impose some lattice
connectivity, like the diamond lattice277,289–291,302,303. Several of these “lattice networks" can
then be randomly superimposed in order to obtain a disordered structure289–291. Even in this
case, however, these systems present an underlying ordered connectivity and monodisperse
strand length, contrary to most experimental systems.

In order to overcome the shortcomings of these methods, we generate a polydisperse
network via the method described in Ref. 296. This method was originally developed for MD
simulations of microgels296,299, but can be trivially generalized to the case of a bulk network.
The starting point is a mixture of two different species of patchy particles, i.e., spheres of
identical size and mass decorated by a certain number of interaction sites (the “patches")
arranged in regular configurations. The number of patches a particle possesses is called the
valence. We consider systems of M2 bivalent particles and M f f -valent particles, with f = 3, 4:
Bonding is only allowed between pairs of bivalent particles and between bivalent particles
and f -valent particles. The f -valent particles act therefore as crosslinkers, bonding to the
bivalent particles to form branched structures.

The interaction potential between a pair of particles is

U (ri, rj, {pi}, {pj}) = UWCA(rij) + ∑
µ∈{pi}

∑
ν∈{pj}

Upatch(rµν), (180)
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where ri, rj are the position vectors of the two particles, rij ≡ |ri − rj| and {pi}, {pj} are the
sets of unit vectors identifying respectively the patches of particle i and those of particle j,
with rµν the distance between patch µ on particle i and patch ν on particle j. The potential
UWCA is the usual purely repulsive WCA potentiala (Sec. 3.6.3), while the patch potential has
the following form:

Upatch(rµν) =





2εµν

(
σ4

p

2r4
µν
− 1
)

exp
(

σp
rµν−rc

+ 2
)

r < rc

0 otherwise,
(181)

where σp sets the position of the attractive well (of depth εµν) and rc is chosen by imposing
Upatch(rc) = 0. Here, σp = 0.4, rc = 1.5σp = 0.6; with this choice of values, the minimum of
the potential is at rmin = σp, as shown in Fig. 54. The interaction energy εµν is εµν = 1 for all
pairs of patches, with the exception of pairs of patches belonging to a pair of f -valent particles,
for which εµν = 0, so that the bonding of two f -valent particles (crosslinkers) is forbidden.
The patches are arranged on the poles, equidistant on the equator and on a tetrahedron for
bi-, tri- and tetrafunctional particles, respectively. In all cases, the distance between the patch
and the center of the particle is 1/2. The pair potential given in Eq. (181) is complemented
by a three-body potential Utriplet acting on triplets of close patches304:

Utriplet = w εµν ∑
λ,µ,ν
U3(rλ,µ)U3(rλ,ν), (182)

where

U3(r) =





1 r < σp

−Upatch(r)/εµν rmin < r < rc
(183)

The term (182) has a twofold effect: On one hand it enforces the single-bond-per-patch con-
dition: a given patch cannot be involved in more than one bond at a time. On the other
hand, the three-body term also provides an efficient bond-swapping mechanism that makes
it possible to easily equilibrate the system at extremely low temperatures. The parameter w
appearing in Eq. (182) can be used to tune the amplitude of Utriplet, in order to favor (w ' 1)
or hamper (w� 1) bond swapping304.

Starting from a cubic box with periodic boundary conditions containing M2 bivalent par-
ticles and M f crosslinkers, a molecular dynamics simulation is run at constant volume and
temperature Tassembly = 0.05 (NVT ensemble). For these simulations, we use a GPU imple-
mentation of the oxDNA software305,306. At this very low temperature, the system approa-
ches the ground state, where all the bonds are satisfied (fully-bonded state). Since the bonds
can break and reform with an efficiency that is greatly improved by the above mentioned
bond-swapping potential, the system can quickly reach equilibrium. Once the majority of the
bonds (> 99.8%) are formed, the simulation is stopped and the particles which do not belong
to the percolating cluster (at most 4% of the total in all the simulated systems) are removed.
We note that, although we chose for practical reasons to stop the reaction before reaching

a The parameters σ and ε of the WCA potential fix, as usual, the length and energy scales.
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the fully-bonded ground state of the system, reaching this state is in principle possible by
making a greater computational effort.
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Figura 54 – Patch potential
(Eq. (181)) and U3 potential
(Eq. (183)).

The system obtained from this procedure contains only a
small number of dangling ends, i.e., it is an almost-perfect
network. However, since it is known that a dangling end
of length N has a relaxation time of order eN 89, and since
we observe slow relaxation processes in the system in the
presence of dangling ends (see below), we decide to remove
all the (simple and branched) dangling ends in the system,
so that a perfect, fully-bonded network is obtained.

Once the dangling ends are removed, the interaction po-
tential is changed from Eq. (180) to the Kremer-Grest poten-
tial (Sec. 3.6.3), with parameters k = 30 and r0 = 1.5. The
reversible bonds of the patchy system are therefore replaced
by permanent FENE bondsb, so that the initial topology is
fixed (i.e., the system is a chemical gel). MD simulations are
then run using the LAMMPS package241,242. The system is
initially allowed to relax to pressure P = 0 at constant tem-
perature T = 1.0; then, NPT simulations are run at these
T, P values. Temperature and pressure are kept constant by
Nosé-Hoover chains of three thermostats and three barostats81, and the three dimensions of
the box, Lx, Ly and Lz, are allowed to fluctuate independently. The equations of motion are
those of Shinoda et al.307, which combine the hydrostatic equations proposed by Martyna et
al308 with the strain energy proposed by Parrinello and Rahman in Ref. 309. The integration
time step is δt = 0.003 for all the simulations. Additional information can be found in the
LAMMPS manual page243. The Nosé-Hoover chain method insures a correct sampling of the
NPT ensemble310.

The method described above allows to generate a network which is naturally disordered
and almost perfect (fully-bonded). Moreover, since bond-swapping is allowed, the system
can quickly reach equilibrium: therefore, for a given Tassembly, the properties of the final state
are uniquely determined by only three parameters (as it will be shown below): the fraction
of crosslinks, the initial density and the crosslink valence.

We considered systems containing an initial number of particles (before the assembly
of the network) Mtot ≡ ∑α Mα = M2 + M f = 5 · 104, with initial crosslinker fractions
c = M f /(M f + M2) = 0.01, 0.05, 0.1 and crosslinker functionalities (valences) f = 3, 4.
For c = 0.05 and 0.1, we built the network starting from initial number densities ρinit =

0.05, 0.1, 0.2, 0.3, 0.4, 0.5, whereas for c = 0.01 we only considered ρinit = 0.05, 0.1 and 0.2.
For each system, we have considered two independent realizations in order to improve the
statistics. Moreover, for c = 0.05, 0.1 and ρinit = 0.1, 0.2 we have also considered systems of
4 · 105 particles in order to check for the presence of finite size effects. For the structural and
dynamic quantities considered in this work, no significant finite size effects were found. In
Fig. 55 we show snapshots of some of the simulated systems taken after equilibration.

In Tab. 2, we report the details of the systems of 5 · 104 particles, containing respectively
trivalent ( f = 3) and tetravalent ( f = 4) crosslinks. We have introduced here the mean
functionality F,

b We note that when the patchy bonds are replaced by FENE bonds, the bond directionality is lost.
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f = 3 c = 5% ⇢ = 0.15
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1a 2a

1b 2b

Figura 55 – Snapshots of two of the simulated systems. 1a-b: f = 3, c = 5%, ρ = 0.15. 2a-
b: f = 3, c = 1%, ρ = 0.04. Bifunctional particles are shown in blue, while crosslinks are
shown in red. In the 1b and 2b, only the crosslinks are shown. In 2a-b and 1a, the crosslinks
are shown as having double the size of the bifunctional particles in order to improve the
visualization.
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Tabella 2 – Properties of the trivalent (a) and tetravalent (b) networks after the removal of the
dangling ends. Mtot: total n. of particles. M4: n. of tetravalent particles. M3: n. of trivalent
particles. M2: n. of bivalent particles. c ≡ (M4 + M3)/Mtot: crosslinker concentration. F:
mean valence, Eq. (184). ρ ≡ Mtot/〈V〉: average density. All the values are averaged over two
independent realizations of the system.

Mtot M3 M2 c F ρ

48773.0 4845.0 43928.0 0.0993 2.099 0.1270
49388.5 4907.0 44481.5 0.0994 2.099 0.1929
49636.0 4940.0 44696.0 0.0995 2.100 0.2908
49731.5 4953.5 44778.0 0.0996 2.100 0.3758
49803.0 4966.0 44837.0 0.0997 2.100 0.4630
49797.5 4968.5 44829.0 0.0998 2.100 0.5398

47023.0 2346.0 44677.0 0.0499 2.050 0.0936
48508.0 2394.0 46114.0 0.0494 2.049 0.1498
48976.0 2434.0 46542.0 0.0497 2.050 0.2469
49243.5 2454.0 46789.5 0.0498 2.050 0.3327
49439.0 2465.0 46974.0 0.0499 2.050 0.4141
49469.0 2465.0 47004.0 0.0498 2.050 0.4812

36368.5 352.0 36016.5 0.0097 2.010 0.0425
41791.0 405.0 41386.0 0.0097 2.010 0.0872
46047.5 441.0 45606.5 0.0096 2.010 0.1789

(a) Properties of the systems with trivalent ( f = 3) crosslinks.

Mtot M4 M3 M2 c F ρ

48952.0 4821.5 176.0 43954.5 0.1021 2.201 0.1593
49568.5 4901.5 98.5 44569.0 0.1009 2.200 0.2487
49748.0 4924.5 75.0 44748.5 0.1005 2.199 0.3563
49792.5 4948.0 52.0 44792.5 0.1004 2.200 0.4472
49804.5 4958.0 42.0 44804.5 0.1004 2.200 0.5255
49888.0 4970.0 29.0 44889.0 0.1002 2.200 0.6123

47464.5 2319.5 163.0 44982.0 0.0523 2.101 0.1258
48946.5 2408.5 91.0 46447.0 0.0511 2.100 0.1924
49469.0 2441 58.5 46969.5 0.0505 2.100 0.2908
49439.0 2450.5 49.0 46939.5 0.0506 2.100 0.3750
49620.0 2462.0 37.5 47120.0 0.0504 2.100 0.4617
49700.5 2466.0 34.0 47200.5 0.0503 2.100 0.5399

39123.5 373.5 105.0 38645.0 0.0122 2.022 0.0597
44301.5 419.0 72.0 43810.5 0.0111 2.021 0.1137
46274.5 438.0 58.0 45778.5 0.0107 2.020 0.1977

(b) Properties of the systems with tetravalent ( f = 4) crosslinks.
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Figura 56 – (a) Qualitative phase diagram of mixtures of limited valence particles with dif-
ferent mean valence F (numbers). The different colors denote the coexistence regions for
systems with different values of F. We note that the coexistence region disappears in the
limit F → 2. Adapted with permission from Ref. 64. Original image courtesy of F. Sciortino.
(b) Phase diagram of a system of trivalent ( f = 3) particles. Here φ is the volume fraction.
We note that the coexistence region lies inside the percolation region. From Ref. 64

F ≡ ∑α αMα

∑α Mα
=

∑α αMα

Mtot
, (184)

where Mα is the number of particles with valence α.
The density ρ is defined as ρ ≡ Mtot/〈V〉, where V = LxLyLz is the volume of the box,

which depends on time since the simulations are performed in the NPT ensemble. For each
value of the system’s parameters, the properties reported in Tabs. 2a and 2b are averaged
over the two realizations of the system. Here Mtot refers to the number of particles after all
the dangling ends have been removed (all the systems are in the fully-bonded state, with no
dangling ends). We note that for the systems with the tetravalent crosslinkers (Tab. 2b), the
removal of the dangling ends has the side effect of introducing a certain number of trivalent
crosslinks in the system, since when a dangling end is cut a crosslinker loses a bond. In this
case, the crosslink fraction must be calculated as c = (M3 + M4)/(M2 + M3 + M4). However,
we note that for all the systems considered with the exception of the system with c ' 0.01, we
have M3 � M4 and therefore the presence of the trivalent crosslinks can be neglected. When
only one kind of crosslinker is present, we obtain a simple relation between c and the mean
functionality:

F =
f M f + 2M2

M f + M2
= 2 + ( f − 2)c. (185)

The quantities c, F and ρ reported in Tab. 2b, however, have been calculated taking into
account the presence of the trivalent particles.

Before concluding this section, we should remark that a homogeneous percolating net-
work is not going to form for arbitrary values of f , c and of the initial monomer density ρinit

c.
This is due to the fact that when the mean functionality F is larger than 2, systems of limited

c We note that ρinit refers to the value after the removal of the dangling ends.
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Figura 57 – Average density, ρ ≡ Mtot/〈V〉, as a function of the initial density of the system,
for different values of the crosslinker valence f and of the crosslinker concentration c. F =
2 + ( f − 2)c is the mean valence.

valence particles like the one used to generate the network present a gas-liquid coexistence
region60,64,311,312, as predicted by Wertheim’s theory for fluid with directional attractive inte-
ractions313–316. This is shown qualitatively in Fig. 56. If ρinit is chosen such that the state point
(ρinit, Tassembly) lies in the coexistence region, the system will undergo phase separation. The
area of the coexistence region in the T, ρ plane is an increasing function of the mean valence
F 64 (Fig. 56a); therefore, the higher the values of f and c, the higher the density at which the
system will undergo phase separation. Since the coexistence region lies inside the percolation
region (Fig. 56b), a percolating network might still form, but it would lack homogeneity.

6.2 static properties

As discussed in Sec. 6.1, the network is initially built at constant N, V and T. Then, after
the dangling ends have been removed and the interaction potential has been changed from
patchy to Kremer-Grest, the system is allowed to relax to P = 0. The final mean density of
the system, ρ ≡ Mtot/〈V〉, will in general be different from the initial density ρinit.

In Fig. 57, we show ρ as a function of ρinit for different values of c and f . One can see that
for most of the systems ρ > ρinit (i.e., the network contracts), with only two of the systems
here consideredd having ρ < ρinit. This is due to the fact that the average distance between
two bonded patchy particles is ' 1.2 at T = 1.0 in the explored ρint range, whereas the
Kremer-Grest model has an equilibrium bond length ' 0.96. We also note that the curves
for f = 4, c = 5% and f = 3, c = 10% superimpose perfectly, implying that the parameter
controlling ρ is the mean valence F. Indeed, it can be verified that all these systems have
F ' 2.1 (see also Tabs. 2a and 2b).

6.2.1 Strand length distribution

One of the most relevant properties of the network is the strand length distribution, where a
strand is a segment of bifunctional particles between two crosslinks. Although, as discussed
in Sec. 6.1, some of the f = 4 systems actually contain a certain number of trivalent cros-

d f = 3, c = 5%, ρinit ' 0.5 and f = 3, c = 1%, ρinit ' 0.2
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Figura 58 – (a) Number of strands of length n, mn, normalized by the number of strands of
unitary length, m1. Points: simulation data for all the densities considered (see Tabs. 2a and
Tab. 2b). Lines: theoretical prediction (Eq. (187)). (b) Mean strand length Ns as a function
of monomer density ρ. Open symbols: data. Filled symbols: Eq. (191). Dotted lines (with
labels): Ns calculated from Eq. (190) assuming that c takes the exact values 1, 5 and 10% and
that F is given by Eq. (185).

slinkers, for the systems considered here this number can be neglected. Therefore, in the
following we will assume that the system contains only one type of crosslinker.

The number mn of network strands of length n can be estimated using the Flory-Stockmayer
(FS) result, Eq. (87). However, since bonding is not allowed between pairs of crosslinkers, mn

deviates from the FS theory. A more precise expression, which takes into account the fact
that the crosslinkers can only bind to bivalent particles, has been given by Rovigatti et al.297:

mn = M2

(
1− p2 pb

p2 pb

)2 (2p2 pb − 1
p2 pb

)n−1

= M2

(
1− p2 pb

p2 pb

)2
exp

[
(n− 1) ln

(
2p2 pb − 1

p2 pb

)] (186)

In Eq. (186) the fraction of bonding sites belonging to α-valent particles, is pα = αMα/( f M f +

2M2), with α = 2, f , and the bond probability pb = Nb/Nmax
b , where Nb is the number of

bonds and Nmax
b = ( f M f + 2M2)/2 is the maximum number of bonds (all these quantities

are the same as those defined in Sec. 3.5.1).

Taking the limit pb → 1 (which is justified by the fact that the network is almost fully
bonded) in Eq. (186), we obtain

mn = M2

( f M f

2M2

)2

exp
[
(n− 1) ln

(
1−

f M f

2M2

)]

= m1 exp
{
(n− 1) ln

[
1− f

2

(
c

1− c

)]}
.

(187)

Therefore, in the fully-bonded limit the slope of the exponential only depends on f and on c.
This is shown in Fig. 58a, where we show mn/m1 for systems with different f , c and density
ρ = (M f + M2)/V: As we can see, data for different ρ collapse on the same master curves
controlled by f and c.
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From Eq. (186) we can also calculate the average strand length Ns, defined as 〈n〉n, where
〈·〉n denotes the weighted average over the strand lengths:

Ns ≡ 〈n〉n =
1

Ms

∞

∑
n=1

mnn (188)

where Ms ≡ ∑∞
n=1 mn is the total number of strandse . The result is

Ns =
p2 pb

1− p2 pb
. (189)

In the limit pb → 1, we have

Ns =
p2

1− p2
=

p2

p f
=

2M2

f M f
=

2
f

(
1− c

c

)
=

F
f c
− 1. (190)

We note that using the FS expression we would get Ns = F/ f c: the difference between the
two expressions is therefore more relevant when the value of 〈mn〉 is small, as expected.

In Fig. 58b we compare the data for Ns with the theoretical prediction of Eq. (190). Since
all the systems are in the fully-bonded state, we have pb = 1. As discussed in 6.1, the removal
of the dangling ends has the effect of converting a small number of tetravalent crosslinkers
into trivalent ones. This must be taken into account when calculating Ns from Eq. (190):

Ns =
p2

1− p2
=

p2

p3 + p4
=

2M2

3M3 + 4M4
. (191)

As one can see, the agreement between Eq. (191) and the data is basically perfect: In all the
systems considered, the relative error made when using Eq. (191) is smaller than 10−4.

6.2.2 Strand conformation

In order to study the conformation of the strands, we study the radius of gyration of the
strand segments Rg(n), where n is is the chemical length of a strand segment. We note that
Rg(1) = 0 and Rg(2) = lb/2, where lb ' 0.97 is the RMS bond length, lb =

√
〈(ri+1 − ri)2〉,

with i, i + 1 denoting consecutive monomers belonging to the same chainf. For large values
of n, we expect Rg(n) ∝ (n− 1)ν, with ν ' 0.588, since our model corresponds to chains in
an athermal solvent. In Fig. 59a we show Rg(n) for the systems with f = 3 and those with
f = 4. One can see that for large values of n, we indeed observe Rg(n) ∝ (n− 1)ν. We also
note that at fixed n, Rg(n) is with very good approximation independent of the crosslinker
concentration c and of the crosslinker valence f , and only depends on the density of the
system. For small values of n, Rg(n) increases with increasing ρ, as one can see from Fig. 59b,
where we represent the mean squared radius of gyration R2

g ≡ 〈R2
g(n)〉n, normalized by

e For a fully-bonded network (pb = 1), Ms =
1
2 ∑ f>2 M f f = Mtot〈 f 〉/2, where 〈 f 〉 ≡ ∑ f>2 f M f is the mean crosslink

functionality. This is because to every f -valent crosslinks are connected f /2 strands.
f The parameter lb actually depends on ρ, f and c; however, these dependences are very weak and therefore lb can be

considered as constant.



6.2 static properties 105

10
0

10
1

10
2

n-1

10
0

10
1

10
2

2
R

g
(n

) 
/ 

l b

f=3 c=1%
f=3 c=5%
f=3 c=10%
f=4 c=1%
f=4 c=5%
f=4 c=10%

ρ

a

0.0 0.1 0.2 0.3 0.4 0.5 0.6
ρ

0.25

0.30

0.35

0.40

0.45

R
g

2
/ 

〈(
n

-1
)2

ν
〉 n

f=3 c=1%
f=3 c=5%
f=3 c=10%
f=4 c=1%
f=4 c=5%
f=4 c=10%

b

Figura 59 – (a) Mean radius of gyration of the strands of length n, Rg(n), normalized by
Rg(2) = lb/2, as a function of n − 1. Continuous lines are power laws Rg(n) ∝ (n − 1)ν,
with ν = 0.588. The data for f = 4 have been shifted up by a factor 3 in order to improve
visualization. Note that for each pair of f , c values, all the densities considered are included
in the plot. (b) Mean strand radius of gyration R2
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as a function of density, for different values of f and c.
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Figura 60 – Bond angle distribution P(θ) for f = 3, c = 5% (a) and f = 4, c = 5% (b). Thin
lines: bond angle distribution before the system is allowed to relax to zero pressure.

〈(n− 1)2ν〉n, as a function of ρ. From Fig. 59b, we can also see that in the systems f = 4, c =

5% and f = 3, c = 10%, which have the same mean functionality F, the strands have basically
the same conformation. The same qualitative behavior is observed when considering the
end-to-end distance Re (not shown).

The fact that Rg increases with increasing density may appear paradoxical, since in po-
lymeric systems with free chains Rg usually decreases with increasing ρ (cf. Eq. (24)). This
behavior, however, can be understood qualitatively by analyzing the bond angle distribution
of the strands, P(θ) (see Sec. 8.2.3). In Fig. 60 we report P(θ) for f = 3, 4 and c = 5% (the
other systems show the same qualitative behavior), compared with the same quantity calcula-
ted before changing the interaction potential from patchy to Kremer-Grest and allowing the
system to relax to P = 0 (thin lines). Before the system is brought to P = 0, P(θ) displays a
peak at θ ' 142◦, which comes from the form of the patchy potential. We note that at this
stage, P(θ) only depends on f and c and not on ρinit. When the system relaxes to P = 0,
the chains are allowed to relax: As a result, the curve assumes a more gentle profile, and
the peak shifts to lower values of θ. For high ρ, P(θ) retains a shape which is quite similar
to the shape it had before relaxation, signaling the presence of strong topological constraints



106 structure , dynamics and elasticity of polydisperse disordered networks

10
-1

10
0

10
1

q

10
0

10
1

S
(q

)
ρ=0.09

ρ=0.15

ρ=0.25

ρ=0.33

ρ=0.41

ρ=0.48

a

f=3  c=5%

10
-1

10
0

10
1

q

10
0

S
f(q

)

ρ=0.09

ρ=0.15

ρ=0.25

ρ=0.33

ρ=0.41

ρ=0.48

2 4 6 8 10 12 14 16
q

0.96

0.98

1.00

1.02

1.04

f=3  c=5%

b

10
-1

10
0

10
1

q

10
0

10
1

S
(q

)

ρ=0.16

ρ=0.25

ρ=0.36

ρ=0.45

ρ=0.53

ρ=0.61

c

f=4  c=10%

10
-1

10
0

10
1

q

10
0

S
f(q

)

ρ=0.16

ρ=0.25

ρ=0.36

ρ=0.45

ρ=0.53

ρ=0.61

2 4 6 8 10 12 14 16
q

0.8

0.9

1.0

1.1 d

f=4  c=10%

Figura 61 – Total structure factor S(q) (a,c) and structure factor of the crosslinks S f (q) (b,d)
for the systems f = 3, c = 5% and f = 4, c = 10%. Insets of Figs. b and d: S f (q) in linear scale.

(entanglement), which were formed during the building of the network and are a result of
the non-crossability of the strands. For low ρ, the network can completely relax and P(θ)
assumes a form identical to that of chains in a dilute solution (cf. Fig. 98). We note that P(θ)
drops to zero for θ . 60◦ because of the excluded volume interaction. We can see that for
both systems, the average bond angle 〈θ〉 increases with increasing density: This results in
an increase of the persistence length of the strands, and therefore an increase of Rg(n)g.

6.2.3 Structure factor

To gain insight into the global structure of the network, it is useful to study the structure
factor S(q). In Fig. 61, we report the total structure factor S(q) (61a-c) and the structure factor
of the crosslinks S f (q) (61b-d) for f = 3, c = 5%, f = 4, c = 10% and different values of the
monomer density ρ. The structure factors of the other systems display the same qualitative
features. All the systems display a rather large isothermal compressibility κT = S(0)/ρkBT,
which increases with decreasing density. For small values of q, S(q) decreases approximately
as a power law, S(q) ∝ q−αh. The value of α decreases with increasing monomer densities;
for the systems studied here, it was found that 0.5 . α . 1.3. This behavior results from
the existence of holes on all length scales, i.e., from a fractal void space76,317. For larger q,
S(q) behaves very similarly to the structure factor of a polymer solution (cf. Fig. 99), with a

g Although it is possible to conceive cases for which an increase in 〈θ〉 causes a decrease of the persistence length (e.g.,
a rigid “accordion-like" chain), nothing seems to suggest that this is the case here.

h The same behavior was observed by Russo and Sciortino in a trivalent patchy-particle network 61.
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Figura 62 – (a) Comparison between the structure factor S(q) of the f = 3, c = 10% system
and that of the f = 4, c = 5% system for different densities. We note that these systems
have the same mean valence F and the same density ρ (see also Fig. 57). (b) Comparison
between the structure factor of two selected systems which have the same density ρ = 0.25,
but different F (continuous lines). We also show for reference S(q) for a polymer solution of
chains of length N = 1000 for ρ = 0.20 and 0.26.

contact peaki at q ' 8 ' 2π/σ followed by periodical oscillations.

In Figs. 61b-d, we show the structure factor of the crosslinks, S f (q), for the same systems.
The qualitative behavior of S f (q) is very similar to that of S(q), with a peak at small q which
decays similarly to a power law, followed at larger q by a liquid-like oscillatory behavior. The
height of the small-q peak is however much lower than that of S(q), and also the oscillations
have much smaller amplitude, signaling that the spatial distribution of the crosslinks is signi-
ficantly more homogeneous than that of all the monomers. We also note that the contact peak
of S f (q) is found at q ' 4, which is approximately half the value at which the contact peak of
S(q) is found, as it is clearly shown in the insets of Figs. 61b-d. The reason for this behavior is
that two f -valent particles cannot bind, so that there is always at least a bifunctional particle
between two crosslinks. The distance of closest approach between two crosslinks is therefore
rc ' 2σ, and therefore the contact peak of S f (q) is found at q ' 2π/rc ' π/σ instead of
q ' 2π/σ.

In Fig. 62a we compare the total structure factors S(q) of the systems f = 4, c = 5%
and f = 3, c = 10% for different values of the total density ρ. As noted at the beginning
of this Chapter, the systems f = 4, c = 5% and f = 3, c = 10% have approximately the
same mean valence F and therefore they also have the same ratio ρ/ρinit. One can see that
curves corresponding to similar densities superimpose almost perfectly, suggesting that S(q)
is controlled either by ρ alone or by ρ and F. In Fig. 62b we compare S(q) for two systems with
very similar density but different F: The two curves are quite different, suggesting that the
behavior of S(q) is determined by both F and ρ. These two structure factors are also compared
with the S(q) of a solution of chains of length N = 1000 at similar densities. One can see
that, due to the presence of the crosslinks, the network has a much higher compressibility.
Moreover, the power-law behavior of the network’s S(q) at small q suggests that the structure
of the network is significantly more heterogeneous than that of the solution.

i We use here the same terminology that was introduced in Sec. 5.2.1.
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Figura 63 – Gubbins’s pore size distribution (PSD) as a function of the rescaled variable r/ξ
(lines), with ξ ≡ 〈r〉G, for f = 3, c = 10% (a) and f = 4, c = 10% (b). Symbols denote the PSD
for a solution of linear chains of length N = 50 in the density range 0.11 ≤ ρ ≤ 0.64. Insets:
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6.2.4 Pore size distribution

To probe the properties of the void space in the system, we calculated Gubbins’s pore size
distribution (PSD) PG(r) (see Ch. 8 for the details on how this quantity is calculated). In
Fig. 63, we report the rescaled PSD for f = 3, c = 10% and f = 4, c = 10%. Here ξ ≡ 〈r〉G;
as discussed in Ch. 8, this quantity can be identified with the geometrical mesh size of the
network. The data are compared with the rescaled PSD for a solution of 200 polymer chains
of length N = 50 in the density range 0.11 ≤ ρ ≤ 0.64 (symbols). For N = 50, the overlap
density is ρ∗ ' 0.11 (Tab. 5); Therefore, all these data points are for systems in the semidilute
or concentrated (ρ > ρ∗∗ = 0.3) regime.

We observe that the rescaled PSD of the network is significantly broader than the one
of the solution, indicating that the network is more heterogeneous. For f = 3, c = 10%
(Fig. 63a), all the curves fall basically on the same master curve. The structure of the pore
space depends therefore only very weakly on ρ, as for a semidilute/concentrated solution.
Also for f = 4, c = 10% (Fig. 63b) the curves collapse on a master curve, with the exception
of the one for the lowest density, ρ = 0.16, which is significantly broader. As it will be
discussed below, this might indicate that we are approaching a phase separation (cf. also
with the corresponding data point in Figs. 64a-b).

In order to better visualize the tails of the PSD, we report in the insets of Fig. 63a-b the PSD
as a function of sgn(r̃) · r̃2, where r̃ ≡ r/ξ − 1, in semi-logarithmic scale. One sees from these
plots that the decay of PG(r) is approximately Gaussian –a straight line in semi-logarithmic
scale– both for the solution and for the network (cf. also with Sec. 8.4.3), although the PSD of
the network has a much broader tail.

In Fig. 64a, we report ξ as a function of the monomer density ρ for the simulated networks
and for the solutions of linear chains studied in Ch. 8 (chain lengths N = 1000, 200 and 50), in
the density range 0.04 < ρ < 0.64. We recall that the expected scaling behavior for ξ is given
by Eq. (30)j. We observe that ξ behaves very similarly in the solution and in the network,
with the network value being slightly (' 7%) larger than the value in solution. This is likely

j The overlap densities and radii of gyration at infinite dilution are given in Tab. 5
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Figura 64 – (a): Mesh size ξ ≡ 〈r〉 as a function of monomer density ρ for the simulated
networks and for solution of linear chains of length N = 1000, 200 and 50. ρ∗∗ = 0.3 is the
overlap density for a system of linear chains. (b): Same as (a), but for the rescaled mesh
size ρν/(3ν−1)ξ. The dash-dotted line is a linear fit: 0.480− 0.234ρ. The continuous, dash-
dotted and dotted vertical lines represent estimates of the overlap densities ρ∗ respectively
for N = 50 (ρ∗ ' 0.11), N = 200 (ρ∗ ' 0.032) and N = 1000 (ρ∗ ' 0.0089).

due to the action of the crosslinks, which cause a local increases in the density field and
consequently are responsible for the presence of slightly larger holes.

In Fig. 64b, we report ρν/(3ν−1)ξ as a function of ρ: For a polymer solution in the semidilute
regime, this quantity is expected to be a constantk (Eq. (30)). One can clearly see that most
data points for the network mesh size fall on a master curve, which is well approximated
by a linear function (dash-dotted line). When ρ is decreased, however, some points leave the
master curve and display significantly higher values. We observe that the density at which
the data leave the master curve decreases with decreasing mean valence F, as it’s clear from
the fact that the data sets for f = 3, c = 10% and f = 4, c = 5%, which have the same F,
superimpose perfectly. We interpret this phenomenon as a result of the system approaching
a gas-liquid phase separation. As discussed in Sec. 6.1, the system of patchy particles used
to assemble the network has, for F > 2, a gas-liquid coexistence region whose area in the T, ρ

plane increases with increasing F (Fig. 56a). Systems with larger F will therefore undergo
phase separation at higher ρ for fixed T. We interpret therefore the increase in ξ observed
upon lowering of ρ as a signal of the fact that we are entering the coexistence region. We
observe that the qualitative change of the PSD when entering the coexistence region is much
more apparent that the change in the structure factor (cf. Figs. 61 and 62).

6.3 dynamics and elastic properties

6.3.1 Mean-squared displacement and localization length

In order to probe the dynamics of the systems, we will consider the mean-squared displace-
ment (MSD) of: (1) all the particles in the system (2) the crosslinks (3) the central monomers
of the strands. Since the simulations are carried out in the NPT ensemble, one has to choose

k This behavior can be observed in the semidilute regime, i.e., for density ρ∗(N) < ρ < ρ∗∗, where ρ∗ is the overlap
density. However, the transitions from dilute (ρ < ρ∗) to semidilute and that from semidilute to concentrated
(ρ > ρ∗∗) are both quite broad. Moreover, ξ ∝ ρ−ν/(3ν−1) can only be properly observed for large values of N. For
these reasons, only for N = 1000 and ρ . 0.1 we can actually observe a region in which ρν/(3ν−1)ξ is with good
approximation constant in Fig. 64b. More details will be given in Chapter 8.
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whether to include the affine “breathing” motion of the simulation box when computing the
MSD. We decide to remove this affine motion, i.e., the x coordinate is rescaled as follows:
x̃(t) = [x(t)/Lx(t)] · 〈Lx〉, where Lx is the box length in the x direction (the y and z coordina-
tes are rescaled analogously). In addition to the rescaling, we also remove the center of mass
motion. We note, however, that because of the large system size the breathing motion of the
box has such a small amplitude that there is almost no difference if the coordinates are not
rescaled.

In Fig. 65 we show the MSD of all the particles for some selected systems. The MSD of
the other systems displays the same qualitative behavior. After the initial ballistic regime,
〈r2(t)〉 ∝ t2, the MSD shows a crossover towards a plateau, a behavior which is typical of
networks60,61,318. The square root of the MSD in the plateau region, λ indicates the locali-
zation length, i.e., the typical length scale of the motion the particles perform around their
equilibrium positions. For the simulated systems, we can define λ as

λ2 ≡ lim
t→∞
〈r2(t)〉. (192)

One sees that λ increases with decreasing ρ, going from λ ' 1 for ρ = 0.29 to λ ' 20
(λ2 ' 400) for ρ = 0.04. These values should be compared with those typical of glass forming
liquids, where λ ' 0.1 due to the fact that localization is mainly determined by local packing
constraints244,253. The considerable difference in value observed here is due to the fact that
in the studied systems localization is determined by the connectivity of the network and the
non-crossability of the chains rather than by packing constraints. The global topology of
the system is fixed, but the particles can still participate in large amplitude breathing modes
involving large sections of the network60,61,318. We note that the approach to the plateau
happens on very long time scales, especially at low density. Even for the denser systems,
a closer inspection reveals that in most of the cases the MSD is not really flat, but rather
it increases logarithmically. An example of such behavior is shown in the inset of Fig. 65.
We conclude therefore that even in the absence of dangling ends these networks can have
extremely long relaxation times, most likely due to the fact that the longest strands can take
a very long time to explore the whole configuration space.

Despite this very slow relaxation process, it is possible to estimate λ with good accuracy
for all the studied systems. We note that λ can be expressed as

λ2 =
M f λ2

f + M2λ2
2

M f + M2
= cλ2

f + (1− c)λ2
2 (193)

where λ f and λ2 are the localization lengths of the crosslinks and of the bifunctional particles,
respectively. Therefore, it is useful to consider separately λ2 and λ f . We note however that
since c is relatively small in our systems, λ ' λ2.

In Fig. 66a we show λ2 as a function of the monomer density ρ. We observe that for
c = 5% and 10%, λ2 decreases approximately as ρ−1 in the studied density range. We also
note that the curves for f = 4, c = 5% and f = 3, c = 10%, which have the same mean
valence F, superimpose almost perfectly. This demonstrates that the dynamics of the system
is controlled by the pair (F, ρ), as also the strand conformation (Fig. 59b) and the structure
(Fig. 62). If the chains could pass through each other, as in the phantom network model
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(Sec. 3.5.2), we would expect λ2
2 ≈ R2

e ≈ b2Ns
74,76, and therefore, since Ns is independent

of density (see Sec. 6.2.1), λ2 would not depend on ρl, in contrast with our results. This can
be understood by realizing that the excluded volume interaction prevents the chains from
interpenetrating: Therefore, the dynamics of the strands is more appropriately described by
the reptation model (Sec. 3.4.3), and strands of length n > Ne, with Ne the entanglement
length, are confined in a tube-like region76. For t→ ∞, the strand monomers fluctuate along
the primitive path (the axis of the tube), with a mean amplitude which depends on the mean
strand length Ns and on Ne. Since Ns is independent of ρ, we attribute the decrease of λ2

with increasing density to a decrease of the entanglement length.
In Fig. 66b we show the localization length λ f of the crosslinks as a function of density.

One sees that λ f behaves very similarly to λ2: Indeed, we will see below that we have
λ f ' 2λ2/ f . It was argued by Duering et al.76, following Vilgis and Boué319 that for a
network of identical strands of length Ns,

λ2
f '

(
1

2R2
g(Ne)

+
A
Ns

)−1

, (194)

where A is a constant and R2
g(Ne) ≈ b2Ne, where b is the effective bond length. For Ns � Ne,

Eq. (194) reduces to λ2
f ' 2R2

g(Ne) ≈ b2Ne ≈ d2
e , where de is the diameter of the entanglement

tube. The interpretation is that the crosslinks are only weakly pulled into the strands’ tubes,
and therefore oscillate around their equilibrium position with an average amplitude given by
the diameter of the entanglement tube. In our systems, Ns is fixed, but Ne, as observed above,
depends on density. Since λ f is approximately proportional to ρ−1, Eq. (194) would suggest
that in the studied density range Ne decreases approximately as ρ−2.

This result is in agreement with preliminary results from the primitive path analysis,
which are shown in Fig. 67. Using the primitive path analysis algorithm of Everaers et al.75,320,
we counted the number Me of entanglement points for some selected system with tetravalent
crosslinks. The procedure is as follows: (1) The crosslinks are fixed in space, then (2) the

l Although we won’t show it here, this is (almost) exactly what happens if we turn off all the excluded volume
interactions except for those between nearest neighbors.
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inter-chain excluded volume interactions are turned off, while the intra-chain interactions
are kept, and finally (3) the system is cooled to T = 075. Since inter-chain excluded volume
interactions are disabled, the chains are straightened; however, the intra-chain interaction still
prevents the chains from passing through each other, and thus the topology is conserved. The
network is thus reduced to a mesh of primitive paths. Me can then be calculated by counting
the number of kinks which are formed when two entangled chains are straightened (cartoon
in Fig. 67).

Since to every entanglement point are associated on average two entanglement strandsmn,
we have

Me '
Mtot

2Ne
(195)

Even though the analysis was carried out only for two systems for c = 5% and c = 10%, one
can see from Fig. 67 that the behavior of Me as a function of ρ is compatible with a power law
with exponent 2, which would be in agreement with Ne ∝ ρ−2. We also note that for c = 10%
the number M f of crosslinks is larger than Me in the whole density range considered. For
c = 5%, on the other hand, we have M f > Me at low density, but there is a crossover density
ρcross such that for ρ > ρcross we have Me > M f . For c = 1%, only density ρ = 0.20 was
considered, and it was found that the Me is significantly larger than M f . Knowing wether
the density of crosslink M f /V is larger than the density of entanglements Me/V is relevant
in many situations, and notably when considering the diffusion of nanoparticles in polymer
networks, as we discussed in Sec. 4.2.4. It is important to stress that in our systems an increase
in ρ is not equivalent to that which we would obtain by simply compressing the system (i.e.,
by collapsing the network). The reason is that our networks are generated at different densities,
and this influences the way the strands entangle.

In Fig. 68 we compare the MSD of the crosslinks, 〈r2
f (t)〉 f=3,4, with the MSD of the bifunc-

tional particles, 〈r2
2(t)〉, for the systems with c = 5% and c = 10%. We find that the ratio

〈r2
f (t)〉/〈r2

2(t)〉 is well approximated by the expression

〈r2
f (t)〉
〈r2

2(t)〉
=

2
f

. (196)

To show this, in Fig. 68 the MSD of the bifunctional particles is multiplied by a factor 2/ f .
One can see that Eq. (196) is satisfied to a very good approximation, with the agreement
being better for intermediate values of ρo.

To test the generality of Eq. (196), we also run some simulations of networks with penta-
valent ( f = 5) crosslinks. In Fig. 69a we compare the MSD of the crosslinks and that of the

mTwo strands can have more than one entanglement. In that case, there can be fewer than two entanglement strands
per entanglement point. When writing Eq. (195), we make the assumption that these configurations are rare.

n The corresponding relation for the number of crosslinks is M f = 2Mtot/(〈 f 〉Ns), since there are on average 〈 f 〉/2
strands per crosslinks.

o The same relation was found in simulations of trivalent ( f = 3) networks by Russo et al. 61. The authors, however,
claimed that the general form of this relation, derived from the phantom network model (PNM), is 〈r2

f (t)〉/〈r2
2(t)〉 =

6/ f 2. Unfortunately, although 6/ f 2 = 2/ f for f = 3, this relation is incorrect even in the framework of the PNM
(see Appendix B). Values approximately verifying Eq. (196) were also found in a simulation study by Kenkare et
al. 294.
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bifunctional particles for these systems. One can see that also in this case Eq. (196) gives with
very good approximation the correct relation between 〈r2

f (t)〉 and 〈r2
2(t)〉.

Eq. (196) can be understood by considering the MSD 〈r2
N 〉 of an harmonic oscillator atta-

ched to N identical springs with spring constant K: From the equipartition theorem263, we
obtain

〈r2
N 〉 =

3kBT
NK

(197)

By taking the ratio of Eq. (197) with N = f and N = 2, we immediately obtain Eq. (196). In
the limit t→ ∞, Eq. (196) becomes

lim
t→∞

〈r2
f (t)〉
〈r2

2(t)〉
=

λ2
f

λ2
2
=

2
f
−→ f

2

(
λ f

λ2

)2

= 1, (198)

where λ2 and λ f are the localization lengths respectively of the bifunctional particles and of
the crosslinks. In Fig. 69b we show f (λ f /λ2)

2/2 as a function of monomer density ρ. We
observe from this plot that the relation (196) works better for higher crosslink concentrations
c and for higher densities, whereas for low c, ρ theagreement between the formula and the
date gets significantly worse. In particular, we observe that for f = 3, 4, 5 and c = 10%,
f (λ f /λ2)

2/2 tends approximately to 0.95, whereas for c = 5% it tends to a somewhat smaller
value. For c = 1%, the available data do not allow to reach any conclusion regarding the
high-ρ behavior.

In order to compare the data with and analytical expression, we have also calculated
(λ f /λ2)

2 in the framework of the phantom network model (PNM – see Sec. 3.5.2). The result
is (see Appendix B)

f
2

(
λ f

λ2

)2

=
f
2

[
1 +

( f − 2)2

f − 1

(
Ns + 2

6(Ns + 1)

)]−1

(PNM). (199)

The values of f (λ f /λ2)
2/2 for f = 3 and f = 4 calculated from Eq. (199) are reported in

Fig. 69b. We see that in the limit ρ → 0, f (λ f /λ2)
2/2 tends with good approximation to the

PNM result. At present, it is not clear if the PNM result is really recovered in the limit ρ→ 0,
and if it is recovered, what is the exact cause. We have also performed simulations of “phan-
tom chains”, removing the excluded volume interactions except that for the bonded particlesp

(data not shown). These simulation revealed that even in these systems f (λ f /λ2)
2/2 displays

the same qualitative behavior observed in Fig. 69b for the systems with excluded volume, i.e.,
f (λ f /λ2)

2/2 ' 1 for large ρ and an approach towards the PNM result when ρ is decreased.
This suggests that the reason for the recovery of the PNM result at low ρ is not simply the fact
that the excluded volume interaction are less relevant at low density. Further investigations,
which will be carried out in future work, are needed in order to clarify this point.

In order to better understand the collective dynamics of the strands, we have studied the
MSD 〈r2

(n+1)/2(t)〉 of the central monomers of the strandsq. The results are shown in Fig. 70

for f = 3, c = 10%, ρ = 0.25 and f = 4, c = 10%, ρ = 0.36. In order to improve the statistics,

p These simulations are performed in the NVT ensemble, with V = 〈V〉, otherwise the system would collapse.
q For the central monomers to be well-defined, we only considered strands of uneven length.
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by the monomer density ρ, as a function of the strand length.

we show here the data for the systems of 4 · 105 particles instead of those of 5 · 104. We
observe that the localization length λ(n+1)/2 of the central monomers, which for n = 1 is
very similar to that of the crosslinks, increases monotonically with increasing strand length
n, reaching for large n values much higher than that of the mean localization length λ. As
previously discussed, the strands of length n > Ne are confined in a tube whose contour
length is LT ≈ d(n/Ne) ≈ bnN−1/2

e (see Sec. 3.4.3). At long times, the middle monomers
will fluctuate along the primitive path (the “axis" of the tube), and since the tube itself is a
random walk we will have76

λ(n+1)/2 ∝ L1/4
T ∝ n1/4 (n > Ne). (200)

This result is illustrated in Fig. 71, where we show ρλ(n+1)/2
r as a function of n for the systems

of 4 · 105 particles. One clearly sees that, whereas the small-n behavior of ρλ(n+1)/2 depends
on f s, the large-n behavior is basically independent of f and ρλ(n+1)/2 ∝ n1/4.

r The ρ prefactor is justified by the fact that λ is approximately proportional to ρ−1, see Sec. 6.3.1.
s The dependence on c is much weaker.
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6.3.2 Shear modulus

In order to characterize the elastic properties of the network, we study the shear modulus G
(Sec. 3.5.2) in the linear regime. To measure G, we use the method used in Ref. 300, which we
briefly describe in Appendix C. Even though in Ref. 300 this method was used to measure
the shear modulus of microgel particles, it can readily be applied to bulk systems such as
those studied here.

In Fig. 72, we show G as a function of the total density ρ. In Sec. 3.5.2, we briefly discussed
two simple models of rubber elasticity and their predictions for G: The affine model predicts
G = ρskBT, where ρs is the strand density, whereas the phantom network model predicts
G = ρskBT(1− 2/〈 f 〉). Since ρs = ρ/Ns, both models predict therefore that G scales linearly
with monomer density, i.e., G ∝ ρ. We can see, however, that this is not the case, as the shear
modulus of the studied systems scales approximately as ρ3 (dashed line in Fig. 72). This
behavior can be rationalized by taking into account the presence of the entanglements. When
entanglements are present, G can be approximated as G ' kBTρeff

s , where ρeff
s is an effective

strand density resulting from the combined effect of the crosslinks and of the entanglements
(see Sec. 3.5.2):

ρeff
s ≈ ρ

(
1

Ns
+

1
Ne(ρ)

)
. (201)

From Eq. (201) and the data shown in Fig. 72, we deduce that in the density range here
considered the entanglement length follows approximately Ne ∝ ρ−2t. We note the same
relation was found from considerations on the behavior of the localization length λ f of the
crosslinks as a function of density and is compatible with the preliminary results of primitive
path analysis (Sec. 6.3.1).

t It is interesting to note that the same dependence of Ne on ρ can be obtained via simple scaling considerations applied
to melts of monodisperse chains 321, where it is found that Ne ∝ ρ−2(R2

e /N)−3 (N = chain length), although a melt
has usually a very specific density (usually 0.84− 0.85 in simulations of the Kremer-Grest model) and therefore the
ρ appearing in this relation should be considered in principle as a constant prefactor.
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N A N O PA RT I C L E D I F F U S I O N I N P O LY M E R N E T W O R K S

The data and considerations presented in this Chapter are the result of ongoing research and are thus
in some parts incomplete, and/or will be subject to revision. The ideas and results presented will be the
object of a future publication322.

As discussed in Chapter 6, understanding the dynamical properties of NPs embedded
in polymer networks is a problem of great interest in many different fields, from material
science271–275 to biophysics266–270. In Sec. 4.2.4 we have discussed how the presence of cros-
slinks (or entanglements) influences NP diffusion in a polymer system in a radical way, by
fixing the topology of the system and therefore turning off the constraint release mechanism.
When the confinement parameter C, defined as the ratio between the NP diameter σN and the
effective tube diameter d (Eq. 97), becomes significantly larger than 1, the NPs are trapped
in the mesh and can only move through the non-Gaussian process of activated hopping. The
two main theories of hopping, i.e., the Dell-Schweizer (DS) theory191 and the CPR theory of
hopping185 give qualitatively different predictions regarding the behavior of the NP diffu-
sion coefficient D as a function of the confinement parameter in the hopping regime (C & 1).
According to the DS theory, D is approximated by Eq. (132), while according to CPR theory
it follows either Eq. (134) or Eq. (136), depending on whether Ne > Nx (unentangled regime)
or Nx > Ne (entangled regime). Here Nx is the mean length of the elastically active strands
and Ne the entanglement length. Simulations can provide a useful tool to determine which
theory gives the best description of this kind of systems: However, while the diffusion of NPs
in polymer solutions and melts has been the object of numerous simulation studies in the
past years77,148,179,199,215,226–232, much fewer works dealt with the problem of NP diffusion in
crosslinked networks276–282. In the present Chapter, we will study the diffusion of spheri-
cal NPs in the same polydisperse, disordered networks which were the subject of Chapter 6,
trying to shed some light on the fundamental mechanism governing the motion of NPs in
polymeric systems in which constraint release has been turned off.

7.1 model and methods

We consider spherical NPs of diameter σN ranging from σN = 2 to σN = 8 in a polymer
network of M ' 4 · 105 monomers with trivalent ( f = 3) crosslinks at concentration c = 10%
(mean valence F = 2.1). We consider three different networks, with monomer densities ρm0 =

0.183, 0.286 and 0.370 in the neat state. To simulate the NPs, we use the expanded Lennard-
Jones potential (Eq. (144)), described in Sec. 4.4, with ∆Nm = (σN + σ)/2− σ = (σN − σ)/2
and ∆NN = σN − σ. This potential is the same that was used in the simulations described in
Chapter 5. However, in the present work we choose cutoff radii rc

Nm = rc
NN = 21/6, so that
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Tabella 3 – Properties of the simulated systems. σN : NP diameter. ρm0 = M/〈V〉0: monomer
number density in the neat system (we note that this value does not depend on σN). NN :
Number of NPs. ρm: monomer number density in the filled system. φm = πρNσ3/6: mono-
mer volume fraction. φN = πNNσ3

N/(6V): NP volume fraction. Cr ≡ σN/λ f : Confinement
ratio (see Sec. 7.4.2).

σN ρm0 NN ρm φm φN Cr

2.0 0.183 9755 0.1513 0.0792 0.0165 0.641
3.0 0.183 2890 0.1653 0.0866 0.0181 0.962
4.0 0.183 1219 0.1706 0.0893 0.0186 1.282
5.0 0.183 624 0.1732 0.0907 0.0189 1.603
6.0 0.183 361 0.1747 0.0915 0.0191 1.923
7.0 0.183 228 0.1756 0.0920 0.0192 2.244
8.0 0.183 152 0.1761 0.0922 0.0192 2.564

2.0 0.286 6538 0.2596 0.1359 0.0181 0.997
3.0 0.286 1937 0.2694 0.1411 0.0188 1.496
3.5 0.286 1220 0.2719 0.1424 0.0190 1.745
4.0 0.286 817 0.2731 0.1430 0.0191 1.994
4.5 0.286 574 0.2745 0.1437 0.0192 2.244
5.0 0.286 418 0.2753 0.1441 0.0192 2.493
6.0 0.286 242 0.2769 0.1450 0.0193 2.991

2.0 0.370 5028 0.3452 0.1807 0.0187 1.327
3.0 0.370 1490 0.3537 0.1852 0.0191 1.991
3.5 0.370 938 0.3550 0.1859 0.0192 2.323
4.0 0.370 629 0.3564 0.1866 0.0193 2.655
4.5 0.370 441 0.3574 0.1871 0.0193 2.987
5.0 0.370 322 0.3574 0.1871 0.0193 3.319
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both the NP-monomer interaction and the NP-NP interaction are purely repulsive. In the si-
mulations described in Chapter 5, a cutoff radius rc

Nm = 2.5 was chosen for the NP-monomer
interaction, since an attractive interaction was needed in order to prevent NP aggregation
and phase separation. In the network, however, the global structure of the polymer strands
is fixed, and therefore the entropy gain that would result from NP aggregation is much more
limited. Moreover, we only consider very small NP volume fractions, a factor which ulteriorly
inhibits aggregation. We assume that the NPs have the same mass density as the monomers,
ρmass = 6m/πσ3, and therefore the mass of the NPs is mN = m(σN/σ)3.

All the simulations were carried out using the LAMMPS software241,242. The simulation
box is cubic and periodic boundary conditions are applied in all directions. Initially, the NPs
are inserted at random positions in the network, allowing for overlaps. The overlaps are
then removed using the “fast push-off” method107, and the NP size is gradually increased
until the diameter reaches the value σN . We note that this method is identical to the one
described in Chapter 5. After the NP have reached the desired size, we perform an NPT run
with Nosé-Hoover chains81 and allow the system to reach pressure P = 0 at temperature
T = 1.0. During the NPT run, the box sides are coupled to each other so that they fluctuate
together (Lx = Ly = Lz). After the system has adjusted to P = 0, we perform a short
run in the NPT ensemble, where the mean volume V is measured. Then, we switch to
the NVT ensemble by fixing the system’s volume to V and perform an equilibration run
before starting production. Since the Nosé-Hoover thermostat doesn’t produce a realistic
dynamics81, we switch to a Langevin thermostat identical to the one described in Sec. 5.1.
The monomer friction coefficient is Γm = 0.1, whereas the NP friction coefficient is ΓN =

Γm(mσN/mNσ) = Γm(σ/σN)
2, so that an isolated monomer and an isolated NP experience

the same solvent viscosity (see Sec. 5.1). For the NVT simulations, we use a velocity Verlet
integrator79. The integration time step is δt = 0.003 for equilibration and δt = 0.006 for
production. During the NVT equilibration run (of duration 3 · 105) the NP mass is set to
mN = 1, in order to speed up their dynamics and accelerate the exploration of the phase
space. After equilibration, we set mN to its final value, mN = σN and perform a short run of
duration 3 · 104 which allows us to estimate the time needed for the NP motion to become
diffusive and therefore to choose the duration of the production run. We then start the
production run, whose duration is between 6 · 104 and 1.2 · 106 depending on the NP diameter
and on the monomer density. For larger values of σN and ρm, longer runs are performed.
Based on the discussion of Sec. 4.2.4, we expect the relaxation time of the simulated systems
increases at least exponentially with the confinement parameter C = σN/d, where σN is the
NP diameter and d is the dynamical confinement length scale, resulting from both topological
entanglements and crosslinks (4.2.4). Therefore, even a small increase of σN can mean an
enormous increase in the relaxation time. As a consequence, some of the simulated systems
didn’t fully equilibrate during the equilibration run. We decide nevertheless to report data
on the behavior of these systems, since we believe that this can help shed some light on
the physics governing the diffusion of NPs in polymer networks. Moreover, the very steep
increase of the relaxation time with the confinement parameter means even in experimental
systems it will be extremely difficult to reach thermodynamic equilibrium. Therefore, these
data can also prove useful in interpreting experimental results.

In order to limit the effect of NP addition on the structural and dynamical properties of the
network and to limit inter-NP interactions, we embed in the network a small number of NPs
NN . The value of NN is chosen in such a way that the total NP volume, VN ≡ πNNσ3

N/6, is 2%
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Figura 73 – (a) Expansion factor V/〈V〉0 − 1 as a function of NP diameter σN for systems
with different monomer densities ρm0 in the neat state. V is the volume of the filled system,
whereas 〈V0〉 is the mean volume of the neat system, measured in NPT simulations. The
dashed line marks the value the expansion factor would have if the expansion was only due
to the excluded volume of the NPs. (b): The same quantity as a function of the confinement
ratio Cr (see Sec. 7.4.1). Continuous line: Eq. (203) with A = 2.73 · 10−2 and B = 7.48 · 10−2.

of the mean volume of the neat system, 〈V〉0, which was measured in the NPT simulations
described in Sec. 6.1. We have therefore

NN =

⌊
0.02 · 6〈V〉0

πσ3
N

⌋
'
⌊

0.038 · 〈V〉0
σ3

N

⌋
. (202)

We note that in general 〈V〉0 6= V, since the addition of NPs causes a swelling of the network.
This is illustrated in Fig. 73a, where we show the expansion factor (V − 〈V〉0)/〈V〉0 as a
function of σN for the three networks considered in this work. This quantity is positive for all
values of σN and ρm0, signaling an expansion of the system. If the expansion was only due
to the excluded volume of the NPs, we would have (V − 〈V〉0)/〈V〉0 ' 0.02 (dashed line in
Figs. 73a-b), since the total NP volume is VN ' 0.02〈V〉0 (Eq. (202)). However, one sees that
the expansion factor is significantly higher than this value for all values of σN , and that it
increases markedly with decreasing σN and ρm0.

We observe that the data fall on a master curve when plotted as a function of the confine-
ment ratio Cr, as shown in Fig. 73b. This parameter, which will be introduced in Sec. 7.4.1, is
defined as the ratio between the NP diameter and the localization length λ f of the crosslinks
(see Sec. 6.3.1). The degree of swelling of the network upon the addition of the NPs depends
therefore only on the ratio between the NP size and the typical size of the entanglement mesh.
The master curve is very well described by the following functional form (continuous line in
Fig. 73b):

V − 〈V〉0
〈V〉0

= A + BC−2
r (203)

with A = 2.73 · 10−2 and B = 7.48 · 10−2. We note that Eq. (203) can be rewritten as
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Figura 74 – Snapshot of the system ρm0 = 0.370, σN = 8.0 after equilibration. For clarity, only
the crosslinks (green) and the NPs (red) are shown. On the left, the crosslinks are shown as
transparent to help visualize the NPs.

V − 〈V〉0
〈V〉0

= A + B
(

λ f SN

0.12〈V〉0

)2

(204)

where SN = NNπσ2
N is the total surface of the NPs. Indeed, from Eq. (202) one obtains

SN ' 0.12〈V〉0σ−1
N , which alongside Eq. (203) gives Eq. (204). The expansion is therefore

larger the larger the total surface of the NPs.
The final values of the density are reported in Tab. 3 alongside other relevant parameters.

Since ρm is not independent of σN , we will therefore use the value ρm0 of the density in the
neat state to identify unambiguously the three different networks here considered. From the
data reported in Tab. 3, one can also see that in all the systems, the final NP volume fraction,
φN = πσ3

N NN/(6V), is between 1.65% and 1.93%. To give the reader a feeling of what
the simulated systems look like, we report in Fig. 74 a snapshot of one of the ρm0 = 0.370
containing NPs of diameter σN = 8.0.

7.2 static properties : network

The addition of NPs to the system will in general affect the structural properties of the net-
work. The magnitude of the changes induced by the NPs will depend on many factors, such
as the NP diameter σN , their volume fraction φN and the monomer-NP interaction. We ex-
pect, however, that in the limit φN → 0 the structure of the network will remain basically
unchanged upon the addition of NPs.

7.2.1 Structure factor

In Fig. 75, we report the monomer-monomer structure factor Smm(q) for the three networks
here considered (monomer density in the neat state ρm0 = 0.183, 0.286 and 0.370) and for
different values of the NP diameter σN . We note that the NP volume fraction in each system
is φN ' 0.02 (see Tab. 3). For comparison, we also include the structure factor of the neat
systems (thick black lines), measured in the NPT simulations described in Chapter 6

a. We

a We recall that the network studied in Chapter 6 contained M ' 5 · 104 monomers, whereas the systems described
here contain M ' 4 · 105 monomers.
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Figura 75 – Monomer-monomer structure factor Smm(q) for networks containing NPs, with
monomer density in the neat state ρm0 = 0.183 (a) 0.286 (b) and 0.370 (c). Continuous black
line: Smm(q) for the neat system, measured in NPT simulations (see Chapter 6).

observe that upon the addition of the NPs, Smm(q) remains basically unchanged for q & 1.
Since q ≈ 2π/r, where r is a distance, this means that the structure of the network changes
only slightly for distances r . 2π. For q . 1, however, there is a marked increase, which
we interpret as resulting from the NPs filling and stretching the holes in the network. A
similar effect was observed for NPs dispersed in a polymer solution in Sec. 5.3.2; in that case.
however, the NPs were uniformly dispersed and this resulted in a well defined peak in the
structure factor at q ' 2π/σN . In the present case, the increase happens for all q . 1, i.e.,
for r & 2π, and in a way which is basically independent of σN , implying that all the holes
of size r & 2π are stretched in a similar way independently of the size of the NPs. This can
be understood by considering that the larger holes can be filled by more than one NP at the
same time, and therefore to a first approximation the stretching of the holes will only depend
on the NP volume fraction φN , which is basically independent of σN (cf. Tab. 3).

7.3 static properties : nanoparticles

7.3.1 Radial distribution function

In Fig. 76a-c we report the NP-NP radial distribution function (RDF) gNN(r) for the three
networks and for different values of the NP diameter σN . In order to facilitate the comparison
between different diameters, we plot gNN(r) as a function of the rescaled distance r/σN . We
observe that gNN(r) displays a peak at rc = σN + (21/6 − 1) = σN + 0.122 (contact distance).
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Figura 76 – NP-NP radial distribution function gNN(r) for NPs embedded in a polymer
network with monomer density in the neat state ρm0 = 0.183 (a) 0.286 (b) and 0.370 (c), as a
function of the rescaled distance r/σN . The dashed lines in (c) are shown to help visualize
the two exponential decays. (d): gNN(r) for the system σN = 2, ρm0 = 0.186, compared with
the same quantity for a NP fluid at the same density (ρN = 3.95 · 10−3).
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From the rather large value of gNN(rc) one can deduce that the probability to find two NPs
in contact with each other is significantly higher than in a NP fluid with the same density ρN .
This is exemplified in Fig. 76d, where we compare gNN(r) for the system σN = 2, ρm0 = 0.186
(ρN = 3.95 · 10−3) with the RDF of a NP fluid at the same ρN . While the fluid has basically no
structure (i.e., it is a gas), the RDF of the NPs embedded in the network displays a marked
peak. We note that gNN(rc) increases significantly when ρm or σN are increased. The decay
of the peak is well described by the function e−r/Λ/r, with Λ > 042,43, as one can see from
the insets of Fig. 76a-c, where we report (r/σN) · |gNN(r)− 1| in semi-logarithmic scale. This
initial decay (r/σN < 1) is followed by a second one (cf. dashed lines in Fig. 76c), which
is well described by the same functional form as the first one, although with a larger decay
length Λ. We observe that the peak becomes sharper when σN or ρm are increased.

These behaviors can be interpreted by considering the dynamical behavior of the NPs
in the network (which will be discussed in detail in Sec. 7.4). When diffusing through the
network, the NPs regularly end up trapped in cages formed by the local entanglement mesh
b. The time needed to escape the cage is a steeply increasing function of the confinement
parameter C = σN/d: Therefore, the NPs can get trapped in these cages for very long times.
A single cage can trap two or more NPs at the same time, acting effectively as a local attractive
potential well for the NPs: This results in the strong signal observed in the RDF for rc ' σN .
It is evident from this qualitative picture that the strength of the signal will increase with
increasing C, i.e., when either σN or ρm is increased (as an increase of ρm causes a decrease of
d). The fact that the peak of the RDF is sharper for larger NPs or higher monomer densities
also follows from the above explanation, since when σN is larger or d smaller it is rare for
more than two NPs to be simultaneously trapped in the same cage, and therefore gNN(r)
decays to 1 for smaller values of r/σN .

7.3.2 Structure factor

In Figs. 77a-c we report the NP-NP structure factor SNN(q) for the three networks and for
different values of σN . Also in this case, in order to facilitate the comparison between different
diameters, we show SNN(q) as a function of the rescaled variable qσN/2π. The behavior of
SNN(q) is similar to that of a dilute liquid, with a “contact peak" at qc ' 2π/rc ' 2π/σN

(where rc is the position of the peak of g(r)), followed by weak oscillations of period ' qc.
However, differently from a dilute liquid, SNN(q) displays a peak at q ' 0, which signals
the presence of NP clustering. As discussed in Sec. 7.3.1, this clustering is driven by the
trapping of NPs in entanglement cages. The difference between this NP-NP structure factor
and that of a NP fluid at the same density is shown in Fig. 77d for the system σN = 2,
ρm0 = 0.186 (ρN = 3.95 · 10−3). The height of the peak, however, it too small to conclude that
a macroscopic phase separation is taking place. The overall shape of SNN(q) as a function
of the rescaled wavevector qσN/2π depends only weakly on σN , implying that the spatial
distribution of the NPs has approximately the same qualitative feature independently on the
NP size. We observe however that the contact peak is shifted to smaller qc for small σN and
that the peak at q ' 0 becomes significantly smaller for large σN . However, the latter effect
could be due to the fact that the systems with large NPs have not yet equilibrated.

b With the term “entanglement mesh", we will refer in the present Chapter to the mesh formed by both the crosslinks
and the entanglements.
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Figura 78 – Mean-squared displacement (MSD) of NPs, 〈r2
N(t)〉, and of the crosslinks, 〈r2

f (t)〉,
in a polymer network with monomer density in the neat state ρm0 = 0.183 (a) 0.286 (b)
and 0.370 (c). Dashed lines: systems where the NPs haven’t reached the diffusive regime.
λ f = (limt→∞〈r2

f (t)〉)1/2 is the localization length of the crosslinks.

7.4 nanoparticle dynamics

In Sec. 4.2.4 we discussed the dynamics of NPs in polymer systems with crosslinks and
topological entanglements. Although the existing theories make qualitatively different pre-
dictions, they agree upon the fact that the central quantity controlling NP dynamics is the
confinement parameter C = σN/d, where d is the dynamical confinement length scale, which
results from the presence of both the crosslinks and the entanglements. Intuitively, when C
becomes significantly larger than 1, we expect the NPs to be trapped by the entanglement
mesh. Since the constraint release mechanism is turned off by the presence of the crosslinks,
the NPs can only escape their local cage by the hopping mechanism, whose typical time scale
τh increases at least exponentially in C. We expect therefore the dynamics of the NPs to be
strongly suppressed when σN or ρm are increased.

7.4.1 Mean-squared displacement

In Fig. 78a-c we show the mean-squared displacement (MSD) of the NPs, 〈r2
N(t)〉, for the

three networks and for different values of σN . For comparison, we also show the MSD of the
crosslinks, 〈r2

f (t)〉. For small values of σN and ρm, the motion of the NPs becomes diffusive

(〈r2
N(t)〉 ∝ t) immediately after the initial ballistic behavior (〈r2

N(t)〉 ∝ t2). When σN or ρm are
increased, however, a subdiffusive transient 〈r2

N(t)〉 ∝ tβ(t) (0 < β(t) < 1) appears between
the ballistic and the diffusive regime. For high values of σN and ρm, the MSD shows almost a
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A,B and C, created by taking snapshots of the NP position at regular time intervals of length
∆t = 6 · 103. To facilitate visualization, the NPs are represented with a smaller diameter
(σN = 4.0).

plateau (i.e., β(t) ' 0), meaning that most of the NPs are trapped by the entanglement mesh.
By comparing 〈r2

N(t)〉 for large σN to 〈r2
f (t)〉 and by extrapolating from the available data

the behavior of 〈r2
N(t)〉 for very large σN , we deduce that the expected plateau height λN for

〈r2
N(t)〉, i.e., the localization length of the NPs, is approximately equal to λ f , the localization

length of the crosslinks. The estimated values of λ f for ρm0 = 0.183, 0.286 and 0.370 are
respectively 3.12, 2.01 and 1.51. We recall that λ f ≈ d, where d is the effective tube diameter
c, as discussed in Sec 6.3.1. We can therefore conclude that the localization length of the NPs
is also of the order of the tube diameter:

λN ≈ λ f ≈ d (205)

This can be better seen from Fig. 79, where we compare the squared displacement (SD) r2(t)
of three NPs (labeled A, B and C) with the MSD of the crosslinks. One can see that particle C
is trapped by the mesh, displaying a completely flat SD, with localization length equal to the
localization length of the crosslinks, λ f . Also the particles A and B are initially trapped by
the mesh, but eventually manage to escape. Their SD consists in a series of abrupt “jumps",
each of one is followed by a flat region. This type of jerky motion is one of the typical
signatures of hopping. For comparison, we show in Fig. 79 snapshots of the particles taken at
regular time intervals: t = 0, ∆t, 2∆t, . . . , tmax, with ∆t = 6 · 103. A close observation of these
“stroboscopic” snapshots also reveals the existence of hopping motion, as the positions of the
mobile particles A and B at different times form well-separated clusters.

These properties of the NP trajectories is shown more clearly in Fig.80, where we show
the same kind of “stroboscopic snapshots” for the ρm0 = 0.183 network containing NPs of
diameters σN = 8. In order to help the visualization, we only show the trajectories of 15
particles, and we represent each particle as having diameter σN = 2 instead of σN = 8. One
can clearly see that the NP trajectories form clusters: For the NPs which are trapped by the

c In our systems, there is no unique strand length, but rather an exponential distribution of strand length, as discussed
in Sec. 6.2.1. It is therefore much more difficult to disentangle the contributions of the crosslinks and those of the
entanglements, and it is more appropriate to talk of an effective tube diameter resulting from a combination of these
effects.



130 nanoparticle diffusion in polymer networks

Figura 80 – Trajectories of 15 NPs of diameter σN = 8.0 embedded in the ρm0 = 0.183 network,
created by taking snapshots of the NP position at regular time intervals of length ∆t = 6 · 103.
To facilitate visualization, the NPs are represented with a smaller diameter (σN = 4.0).

mesh up to time tmax, the trajectory forms a single cluster, whereas for the mobile NPs it
forms well separated clusters, which allow us to locate the cages in which the particles are
temporarily trapped between the hopping events.

To better study the transition from subdiffusive to diffusive motion, we also study the
time dependence of the exponent β(t), which was defined in Eq. (163). In Fig. 81, we report
β(t) for the three networks and for different NP diameters. After the initial ballistic regime
(β = 2), β decreases abruptly, reaching values very close to zero for the largest NPs. In
the more confined cases, such as ρm0 = 0.370, σN = 5, this initial decrease is followed by
a plateau region, in which β is essentially flat and approximately zero. At longer times, β

increases approximately logarithmically, β(t) ' a + b ln(t) until eventually it saturates to 1
(diffusive regime). We note that this implies that in the subdiffusive regimed

〈r2
N(t)〉 ' cta+b ln(t)/2 (206)

The value of b (slope of β(t) in linear-logarithmic scale) is basically independent of σN , and
has value b ' 0.05. This suggests that, despite the fact that larger NPs are more strongly
confined (smaller a value in Eq. (206)), the mechanism governing the approach to the diffusive
regime is independent of NP size.

7.4.2 Diffusion coefficient

The NP diffusion coefficient DN can be obtained through Einstein’s relation, Eq. (54), by
fitting 〈r2

N(t)〉 in the diffusive regime with a linear function. Unfortunately, in some systems
the simulation time was not long enough to reach the diffusive regime, as we can see from
Figs. 78 and 81. However, for those systems where the diffusive regime is not reached, it is
still possible to give an upper bound for the diffusion coefficient.

In Fig. 82a we show DN as a function of the NP diameter σN (semi-logarithmic scale)
for the three networks considered here. Open symbols represent the upper bounds on DN

for those systems where the diffusive regime was not reached. One can see that increasing

d The factor b/2 (instead of b) in the exponent of t is a consequence of the definition of β(t) Eq. (163)).
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Figura 81 – Exponent β, Eq. (163), from the MSD of the NPs, for polymer network with
monomer density in the neat state ρm0 = 0.183 (a) 0.286 (b) and 0.370 (c) and different NP
diameters σN .
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σN causes an extremely strong decrease of the diffusion coefficient, and that the decrease
becomes steeper when ρm increases. For ρm0 = 0.286, for example, increasing σN from 2 to
5 causes a two orders of magnitude drop in DN . In Sec. 7.4.1, we have seen that the spatial
extent of NP localization is controlled by the localization length λ f of the crosslinks, which is
proportional to the effective tube diameter d: λ f ≈ d. From the definition of the confinement
parameter, we have therefore C ≈ σN/λ f . The values of σN/λ f for the simulated systems are
reported in Tab. 3. Since the available theories on NP diffusion in polymer networks predict
that DN is controlled by C 185,191, it seems therefore natural to plot DN as a function of σN/λ f ,
as we do in Fig. 82b. Upon rescaling σN this way, the data fall almost perfectly on a master
curve; we stress that no fit parameter was used to produce this plot. One sees that DN decays
faster than an exponential in σN/λ f . Indeed, we find that the expression

DN = A
(

λ f

σN

)
exp


−

(
σN
λ f

)2

 =

A
Cr

e−C2
r (207)

fits the data extremely well, as we show in Fig. 83, where Eq. (207) (with A = 0.467) is shown
as a continuous line. In Eq. (207) we have introduced the confinement ratioe,

Cr ≡
σN
λ f

. (208)

Eq. (207) is formally identical to that found in Eq. (134) from the CPR theory of activated
hopping185. In the CPR theory, this equation gives the NP diffusion coefficients for the
case in which the crosslink density in the network is higher than the entanglement density,
and therefore the trapping of the NPs is dominated by the crosslinks. It is surprising that
Eq. (207) gives such a good description of the data without any multiplicative prefactor in
the argument of the exponential, i.e., DN ∝ e−aC2

r with a = 1. This suggests that Cr is indeed
the relevant confinement parameter which controls the dynamics of the NPs in the simulated
systems.

e This nomenclature was chosen to distinguish it form the confinement parameter C = σN/d.
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Figura 84 – (a-b): Rescaled self van Hove function G′(r′, t) for NPs of diameter σN = 2.0 (a)
and σN = 6.0 (b) embedded in the network with density in the neat state ρm0 = 0.183. (c-d)
Ratio between G′(r′, t) and Γ′s(r′) = π−3/2e−r′2 (Gaussian approximation).

7.4.3 van Hove function

In the previous section, we have deduced by studying the squared displacement of single
particles that large NPs perform hopping motion from one entanglement cage to the other.
The presence of hopping can be detected by investigating the van Hove function of the NPs,
which was defined in Sec. 5.4.2.

In Fig. 84 we report the self part of the van Hove function Gs(r, t) for NPs of diameters
σN = 2 and 6 embedded in the ρm0 = 0.183 network. To facilitate the comparison with
theory, we define the rescaled self van Hove function G′s(r′, t) as done in Sec. 5.4.2 (Eq. (167)).
We recall that when Gs(r, t) is Gaussian, G′s(r′, t) is simply given by G′s(r′, t) = Γ′s(r′) =

π−3/2e−r′2 (Eq. (168)). At short times, Gs(r, t) is always a Gaussian.

From Fig. 84a, one can see that for σN = 2, G′s(r′, t) is very well described by a Gaussian:
Small deviations are only observed for t = O(10), which is the time at which the NPs enter
the diffusive regime (cf. Fig. 78a). This is also apparent from Fig. 84c, where we show the
ratio G′s(r′, t)/Γ′s(r′): this quantity is almost flat at both short and long times, with signifi-
cative deviations appearing at both small and large r′ only for t = O(10). This behavior
is qualitatively the same as that observed in Sec. 5.4.2 for the NP diffusion in unentangled
polymer solutions. We can conclude therefore that in this system, NPs of size σN = 2.0 are
not trapped by the entanglement mesh and can diffuse freely.

The situation is very different, however, for σN = 6 as one can see from Fig. 84b. Indeed,
we observe that at t = O(103), a peak appears at small r′. The presence of this peak, which
is accentuated when plotting G′s(r′, t)/Γ′s(r′) (Fig. 84d), shows that at intermediate times
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Figura 85 – Non-Gaussian parameter α2, Eq. (169), for NPs of different diameters σN embed-
ded in a polymer network with monomer density in the neat state ρm0 = 0.183 (a) 0.286 (b)
and 0.370 (c).

a significant fraction of the NPs have moved significantly less than what predicted by the
Gaussian approximation, whereas another significant fraction has moved significantly more.
This is the clear signal of transient trapping of the NPs by the entanglement mesh and of
hopping motion. At t = O(105), the NPs have broken free from their cages and the Gaussian
approximation is recovered.

To quantify the dissimilarity between Gs(r, t) and a Gaussian, it is useful to calculate the
non-Gaussian parameter α2(t) (Eq. (169)), which we report in Fig. 85 for the three networks
considered in the present work and different NP diameters. All the systems considered share
the same qualitative behavior. At short times, α2 ' 0, i.e., the dynamics of the NPs is Gaus-
sian. This regime is followed by an increase in α2, which corresponds to the onset of the
subdiffusive regime in the MSD. For small σN/small ρm, this increase is very modest, and
α2 remains of order 10−1. However, for large σN , α2 reaches values significantly larger than
1. These values are comparable to those measured in simulations of deeply supercooled li-
quids253 or in experimental studies of polymer networks containing NPs323. In the presently
studied systems, as in experimental systems323, such strong dynamical heterogeneity origi-
nates from the structural heterogeneity of the network on the scale of the NP size: Some NPs
freely diffuse through the gaps in the network, whereas other NPs end up trapped in the
mesh. At long times, some of the systems return to a Gaussian behavior (α2 ' 0), whereas
others are not able to do so during the duration of the simulation (these are the same systems
where the diffusive regime is not reached).

To conclude the analysis of the van Hove function, we also consider its distinct part,
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Figura 86 – Distinct van Hove function Gd(r, t) of NPs of diameter σN = 2.0 embedded in the
ρm0 = 0.183 (a) and 0.370 (b) networks. Insets: r|Gd(r, t)− 1|.

Gd(r, t) (Sec. 5.4.2). In Fig. 86 we show Gd(r, t)/ρN for NPs of diameter σN = 2 embedded
in the networks ρm0 = 0.183 (a) and ρm0 = 0.370 (b). In all cases, we observe that with
increasing t the correlation hole at small r is slowly filled and the contact peak (σN ' 2) is
washed out, a behavior which resembles that of well-dispersed NPs in a polymer solution
(cf. Fig. 42). However, whereas in a NP liquid Gd(r, t)/ρN ' 1 at long enough times, in the
presently studied system correlations persist during the whole duration of the simulation. In
particular, we observe from the insets of Figs. 86a-b that the tail of the contact peak (cf. Fig. 76)
remains basically unchanged for all values of t, even though the NPs reach the diffusive
regime (Fig. 78) and the dynamics is Gaussian with very good approximation (Figs. 84 and
85). The reason for this behavior is that, although the NPs can freely diffuse through the gaps
in the network, they are not able to explore the whole simulation box. Indeed, in some parts
of the system the local mesh size will be so small that the NPs won’t be able to pass through.
The existence of these “impenetrable” zones is at the origin of the persisting correlations
observed in Gd(r, t).

This behavior is shown qualitatively in Fig. 87, where we show the trajectories of the NPs
in the system ρm0 = 0.370, σN = 2.0. As for Figs. 79 and 80, we show snapshots of the particles
taken at regular time intervals of length ∆t from t = 0 to t = tmax; here, ∆t = 3 · 103. In order
to facilitate the visualization, we only show the trajectories of 200 NPs and each NP is simply
represented as a point. The NPs trajectories are clearly not homogeneously distributed in
the whole sample, and one can distinguish regions with a high density of points and regions
with a low density of points. These snapshots confirm therefore qualitatively the above
interpretation of the behavior of Gd(r, t). We also observe that at long times a peak appears
at r = 0. Since 4πr2ρNGd(r, t)dr represents the probability to find, at time t, a given particle
at a distance r from the position occupied by some other particle at time 0, the appearance of
this peak implies that there is a strong probability that a NP occupies a position which was
previously occupied by another one. Therefore, we interpret this peak as a clear signal of the
presence of hopping motion253,324.

When the confinement parameter increases (because σN or the network density increases),
hopping motion becomes even more relevant. This appears clearly from Fig. 88, where we
report Gd(r, t)/ρN for NPs of diameter σN = 4 embedded in the networks ρm0 = 0.286 (a)
and ρm0 = 0.370. Even tough the worse statistics doesn’t allow us to study accurately the
behavior of Gd(r, t) for r > σN , we clearly observe the appearance of a peak at r ' 0. At long



136 nanoparticle diffusion in polymer networks

a b

Figura 87 – Trajectories of 200 NPs in the system ρm0 = 0.370, σN = 2.0, created by taking
snapshots of the particles at regular time intervals of length ∆t from t = 0 to t = tmax, with
∆t = 3 · 103. To facilitate visualization, the NPs are represented as points. (a): Side view. (b):
Front view.
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Figura 88 – Distinct van Hove function Gd(r, t) of NPs of diameter σN = 4.0 embedded in the
ρm0 = 0.286 (a) and 0.370 (b) networks.
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Figura 89 – Self intermediate scattering function Fs(q, t) of the NPs for the systems ρm0 =
0.286, σN = 2.0 (a), ρm0 = 0.286, σN = 4.0 (b), ρm0 = 0.183, σN = 7.0 (c), ρm0 = 0.370, σN = 5.0
(d). In all the figures, q increases going from right to left. Dashed lines: Eq. (210).

times, this peak grows enormously, signaling that NP motion is dominated by hopping.

7.4.4 Self intermediate scattering function

Additional insights on the dynamics of the NPs can be gained by considering the self inter-
mediate scattering function Fs(q, t), which is the Fourier transform of the self part of the van
Hove function1,53:

Fs(q, t) ≡ 〈exp[−iq · (rk(t)− rk(0))]〉 =
∫

Gs(r, t)e−iq·rdr. (209)

We have seen in Sec. 7.4.4 that in the regime of weak confinement (low σN and/or ρm), the self
part of the van Hove function is well described by a Gaussian. Since the Fourier transform
of a Gaussian is also a Gaussian, it follows that in this regime Fs(q, t) is a Gaussian. Indeed,
from Eqs. (166) and (209) we obtain

Fs(q, t) = Φ(q, t) ≡ exp
(
− q2

6
〈r2(t)〉

)
. (210)

In Fig. 89, we report the intermediate scattering function of the NPs for four selected systems
(continuous lines), compared with the Gaussian approximation Φ(q, t) (dashed lines). At
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short times (ballistic regime), the dynamics of the NPs is Gaussian and Fs(q, t) = Φ(q, t). In
particular, since 〈r2(t)〉 = 3kBTt2/mN (equipartition theorem263), with mN the mass of the
NP, we have

Fs(q, t) = Φ(q, t) = exp
(
− kBTq2t2

2mN

)
. (211)

The behavior of Fs(q, t) after this initial ballistic regime depends on the degree of confinement.
For σN = 2.0, ρm0 = 0.183 (Fig. 89a), the NPs are weakly confined, and Fs(q, t) is very well
descibed by the Gaussian approximation, i.e., Fs(q, t) ' Φs(q, t). Since the motion of the NPs
becomes diffusive immediately after the ballistic regime (cf. Fig. 78), we have 〈r2(t)〉 ' 6Dt
and the decay of Fs(q, t) is essentially a simple exponential:

Fs(q, t) ' Φ(q, t) ' e−Dq2t. (212)

For stronger confinements, however, the qualitative behavior of Fs(q, t) changes drastically, as
a shoulder appears after the initial ballistic regime (Figs. 89b-d). This behavior is reminiscent
of the one of supercooled liquids , which show an initial quasi-exponential decay, followed
by a shoulder and then a second “stretched exponential” decay (α-relaxation)1,244 f:

Fs(q, t) ' A exp[−(t/τ)β] (0 < β < 1). (213)

We can also see from Figs. 89b-d that in the strong confinement regime, the Gaussian ap-
proximation Fs(q, t) = Φ(q, t) gives a poor description of the data at intermediate times, in
agreement with what observed in Sec. 7.4.3 from the function Gs(r, t).

In the case of supercooled liquids, the control parameter for the emergence of the two-
step relaxation described above is temperature, whereas in our case it is the confinement
parameter C = σN/d. This is illustrated in Fig. 90, where we show Fs(q ' 2π/σN , t), where
2π/σN is the position of the contact peak of the NP-NP static structure factor (Sec. 7.3.2).

In Fig. 90a, we show Fs(q ' 2π/σN , t) for particles of diameter σN = 5.0 embedded in the
three different networks. We observe that when ρm is increased, the shape of Fs(q, t) changes
drastically, going from a single-step relaxation for ρm0 = 0.183 to a two-step relaxation for
higher densities. For ρm0 = 0.286 and 0.370, the α-relaxation is well described by Eq. (213),
with an exponent β ' 0.23 − 0.24 which depends very weakly on ρm. One of the most
important qualitative difference between our Fs(q, t) and those of a supercooled liquid is that
for the latter the height of the shoulder depends only weakly on temperature, whereas in our
case there is a marked dependence on the degree of confinement. This can be explained by
the fact that the shoulder height is related to the localization length λN of the MSD g. Indeed,
at the time t∗ of appearance of the shoulder we have

f In order to conform to the literature, we use the letter β for the α-relaxation exponent. This should not be confused,
however, with the exponent β of the MSD.

g Here we refer to the localization length in a loose sense, as the value of (〈r2
N(t)〉)1/2 at the beginning of the

subdiffusive regime.
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Figura 90 – (a) Self intermediate scattering function Fs(q, t) for NPs of diameter σN = 5.0
embedded in the three networks studied here. Fs(q, t) was calculated at q ' 2π/σN = 1.25.
Dashed lines: Fits with a stretched exponential (Eq. (213)). The values of the fit parameter
are for ρm0 = 0.370: A = 0.585, τ = 7.71 · 106, β = 0.226. For ρm0 = 0.286: A = 0.352,
τ = 3.34 · 103, β = 0.239. Inset: NP mean-squared displacement for the same systems. (b)
Fs(q, t) for NPs of different diameters embedded in a network with density in the neat state
ρm0 = 0.286. As for (a), Fs(q, t) was calculated at q ' 2π/σN .

a b

Figura 91 – MSD (a) and self intermediate scattering function (b) of the A particles in a
simulation of a Kob-Andersen liquid. The self intermediate scattering function was calculated
at a wavevector q corresponding to the position of the main peak of the A-A static structure
factor SAA(q). Adapted from Refs. 253 (a) and 325 (b).

Fs(q, t∗) ' Φ(q, t∗) ' exp
(
− q2

6
λ2

N

)
. (214)

In supercooled molecular liquids, the value of λN is given by the spatial extent of the vi-
brations of the particle inside its cage, and depends only weakly on T. This is evidenced in
Fig. 91, where we report 〈r2〉 and Fs(q, t) for the A particles in a simulation of a Kob-Andersen
liquid253,325. In our system, λN ≈ λ f , and we have seen in Sec. 6.3.1 that λ f decreases appro-
ximately as ρ−1

m : Therefore, the height of the shoulder of Fs(q, t) will depend rather strongly
on ρm.

In Fig. 90b, we show Fs(q ' 2π/σN , t) for particles of various diameters embedded in the
ρm0 = 0.286 network. We observe that, despite the fact that all the systems have approxima-
tely the same ρm (see Tab. 3), there is a clear dependence of the shoulder height of Fs(q, t)
on σN . This is because small NPs can move farther inside their local cage before feeling the
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confinement effect, and therefore they have a larger localization length.



8

C H A R A C T E R I Z I N G T H E M E S H S I Z E I N A P O LY M E R S O L U T I O N

Some ideas and figures present in this Chapter have appeared in Ref. 326.

We have seen in Sec. 4.2.2, when discussing the CPR theory, that the geometrical mesh
size ξ (Sec. 3.2.2) is a fundamental quantity in the problem of the diffusion of nanoparticles
in polymer liquids. This is also apparent when considering other models, such as those
based on geometric obstruction165–167 and hydrodynamics168–173. The mesh size is also a
fundamental quantity when considering the diffusion of particles in polymer networks and
gels174,185,191,323,327–329.

When considering the diffusion of a probe particle in a polymer solution, it is clear that
the relevant “mesh size” should be nothing else than the average geometrical size of the
pores, or holes, in the solution, i.e., those regions which are filled only with solvent. In
view of applications to diffusion problems, we will in the present work adopt this intuitive
concept of ξ as the average pore size of the polymer solution. This also allows to extend the
intuitive definition of ξ proposed by de Gennes, as the average size of the transient mesh
in a semidilute solution2, to the dilute and concentrated regimes: In the dilute regime the
chains do not overlap, but a mesh size still exists as an average geometric distance between
neighboring chains. In the concentrated regime the chains overlap so strongly that there is
no clear mesh structure, but we can still measure the size of the pores.

We are, however, immediately confronted with the question: How exactly should we
measure ξ? Usually, ξ is either estimated using scaling calculations, or measured from the
monomer density fluctuation correlation length, ξc (Sec. 3.3). An example of scaling estima-
te is Eq. (22), where ρ∗ is often estimated by considering the chains as spheres of radius
Rg0 (radius of gyration at infinite dilution), i.e. ρ∗(N) ' 3N/4πR3

g0.(cf. Eq. (18)). This
approximation is written explicitly as

ξ ' Rg0

(
4πρR3

g0

3N

)−ν/(3ν−1)

. (215)

Scaling arguments are useful and allow to obtain easily an estimate of ξ; however, by con-
struction they can only give the quantity of interest up to an unknown multiplicative factor,
which is very inconvenient in cases where a precise knowledge of ξ is required. Estimates
based on the correlation length –which can be obtained from scattering experiments– are also
useful: However, as discussed in Sec. 3.3.2, the correlation length is not the same quantity
as the mesh size, and taking them to be the same object can lead to apparently nonsensical
results, such as ξ increasing when the polymer concentration is increased41.
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Figura 92 – Theoretical predictions for the blob size ξb, the correlation length ξc and the
geometrical mesh size ξ as functions of density, respectively Eqs. (25), (51), and (30).

In the present chapter, we discuss how molecular dynamics simulations of coarse-grained
polymers have been used to perform a systematic comparison of the different conventional
ways to measure ξ, i.e., those based on scaling theory and those based on static correlation
functions in Fourier and real space. We show that these techniques have serious limitations,
can lead to apparently contradictory behaviors and can provide at best an approximate value
for the average mesh size in the semidilute regime. To overcome these problems, we propose
a different method to estimate ξ, based on the concept of pore size distribution203,330–338.
One version of the pore size distribution, due to Torquato, has been already mentioned in
Sec. 4.1.1, were it was used to compute the average interparticle distance between NPs in
a PNC. We will show that, if the coordinates of the monomers are known, the pore size
distribution allows to measure ξ reliably at any density, and also to obtain not only an average
value, but the distribution of mesh sizes. This last feature can be particularly relevant, since
it is known that particles diffusing in systems with the same average mesh size can display
completely different dynamical behaviors323, i.e., the heterogeneity of the polymer medium
plays a relevant role in particle diffusion.

In Sec. 3.2 and 3.3 we have introduced the concepts of blob size ξb, geometrical mesh size
ξ and monomer density fluctuation correlation length ξc, discussing their expected behaviors
in the dilute, semidilute and concentrated regime. The main results of this analysis are
summarized in the Eqs. (25), (30) and (51). In order to make these equations dimensionless,
we also introduced the scaling variable χ, Eq. (27) (see Eqs. (28) and (31)). In Fig. 92, we
schematically represent the predicted behaviors of ξb, ξ and ξc as a function of monomer
density ρ. We can summarize the key predictions as follows:

• Dilute regime (ρ < ρ∗): The blob size and the correlation length are both approximately
equal to the chain size, ξb ≈ ξc ≈ Rg0, where Rg0 is the infinite dilution limit of the
(RMS) radius of gyration, Rg0 ≡ limρ→0 Rg

a. The geometrical mesh size ξ ∝ (ρ/N)−1/3,
i.e., the average distance between neighboring chains.

a Since we are making scaling estimates, other measures of chain size can be equivalently used, as for example the
RMS end-to-end distance Re.



8.1 model and methods 143

• Semidilute regime (ρ∗ < ρ < ρ∗∗): The three length scales are all equivalent in a scaling
sense: ξb ≈ ξc ≈ ξ. In this regime, the whole system is described by a single relevant
length scale.

• Concentrated/melt regime (ρ > ρ∗): The blob size reduces to the effective bond length,
ξb ≈ b, whereas ξc increases with increasing density as in every dense liquid. The
geometrical mesh size, on the other hand, goes to zero with increasing density.

8.1 model and methods

We have performed NVT molecular dynamics simulations (MD) of a system of Nc coarse-
grained polymer chains of length (degree of polymerization) N at different monomer densi-
ties ρ = NNc/V = M/V. The model chosen to simulate the chains is the bead-spring model
of Kremer and Grest (FENE+WCA potentials – see Sec. 3.6.3), where the parameters of the
FENE potential (Eq. (106)) are k = 30ε/σ2 and r0 = 1.5σ. Since non-bonded interactions
are purely repulsive, this model mimics the behavior of polymers in an athermal solvent5,41.
As usual, all quantities reported in the following are in reduced units: The units of energy,
length and mass are respectively ε, σ and m, where ε, and σ are defined by Eq. (104) and m is
the mass of a monomer. The units of temperature, pressure, density and time are respectively
[T] = ε/kB, [P] = εσ−3, [ρ] = σ−3 and [t] =

√
mσ2/ε.

We considered chain lengths N = 50, 200, and 1000. For N = 50 and N = 200, we
consider Nc = 200 and Nc = 50 chains respectively, so that the total number of monomers is
M = NcN = 104. For N = 1000, we simulated both a system of 10 chains (M = 104) and a
larger one, consisting of 50 chains (M = 5 · 104), in order to check for the presence of finite-
size effects. For the system of 10 chains, five independent simulations were performed in
order to improve the statistics. No relevant difference was found in all the studied quantities
between the systems with M = 104 and those with M = 5 · 104.

The range of monomer densities ρ for the different systems are reported in Tab. 4. While
many of these densities are meant to represent a polymer solution, we do not take into ac-
count hydrodynamic interactions between the monomers, since we focus on static quantities,
which are unaffected by hydrodynamic interactions.

All the simulations were carried out using the LAMMPS software242. The temperature
was kept constant at T = 1.0 by means of a Langevin thermostat (Sec. 3.6.1) with damping
coefficient Γ = 0.1. The simulation box is cubic and periodic boundary conditions are applied
in all directions. In all the simulations, the MD integration time step is δt = 3 · 10−3. The
initial configurations are prepared by randomly placing the polymers in the box; for every
set of values (N, Nc, ρ) a different initial configuration is created. Initially, overlaps between
the monomers are allowed. The overlaps are then removed by using a soft potential whose
strength is increased over a short amount of time (“fast push-off" method107). After the
overlaps have been removed, we switch to the WCA potential, Eq. (104), and perform an
equilibration run of duration te (corresponding to te/δt MD integration steps) before starting
the production run. Since the relaxation time of a polymer chain scales as N2 for unentangled
chains and as N3.4 for entangled chains, longer equilibration time were chosen for the system
with longer chains. For each system, we checked that the equilibration time te was larger
than the longest relaxation time of the system by studying the mean-squared displacement
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Figura 93 – Snapshots of the system N = 200, Nc = 50 and different densities ρ. For this
system, ρ∗(N = 200) ' 0.032 and ρ∗∗ ' 0.3. The lengths of the simulation box edges are
respectively L = 100 (a) L = 63.00 (b) L = 44.96 (c) and L = 22.74 (d).

of the monomers and of the center of mass of the chains (Sec. 8.2.1 below). The values of te

for the different systems are reported in Tab. 4.

Tabella 4 – Details of the simulated systems: chain length N, number of chains Nc, number
of monomers M, monomer density ρ, equilibration time te.

N Nc M = NcN ρ (range) te

50 200 1 · 104 [0.001, 1.00] 1.5 · 105

200 50 1 · 104 [0.001, 0.85] 4.5 · 105

1000 10 1 · 104 [0.001, 0.26] 3.0 · 106

1000 50 5 · 104 [0.001, 0.26] 3.0 · 106

In Fig. 93 we show four snapshots of the N = 200 system at different monomer densities.
We note that for this model, ρ∗(N = 200) ' 0.032, and ρ∗∗ ' 0.3 (see below). Therefore, the
system in Fig. 93a is in the dilute regime; the one in Fig. 93b is in the semidilute regime, but
very close to ρ∗; the one in Fig. 93c is in the semidilute regime and far from ρ∗; finally, the
system in Fig. 93d is a melt.
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Figura 94 – Diffusion coefficient of the monomers, g1, and of the centers of mass of the
chains, g3, for chain length N = 50 (a), N = 200 (b) and N = 1000 (c) and different monomer
densities ρ.
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8.2 preliminary analyses

8.2.1 Mean-squared displacement

In order to check that the equilibration time is long enough, we consider two quantities: the
mean-squared displacement (MSD) of the monomers, g1(t), and the MSD of the center of
mass of the chains, g3(t) (Sec. 3.4). In order to suppress fluctuations caused by chain ends,
only the N/2 + 1 monomers in the middle of each chain are considered when calculating
g1

52:

g1(t) ≡
1

(N/2 + 1)

3N/4

∑
i=N/4

〈[ri(t)− ri(0)]2〉. (216)

In the present work, the motion of every monomer is governed by the Langevin equation,
but hydrodynamic interactions between monomers are neglected. Therefore, the Rouse mo-
del (Sec. 3.4.1) describes the dynamics of the polymers to a very good approximation. We
recall that the longest relaxation time, which is τR for unentangled systems and τd for en-
tangled systems, is reached when g1(t) = g3(t). We can therefore check that the system has
equilibrated by verifying that this condition is met for long enough times.

In Fig. 94, we show g1(t) and g3(t) for different values of N and ρ. For the fully-flexible
Kremer-Grest model here employed, the value of Ne is ' 85 at ρ = 0.85 (T = 1.0)339, and
it scales approximately as ρ−2 in the concentrated regime321,340,341: Therefore, the N = 50
system is unentangled for all densities and we expect its dynamics to be described by the
Rouse model, Eqs. (56) and (58). From Fig. 94a, we can see that this is indeed the case.
Moreover, the subdiffusive transient g3(t) ∝ tβ, with β ' 0.8, is clearly visible at ρ = 0.85. For
N = 200, Fig. 94b, the system is lightly entangled; N/Ne ' 200/85 = 2.35 at ρ = 0.85, and the
value becomes smaller with decreasing densities. The dynamics at high density is therefore
described by the reptation model, Eqs. (73) and (72). Even at ρ = 0.85, we see however the
g1(t) ∝ t1/4 regime is still not perfectly developed, as also the g3(t) ∝ t1/2 regime. The second
g1(t) ∝ t1/2 regime is not observable: Longer chains are probably needed52. For N = 1000,
Fig. 94c, the system is entangled. Already at density ρ = 0.26 the regime g1(t) ∝ t1/4 starts to
show. The g3(t) ∝ t1/2 regime, on the other hand, is not yet developed. For all values of N and
ρ considered, we observe that the longest relaxation time, for which g1(t) = g3(t), is smaller
than the equilibration time te (see Tab. 4), and therefore the systems are well equilibrated.

8.2.2 Chain form factor

In order to check that the conformation of the chains corresponds to the equilibrium one, we
study the chain form factor S1(q)/N, where S1(q) is the single chain structure factor, whose
predicted behavior as a function of density is given by Eq. (44). In Fig. 95, we show S1(q)/N
for different values of N = 50, 200, and 1000 and for different values of the monomer density
ρ. The swollen chain behavior S1(q)/N ∝ q−1/ν and the ideal chain behavior S1(q)/N ∝ q−2

are clearly observable respectively at low and high densities for N = 50 and N = 200. At
intermediate densities, we expect the form factor to change from a q−2 dependence to a q−1/ν

dependence at q ≈ 1/ξc
2,5. Since S1(q)/N assumes values from ≈ 1/N to 1, this transition is
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more easily observable for the longer chains: N = 200 and N = 1000.

8.2.3 Radius of gyration and bond angle distribution

As an additional preliminary analysis of the structural properties of the simulated systems,

we studied the behavior of the (RMS) radius of gyration Rg =
√
〈r2

g〉 (Eq. (12)) as a function
of monomer density ρ. The predicted scaling behavior for Rg is given by Eq. (26).

In Fig. 96, we report Rg/Rg0 as a function of ρ, with the dashed lines representing power
laws with exponent − ν−1/2

3ν−1 ' −0.115. The radius of gyration in the dilute limit, Rg0, was
computed by simulating a single polymer chain at very low density (ρ = 10−3 for N = 50, 200
and ρ = 10−4 for N = 1000): The results are reported in Tab. 5, alongside with the resulting
estimate for the overlap density, given by Eq. (18). Figure 96 shows that Rg/Rg0 follows the
scaling predictions for all values of N up to the density ρ ' 0.3. For ρ & 0.3, the decrease
is steeper than what is predicted by scaling theory. This is likely due to the fact that in
this density range the persistence length is density-dependent, an effect which scaling theory
does not take into account.

The ρ-dependence of the persistence length can be understood by studying the bond-bond
correlation function 〈cos(θs)〉, where cos(θs) is defined as342

cos(θs) ≡
bn · bn+s

|bn| |bn+s|
(s = 1, . . . , N − n), (217)

where bn ≡ rn+1− rn is the n-th bond vector, with rn the monomer’s position vector. For very
long chains, 〈cos(θs)〉 is expected to have the following behavior342–344:

〈cos(θs)〉 ∝





s−2(1−ν) lp/lb < s� Nb(ρ)

s−3/2 Nb(ρ)� s� N,
(218)

where lp is the persistence length5, lb =
√
〈bn〉 is the RMS bond length and Nb is the number

of monomers in a blob (see Eq. (20)). For the fully flexible Kremer-Grest model considered
here, lp ≈ lb 52. Since in the dilute regime Nb ≈ N, we expect in this regime 〈cos(θs)〉 ∝
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Figura 98 – Bond angle distribution for N = 50 and different monomer densities ρ. The bond
angle θ is defined by Eq. (219). Cartoon: schematic representation of how θ is defined.

s−2(1−ν) ∀s > lp/lb ≈ 1. Analogously, since in the concentrated regime Nb ≈ 1, we expect
〈cos(θs)〉 ∝ s−3/2 ∀s� N.

In Fig. 97 we report 〈cos(θs)〉 for N = 200 and 1000 and different densities (for N = 50 we
find similar results). The chains considered here are too short to clearly observe the small-s
regime s−2(1−ν) (dashed line). On the other hand, the large-s behavior is compatible with
the theoretical prediction 〈cos(θs)〉 ∝ s−3/2, as illustrated by the continuous lines. Althou-
gh it is difficult to precisely quantify the persistence length outside of the melt regime for
highly flexible and rather short chains as those considered here344, the marked reduction of
〈cos(θs)〉 with increasing ρ observed for small value of s is compatible with a reduction of
the persistence length lp.

A reduction of lp with increasing density can also be inferred by considering the distribu-
tion of the bond angle θ ≡ π − θ1, i.e.,

θ ≡ arccos
(
− ri−1,i · ri,i+1

|ri−1,i| |ri,i+1|

)
. (219)

In Fig. 98 we report the bond angle distribution P(θ) for N = 50 and different densities
(for larger N, the results are basically the same). At low density, P(θ) shows a maximum
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N Rg0 3N/4πR3
g0

50 4.83± 0.02 1.1 · 10−1

200 11.44± 0.07 3.2 · 10−2

1000 29.9± 0.2 8.9 · 10−3

Tabella 5 – N-dependent properties of the simulated systems: Radius of gyration in the dilute
limit, Rg0 and approximate overlap concentration (Eq. (18)).

at θ ' 112◦ and falls to zero rather sharply at θ ' 60◦ because of the excluded volume
interaction. When ρ is increased past ρ ' 0.3, the shape of P(θ) starts to change significantly
in that it develops a peak at θ ' 70◦, signaling that the chains are compressed. Overall,
the average bond angle decreases by ' 8% when going from the dilute regime to density
ρ & 0.85. This effect is also observable in the average bond length (not shown), although the
decrease is in this case only ' 1%. Although it is possible to conceive chain conformations
with a small 〈θ〉 but a high persistence length (e.g., an “accordion-like" rigid polymer), the
fact that up to very high ρ the form factor is compatible with the scaling predictions for
chains in a concentrated solution (Sec. 8.2.2) suggests that the reduction of 〈θ〉 corresponds
to a reduction of the persistence length.

8.3 density fluctuation correlation length

As discussed in Sec. 3.3.2, the correlation length ξc can be measured either from the monomer
structure factor S(q), Eq. (32), or from the monomer radial distribution function g(r), Eq. (34).
Since the system is isotropic, we will consider the spherically averaged structure factor, S(q),
which depends only on q ≡ |q| (Eq. (33)).

In Fig. 99 we show the monomer structure factor for N = 50, 200 and 1000 and different
densities. In the dilute regime, we expect (see Sec. 3.3)

S(q) ' S1(q) =





N/(1 + q2R2
g0/3) q� R−1

g0

Cq−1/ν R−1
g0 � q� b−1

O(1) q� b−1,

(220)

where S1(q) is the single chain structure factor and C > 0 is a constant. In Fig. 99a-c, we show
as thin continuous lines S1(q) for ρ = 10−3. For N = 50 and 200, we see that S(q) = S1(q)
at this density, meaning that the system is already in the infinite dilution limit, whereas for
N = 1000 this limit is still not reached. In the semidilute regime, the behavior of S(q) is
predicted to follow Eq. (45). From our data, we can observe at intermediate q the slope
−1/ν ' −1.70; as expected, this regime is more clearly observable for the longest chains,
N = 1000 (Fig. 99c).

As ρ is increased, the isothermal compressibility κT = S(0)/ρkBT decreases, and even-
tually, for ρ ≥ 0.85, the structure becomes virtually indistinguishable from that of a dense
liquid1,39. Comparing S(q) for different chain lengths, we note that for densities ρ > 0.11 '
ρ∗(N = 50), S(q) becomes independent of N (Fig. 100). This is in agreement with the pre-
diction that in the semidilute and concentrated regimes, ρ > ρ∗, the global structure of the
system does not depend on N 5.
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Figura 99 – Monomer structure factor for N = 50, Nc = 200 (a), N = 200, Nc = 50 (b) and
N = 1000, Nc = 50 (c), at different monomer densities. Thin continuous lines: S1(q) for
ρ = 10−3. Dashed lines: slope −1/ν ' −1.70 (ν ' 0.588). Dash-dotted curve in (a): fit with
the Ornstein-Zernike function, Eq. (46).

The correlation length ξc can be measured by fitting S(q) in the low-q range with the
Ornstein-Zernike expression, Eq. (46). It is clear, however, that this expression only gives
a good description of the data for densities ρ . 0.3 = ρ∗∗. To circumvent this limitation,
we consider the radial distribution function of the monomers, g(r), given by Eq. (34). The
expected asymptotic expression of g(r) at low and high ρ is given by Eqs. (47) and (50). At
low ρ, we can therefore obtain ξc from g(r) by fitting it with an exponential, while at higher
ρ we fit the exponential envelope of the function41. This method is illustrated in Fig. 101,
where we show r|g(r)− 1| for N = 200 and different values of ρ, with the slopes resulting
from the fit (dashed lines). One can see that the low-ρ form works well up to density ρ ' 0.11,
while the high-ρ one gives a good description of the data starting from ρ ' 0.64. For densities
in-between, neither of these two expressions gives a really satisfactory description of the data.
We decide nevertheless to fit the data with an exponential also in this intermediate range, as
shown in Fig. 101, in order to have at least an estimate of ξc.

The values of ξc obtained by fitting S(q) and g(r) are reported in Fig. 102a as a function
of ρ. We note that the two estimates give almost identical results for ρ < 0.2. For ρ ≥ 0.26,
i.e., when we start to approach ρ∗∗ = 0.3 we cannot fit reliably the structure factor with the
Ornstein-Zernike function, Eq. (46), and we have to rely on the radial distribution function.
We note that ξc reaches a minimum at ρ ' 0.3 = ρ∗∗ and increases for larger ρ. The increase
of ξc with ρ is due to local packing constraints, and it is a typical behavior for any dense
liquid41.
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Figura 103 – Example of a porous medium with a single star-shaped pore. VT is the volume
of the portion of void space which is accessible to the center of a spherical probe particle
of radius r. This volume is enclosed in the surface ST followed by the center of the particle
as the particle slides over the void-solid interface. VG is the volume which is coverable by
spheres of radius r or smaller, and it is enclosed in the Connolly (or reentrant) surface SG.

In Fig. 102b, we plot
√

3 ξc/Rg0 as a function of the scaling variable χ, Eq. (27). At
low densities,

√
3 ξc/Rg0 ' 1, in agreement with the theoretical predictions (Eq. (48)). We

observe that in the semidilute regime, ξc follows approximately the predictions of scaling
theory Eq. (51), i.e. ξc ∝ ρ−ν/(3ν−1) (Fig. 102a), or equivalently ξc ∝ χ−ν (Fig. 102b). The
agreement with the theory becomes better with increasing N, as expected from the fact that
limN→∞ ρ∗ = 0, or analogously limN→∞ χ∗∗ = ∞.

8.4 estimating the geometrical mesh size via the pore size distribution

8.4.1 Definitions

We have seen in the previous section how to estimate the monomer correlation length ξc. As
discussed in Sec. 3.2, only in the semidilute regime we have ξc ≈ ξ. In the dilute regime,
ξc ≈ Rg0, while ξ ∝ (ρ/N)−1/3; in the concentrated regime, ξc increases, while ξ is expected
to decrease. In order to get the actual geometrical mesh size, we therefore need a way to
measure directly the size of the pores in the system. With this objective in mind, we turn to a
concept that was developed in order to measure the distribution of pore sizes in solid porous
media: the pore size distribution (PSD)203,330–338.

We will consider two different definitions of the PSD: The first one, although introduced
by others330,331, was formalized and extensively studied by Torquato and coworkers203,332–334,
while the second one was introduced by Gubbins and coworkers335–338. We will in the follo-
wing consider a generic porous medium in three dimensions, but all the definitions can be
extended to any two-phase system and any number of spatial dimensions. Our presentation
closely follows the one given by Torquato203,332–334. A porous medium is a three-dimensional
domain of volume V which is composed by two sub-domains: a void (or pore) region, of
volume Vp and volume fraction φp ≡ Vp/V (also called the porosity), and a solid region of
volume Vs = V − Vp and volume fraction φs ≡ Vs/V = 1 − φp. In Fig. 103, we show a
schematic example of a porous medium with a single star-shaped pore.

Following Torquato, we start by defining the quantity VT(r) as the pore volume accessible
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to the center of a spherical particle with radius r. With reference to Fig. 103, this is the volume
inside the surface ST followed by the center of the particle when the particle slides over the
interface void-solid interface. Naturally, VT(r) ≤ Vp. We can then define the fraction of pore
volume which is accessible to the particle as FT(r) ≡ VT(r)/Vp. It is clear from the definition
that

FT(0) = 1; lim
r→∞

FT(r) = 0. (221)

Torquato’s PSD is then defined as the probability density function203,332–334

PT(r) ≡ −
dFT(r)

dr
. (222)

Thus, PT(r)dr represents the probability that a randomly chosen point in the pore region lies
at a distance between r and r + dr from the nearest point on the pore-solid interface. From
(221) and (222) it follows that

FT(r) =
∫ ∞

r
PT(x)dx, (223)

and that PT(r) is normalized to unity:

∫ ∞

0
PT(x)dx = 1. (224)

Moreover, PT(r) must clearly vanish for r → ∞.
The definition of Gubbins differs from that of Torquato by a simple, yet significant detail.

Instead of considering the part of pore volume which is accessible to the center of a spherical
particle of radius r, we consider the part which is accessible to any point of the particle. In
other words, we define VG(r) as the pore volume coverable by spheres of radius r or smaller,
i.e., the set of all the points P in the pore space such that we can construct a sphere of radius
r that contains P but does not contain any point belonging to the solid phase335 (Fig. 103).
The surface SG in which VG is enclosed is sometimes called Connolly surface or reentrant
surface336,345.

Therefore, PG(r)dr represents the probability that a randomly chosen point in the pore
space is coverable by spheres of radius r but not by spheres of radius r + dr 335 b. Once
VG(r) is defined, all the other quantities can be defined exactly as done above for Torqua-
to’s definition. We note that analogous definitions of VT and VG have been given by other
authors336,345,347,348.
The PSDs PT(r) and PG(r), obtained respectively from VT(r) and from VG(r), can differ si-
gnificantly from each other. To see this, let’s consider the simple case of a solid material

b Other definitions of the PSD are possible. In the definition of Do et al. 346, for example, the void-solid interface is
the boundary of the region D such that if the center of the probe particle is in D, the solid-probe interaction energy
is zero. If the solid-probe interaction potential is taken to be a hard-sphere interaction, this definition is equivalent
to the one of Torquato. Despite the arbitrariness deriving from the choice of the solid-probe potential, this method
can indeed be more suitable than the one of Torquato in situations where the solid-probe interaction cannot be
approximated as a hard-sphere interaction (e.g., in the presence of soft potentials).
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containing any number of disconnected spherical pores of radius R. It is easy to see that in
this case331:

FT(r) =
(

R− r
R

)3
; PT(r) =

3(R− r)2

R3 (r ≤ R), (225)

while

FG(r) =





1 r ≤ R

0 r > R
; PG(r) = δ(r− R), (226)

where δ is Dirac’s delta distribution. It is clear that in this case the size R of the pores is most
readily identified by considering PG, which is nothing else than a delta distribution centered
at R, whereas PT goes to zero at R. We will see below that also when dealing with more
realistic systems, PG often conveys the information regarding the typical size of the pore in a
much clearer manner than PT .

In order to compute PT and PG from the simulation data, we first need to divide the
sample in a pore region and in a solid region. For simplicity, we assume that the interaction
potential between the probe particle of radius r and the monomers is hard-sphere like, i.e.,

U (d) =





∞ d < r + rm

0 d ≥ r + rm,
(227)

where d is the distance between the probe particle and the monomer and rm is the radius
of the monomer when it is approximated as a hard sphere. In the present work, we choose
rm = σ/2 = 0.5 c. Once this assumption is made, we can proceed to the calculation of the
PSD, following the two definitions. The algorithms used to calculate PT and PG are described
in Sec. 8.4.2

In Fig. 104, we show the PSDs PG, PT and the complementary cumulative distribution
functions FG, FT for N = 200 and different densities. In both graphs, r has been normalized
with the length of the simulation box L in order to make the plot more readable. We find that
FT drops to zero much more quickly than FG, and that their shapes are quite different. As a
consequence, also the distributions PT and PG are very different.

In Fig. 105 we show PG(r̃), where r̃ ≡ r/〈r〉G − 1, where 〈r〉G is the mean value of r
calculated using Gubbins’s PSD, for N = 200 and different densities. One can see that at high
density, the distribution is very similar to a Gaussian. This becomes clearer when plotting
PG(r̃) as a function of sgn(r̃) · r̃2 (with sgn the sign function) in semi-logarithmic scale, as
shown in the inset of Fig. 105. Only at density ρ < ρ∗ we observe significative deviations
from Gaussianity, with the left-side tail displaying a markedly exponential decay (dashed
line in the inset of Fig. 105). The small shoulder observable at low ρ for small values of r̃
(indicated by the arrow in the inset of of Fig. 105) comes from distances inside the pervaded
volume of the chain.

c We note that different choices of rm will lead to different PSDs. However, given two different values rm and r′m, we
expect the difference between the PSDs computed using these two values to be relevantt only when the average pore
size is comparable to, or smaller than, |rm − r′m|.
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We note that the width of PG(r̃) increases with increasing density, indicating that the pore
space becomes more heterogeneous on the length scale of the mean pore size 〈r〉G. Moreover,
although the shape of PG(r̃) changes quite significantly when ρ is increased in the dilute
regime, it remains almost unchanged for ρ > ρ∗ ' 0.032. This effect can be better appreciated
by considering the relative standard deviation,

sα ≡
√
〈r2〉α
〈r〉2α

− 1 (α = T, G), (228)

which is a measure of the width of the PSD relative to its mean value.

In Fig. 106, we show sG and sT as a function of the scaling variable χ. One can see that
sG increases with increasing χ up to the beginning of the semidilute regime at χ = χ∗ = 1,
where it reaches a plateau. The transition from dilute to semidilute behavior is quite sharp
if compared with that of ξc (Fig. 102b) or Rg (Fig. 96), suggesting that PG can be used to
determine ρ∗ in a more precise way. In addition, sG is almost independent of N for a given
value of χ.

The relative standard deviation sT of Torquato’s PSD behaves quite differently, showing a
marked dependence on N at fixed χ for χ > 1. Only for N = 1000 a behavior similar to that
of sG, with an increase up to χ = 1 followed by a pleateau, is recovered. These observations
suggest that PG may be more suitable than PT to probe the pore structure of the system. This
will also be argued below based on different considerations. Additional details on PT will be
given in Sec. 8.4.4.

8.4.2 Calculating the PSD

Torquato’s definition

The algorithm to compute Torquato’s PSD is described in Ref. 203. First of all, as mentioned
in Sec. 8.4.3, we have to divide the sample in a “pore” region and a “solid” region. In order
to do so, we approximate the monomers as hard spheres of diameter σ. The procedure to
calculate PT(r) is then as follows:

1. A random point r is chosen in the pore phase.

2. The smallest distance rmin between r and the center of a monomer is calculated. The
distance between r and the nearest interface is calculated as r = rmin − σ/2.

This procedure is repeated many times, until a large number N of r values is recorded.
In the limit of large N , the normalized histogram of these values is equivalent to PT(r).

Gubbins’s definition

In order to calculate PG(r), we have used the algorithm proposed by Bhattacharya and Gub-
bins in Ref. 338. This algorithm is based on the observation that the problem of finding the lar-
gest sphere containing r and which does not overlap with any monomer can be reformulated
as the problem of maximizing the function
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r(rc) ≡ min
i=1,...M

{si} − σ/2, (229)

subject to the constraint

|rc − r| − r(rc) ≤ 0, (230)

where rc is the position of the sphere’s center and si is the distance between rc and the centers
ri of the monomers: si = |rc − ri|. If the maximization of the function (229) is carried out
for a large enough number of points r, the resulting (normalized) histogram of r values will
converge to PG(r).

The problem of calculating PG(r) reduces therefore to a nonlinear optimization problem,
which can be solved with a standard algorithm349. We have used the open-source Sbplx algo-
rithm of the NLopt library350, which is a re-implementation of Subplex351. Other choices are
possible, although one has to make sure that the chosen algorithm can handle discontinuous
objective functions338.

8.4.3 Estimating the geometrical mesh size via the pore size distribution

Once the PSD has been determined, we need to extract from it a quantity that we can compare
with ξc and with the theoretical expectations for ξ. The most natural choice is to consider the
mean pore radius,

〈r〉α ≡
∫ ∞

0
x Pα(x)dx =

∫ ∞

0
Fα(x)dx (α = T, G). (231)

Although other choices are possible, such as the position of the peak of P(r), we found that
the main results do not depend significantly on this choice.

In Fig. 107 we show 〈r〉G/Rg0 and 〈r〉T/Rg0 as a function of the scaling variable χ for different
values of N. These two quantities are compared with ξc/Rg0, where ξc is measured from the
radial distribution function (points for ρ > 0.3 not shown), and with the scaling estimate
of Eq. (215). We observe that, despite the fact that 〈r〉G > 〈r〉T , both quantities show a
remarkably good agreement with the scaling prediction, Eq. (31). Moreover, above the dilute
regime, i.e., χ & 1, 〈r〉T ' ξc, likely because the calculation of both quantities involves
averaging over distances which are of similar magnitude.

To better see that 〈r〉α (α = T, G) follow the scaling prediction, we show in Fig. 108a 〈r〉α
multiplied by χν (points corresponding to ρ > 0.3 not shown): For χ & 1, they reach a plateau,
the length of which increases with increasing N implying that 〈r〉α is indeed proportional to
χ−ν. Moreover, we also see that for low χ the function tends towards the predicted behavior
χ−ν+1/3, corresponding to the average distance between neighboring chains, Eq. (31). In
Fig. 108b we show the ratio 〈r〉G/〈r〉T as a function of χ (points corresponding to ρ > 0.3 not
shown). For χ < 1, the ratio increases logarithmically with increasing χ and is independent
of N. This demonstrates that in the dilute regime 〈r〉G and 〈r〉T are directly related to each
other via an N-independent function. For χ > 1 the N = 50 data follows this logarithmic
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Figura 109 – PSD for a model polymer gel (cubic lattice with strand length N = 18; a snapshot
of the system is reported in the main figure). Dashed blue line: Torquato’s PSD. Continuous
red line: Gubbins’s PSD. Inset: double logarithmic plot of the same PSDs.

dependence whereas the larger systems show a plateau the width of which increases with N,
and only for larger χ the ratio increases again. In summary one can conclude that this ratio
displays a surprisingly weak dependence on χ, changing only by ' 15% over several decades
in χ.

To summarize, we have two possible estimators for the mesh size, which are both in
excellent agreement with the scaling prediction and differ from each other by a multiplicative
factor ' 2. This factor is of course irrelevant if we are only interested in order-of-magnitude
estimates of the mesh size, but it is relevant when more precise information about the size
of the pores is needed. In other words, it is important to understand which PSD, PG or PT ,
gives us a more precise information about the “real” size of the pores. In the following we
will therefore discuss how to interpret the PSD, and which estimator to choose between 〈r〉G
and 〈r〉T when more quantitative information about the mesh size is required.

When considering the case of a solid material containing disconnected spherical pores,
Eqs. (225) and (226), one can see that it is much more straightforward to infer the value
of R from PG(r) than from PT(r). Indeed, using Eq. (225) we find 〈r〉T = R/4, whereas
from Eq. (226) one obtains 〈r〉G = R. Thus already this simple example hints that 〈r〉G is
a better indicator for the “real” pore size than 〈r〉T . In order to consider a somewhat less
artificial example, we simulated a simple model of a polymer gel: Polymer strands of length
N = 18 are placed on the edges of a cubic lattice and connected to each other at the vertices
(see snapshot in Fig. 109). Initially, the distance between each pair of bonded monomers is
r = 1. The network is then allowed to relax at constant volume. In order to grant additional
flexibility to the chains, we set the k parameter in the FENE potential, Eq. (106), to k = 20. By
construction, the mesh size of this system is ξ ' N, and therefore the “ideal” PSD should have
a strong signal at r ' N/2 = 9. More precisely, taking into account the tri-dimensionality
of the system and the finite diameter of the monomers, 2rm = 1, we expect a strong signal
between (N − 1)/2 = 8.5 (edge of the cubic cell) and (

√
2N − 1)/2 ' 12.2 (face diagonal of

the cubic cell).
In Fig. 109, we show PT(r) and PG(r) for this model gel. We observe that, while PT(r)

displays a broad profile which peaks at r ' 4, PG(r) has a negligible value over the whole
r range, except for a very sharp peak at r ' 11 ' (

√
2N − 1)/2. The information about the

mesh size is not, however, completely absent from PT(r), but it is “hidden” in the value of
rmax at which PT(rmax) = 0 (the largest pore size), as it becomes clear when plotting PT(r) in
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semi-logarithmic scale (inset of Fig. 109). From this semi-logarithmic plot, one can also see
that PG(r) has a secondary peak (much smaller than the main one) at r ' 8 ' (N − 1)/2,
which originates from the portion of pore space in the vicinity of the surface of the lattice
cells. Furthermore, we note that also for this idealized system the ratio 〈r〉G/〈r〉T is close to 2
(〈r〉G/〈r〉T ' 2.6), and this remains true also when other densities are considered (not shown).
This is a consequence of the fact that for all the systems studied PT(r) is fairly symmetrical,
and PG(r) peaks close to rmax (the maximum of PT(r)). The precise value of 〈r〉G/〈r〉T will
however depend on the relative forms of PT and PG.

From these two examples, we conclude that PG(r) is the quantity that gives a more imme-
diate and easy to interpret information on the pores in the system. This does not mean that
PT(r) should not be used, but only that care should be taken in its interpretation.

8.4.4 PT(r): Comparison with analytical models

In the previous section we have shown how the PSD can be connected to the geometrical
mesh size and have compared the PSD of Torquato, PT(r), to that of Gubbins, PG(r). In this
section, we will discuss some analytical results which can be used to gain insight into PT(r).
We focus on this distribution because quasi-exact results are available for it203,332–334, whereas
this is not the case for PG(r).

Torquato and coworkers have studied extensively the properties of porous media, and in
particular the PSD of systems of identical particles interacting via an arbitrary potential. For
a system of hard spheres (HS) of radius R at density ρ, they demonstrated that203,332–334

PHS
T (x) =

3η

R
FHS

T (x)(a0x2 + 2a1x + 4a2), (232)

with

FHS
T (x) = exp[−η(a0x3 + 3a1x2 + 12a2x + a3)]. (233)

Here x ≡ (r + R)/R, η ≡ 4πR3ρ/3 is a dimensionless density which for hard spheres is
equivalent to the solid volume fraction φs, and ai, i = 0, 1, 2, 3 are functions of η only, whose
explicit expressions are203,334d:

a0 =
1 + η + η2 − η3

(1− η)3 (234a)

a1 =
η(3η2 − 4η − 3)

2(1− η)3 (234b)

a2 =
η2(2− η)

2(1− η)3 (234c)

a3 = −(a0 + 3a1 + 12a2) (234d)

d We note that all the ai diverge at η = 1. This divergence is unphysical for hard spheres, since the close-packing value
is η = π/(3

√
2) ' 0.740 245. This unphysical divergence is due to the fact that the Carnahan-Starling approximation

is used to derive these coefficients 203,334.
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and OS (Eq. (235), lines) models. The HS and OS fits superimpose almost perfectly.

For overlapping spheres (OS), i.e., spheres which can overlap with no energy penalty, they
found203,333

POS
T (x) =

3η

R
x2 exp

[
−η(x3 − 1)

]
. (235)

Note that in this case, η is not equivalent to the particle volume fraction φs, and indeed it can
be shown that φs = 1− e−η 203,333. For small values of η, Eq. (232) reduces to Eq. (235), i.e.,
the HS model is equivalent to the OS model203,333.

We make the assumption that the measured PSD PT(r) can be fitted by one of the two
functional forms (232)-(235), with R and ρ as fit parameters. In other words, we assume that
it is possible to map our system on a system of hard (resp. overlapping) spheres with radius
RHS(ρ, N) (resp. ROS(ρ, N)) and density ρHS(ρ, N) (resp. ρOS(ρ, N)).

In Fig. 110 we compare for N = 200 and different monomer densities the calculated
PSD, with the result of the fits using the HS model, PHS

T (r; RHS, ρHS), and with the OS model
POS

T (r; ROS, ρOS). It is virtually impossible to distinguish PHS
T (r; RHS, ρHS) from POS

T (r; ROS, ρOS) via
a simple visual inspection, since the two curves superimpose almost perfectly. An analysis
of the squared difference between the calculated and the fitted function (not shown) reveals
however that the HS model fits the data slightly better for all densities, except ρ = 0.85, 1.00.

In Figs. 111a and b we show, respectively, RHS, ROS and ρHS/ρ, ρOS/ρ as function of the
monomer density. Through an extrapolation of the low density behavior, we deduce that in
the limit ρ → 0, RHS, ROS → Rg0(N), and ρHS, ρOS → ρ/N (dashed horizontal lines in Figs 111a
and 111b). In other words, in the dilute regime PT(r) is well described by the PSD of a
system of spheres with radius Rg0, and density equal to the chain density ρ/N. This is valid
independently of the model used (OS or HS), since, as mentioned above, both models give
the same result in the limit η → 0, or equivalently ρ→ 0, R = const.

In the semidilute regime ρ∗(N) < ρ < ρ∗∗, both Rα and ρα (α = OS,HS) tend towards
a power-law behavior with increasing N. Since in the semidilute regime the only relevant
length scale is the mesh size ξ, we make the hypothesis that for large N these quantities will
show the following scaling behavior:
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Rα ∝ ξ ≈ ρ−ν/(3ν−1)

ρα ∝ ξ−3 ≈ ρ3ν/(3ν−1).
(α = OS,HS) (236)

This ansatz is motivated by the fact that the PSD is a purely geometrical object and hence
has to scale with the intrinsic length scales of the system.

In Fig. 112 we show the dimensionless density

ηα ≡
4
3

πR3
αρα (α = OS,HS) (237)

as a function of ρ. We note that both ηHS and ηOS depend basically only on (ρ, N), with ηOS

being slightly smaller than ηHS. At low ρ, both ηOS and ηHS approach the asymptotic expression
ηc(0, N) = 4πR3

g0ρ/3N (continuous lines), where ηc is in general defined as



164 characterizing the mesh size in a polymer solution

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

r / 〈r〉
T
 ,  r / 〈r〉

T

oc

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

〈r
〉 T

 P
T
(r

),
  

〈r
〉 T

O
C
 P

T

O
C
(r

)

ρ=0.001

ρ=0.004

ρ=0.020

ρ=0.160

ρ=0.400

ρ=0.850

ρ=0.001 (OC)

ρ=0.004 (OC)

ρ=0.020 (OC)

ρ=0.160 (OC)

ρ=0.400 (OC)

ρ=0.850 (OC)

N=200
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with the OC model prediction, Eqs. (235)-(239).

ηc(ρ, N) ≡
4πR3

g

3N
, (238)

i.e., the dimensionless density the chains would have were they spheres of radius Rg. Im-
portantly, we observe that when N increases, ηOS and ηHS develop a plateau in the semidilute
regime: This corroborates the hypothesis that for large N Eq. (236) is valid, since this equation
implies ηα ≈ const.

We have seen in the preceding paragraph that at low ρ the polymer solution can be map-
ped on a system of overlapping spheres of radius Rg and density equal to the chain density,
ρ/N. Inspired by this result, we introduce the overlapping chains (OC) model, by assuming
that the PSD of the system is approximated for all ρ by Eq. (235), with





ROS = Rg(ρ, N)

ρOS = ρ/N

ηOS = ηc.

(239)

This approximation fails at intermediate and high ρ, as it is clear from Fig. 111a-b. This is
also illustrated in Fig. 113, where the calculated PSD for N = 200 and different densities is
compared with the one predicted by the OC model and one sees that already for ρ as low as
0.02 the two PSDs are qualitatively very different. However, given the simplicity of the OC
model, we decide nevertheless to compare the computed average pore size, 〈r〉T , with the
one that the model predicts.

From the PSD (235) one can compute the average pore size with the result

〈r〉OS
T =

R
3

exp(η)E2/3(η), (240)

where En(η) is an exponential integral251,
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En(η) =
∫ ∞

1

e−ηx

xn dx. (241)

The OC model result is obtained simply by applying Eqs. (239) to Eq. (240), i.e.,

〈r〉OC
T =

Rg(ρ, N)

3
exp(ηc)E2/3(ηc). (242)

In Fig. 114, we compare the measured average pore size 〈r〉T with the OC model result
〈r〉OC

T . One observes that, except for the points corresponding to the concentrated regime (ρ >
0.3), the prediction of the OC model is in surprisingly good agreement with the data, without
using any fit parameter. This is a striking result, since we have seen that the calculated PSD
starts to diverge from the theoretical prediction already at relatively low density (Fig. 113).

Another related surprising result is the following. The scaling behavior of Rg is2,5,30

Rg ≈





Rg0 χ < χ∗

Rg0χ−ν+1/2 χ∗ < χ < χ∗∗.
(243)

This implies, given the definition of ηc, that

ηc ≈





χ3ν−1 χ < χ∗

χ1/2 χ∗ < χ < χ∗∗.
(244)

The function appearing on the right hand side of Eq. (242) can be expanded for ηc → 0 and
ηc → ∞ via a Puiseux series352; the leading terms are
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exp(ηc)E2/3(ηc) =





Γ
(

1
3

)
η−1/3

c + O(1) ηc → 0

η−1
c + O(η−2

c ) ηc → ∞,
(245)

where Γ is the Gamma function, and therefore

〈r〉OC
T

Rg
≈





η−1/3
c ηc → 0

η−1
c ηc → ∞.

(246)

From Eqs (243), (244), (246), along with the fact that limN→∞ χ∗∗(N) = ∞, we obtain for
infinitely long chains

〈r〉OC
T

Rg0
=
〈r〉OC

T
Rg

Rg

Rg0
≈





χ−ν+1/3 χ < χ∗

χ−ν χ∗ < χ.
(247)

We thus find that for very long chains, 〈r〉OC
T /Rg0 behaves exactly as ξ/Rg0, Eq. (31), for all

values of χ. We stress, however, that while limN→∞ χ∗∗(N) = ∞, ρ∗∗ is independent of N:
Therefore, when considering functions of density instead of functions of χ, we must be aware
that the approximation 〈r〉T ' 〈r〉OC

T will always break down for ρ ≥ ρ∗∗ = 0.3.
It is not evident whether there is a deep reason behind the fact that 〈r〉T and 〈r〉OC

T are so
similar even if PT(r) and POC

T (r) are qualitatively very different. Nonetheless, this remarkable
fact allows to estimate 〈r〉T for ρ < ρ∗∗ with good accuracy by knowing only Rg and ρ. Since
we have seen that 〈r〉G ' 2〈r〉T (Sec. 8.4.3), this means that we are also able to estimate with
reasonable accuracy the average value of the PSD of Gubbins. This is a useful result for
estimating ξ in real systems, since measuring the PSD experimentally is not an easy task249.
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S U M M A RY A N D C O N C L U S I O N S

In this thesis, I have shown how molecular dynamics simulations can be used to gain a deep
understanding of polymer nanocomposites (PNC), systems of polymers containing nanopar-
ticles (NP). In particular, we have focused on the case of spherical NP, embedded either in
dense solutions (Ch. 5) or in crosslinked networks (Ch. 7). In addition, a significant portion of
this work was dedicated to the characterization of the static and dynamic properties of these
systems, particularly the geometrical mesh size of polymer solutions (Ch. 8) and the dynamic
properties of networks (Ch. 6). We report here a brief summary of the thesis, highlighting the
main results and discussing the questions which are still open and the possible future lines
of research in the field of PNCs.

structure and dynamics of a pnc

In Chapter 5, we have studied the static and dynamic properties of a dense unentangled
polymer solution containing NPs. Whereas most of the previous simulation studies focused
on the regime of small NP volume fraction φN , we considered a very broad range of φN

values, from φN ' 10−4 to φN ' 0.5. We also considered a broad range of NP diameters
σN , from σN = σ (monomer size) to σN ' Rg ' 6σ (polymer’s radius of gyration). The size
regime σN . 2Rg, called the “nanoparticle” or “protein” regime, is the most theoretically
challenging, since the action of the polymers on the NPs cannot be easily described through
an effective potential as in the “colloid” limit σN � 2Rg. In order to insure that the NPs were
uniformly dispersed in the polymeric matrix and did not form aggregates, we introduced a
weakly attractive interaction between the NPs and the monomers.

In agreement with previous experimental observations140,159,161 and theoretical predic-
tions164, we found that uniformly dispersed NPs of size σN > σ cause a swelling of the
chains, acting like a good solvent. We also found, however, that NPs of the size of the mo-
nomers (σN = σ) cause a contraction of the chains. We interpreted this as resulting from a
competition between excluded volume (entropic effect) and the attractive monomer-NP inte-
raction (enthalpic effect). When a large NP enters in a chain’s pervaded volume, it locally
swells the chain by forcing it to take a less tortuous path. Small NPs, on the other hand, are
easily accommodated in the chain’s pervaded volume, where they distribute uniformly and
cause chain contraction acting like an effective attractive potential between the monomers.
There is therefore a (model-dependent) “critical NP diameter” σ∗N such that chain expand for
σN > σ∗N , whereas they contract for σN < σ∗N . To the best of our knowledge, it is the first time
that this effect is observed. We note that the above described phenomenology is probably
invalid for NPs larger than the polymers (σN > 2Rg): In this case, the chain could be partially
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“flattened” on the NP surface and their Rg would decrease as a result (the size of a swollen
real chain in 2D scales as N3/4, whereas it scales as N0.588 in 3D).

At low volume fraction, the diffusion coefficient DN of NPs doesn’t follow the Stokes-
Einstein (SE) relation, i.e., DN ∝ kBT/ησN , in qualitative agreement with CPR theory184

(Sec. 4.2.2). Despite the fact that the SE relation is recovered for σN > 2Rg (as revealed by
simulating NPs of size σN = 10, 12 and 14), we do not find, for σN < 2Rg, the DN ∝ σ−2

N rela-
tion predicted by the CPR theory. There are many possible reasons for this discrepancy, from
inertial effects in NP motion to the absence of hydrodynamic interactions in our simulations.
We note, however, that the relation DN ∝ σ−2

N should actually work for the hydrodynamic dia-
meter σh, which is however troublesome to define since the SE is violated. We tried different
definitions, showing that the agreement between data and theory depends rather significantly
on the definition used.

Regarding polymer dynamics, we found that the reduced diffusion coefficient of the po-
lymers, Dp/Dp0, falls on a master curve when plotted as a function of h/2Rg (confinement
parameter), where h is the interparticle distance, i.e., the average distance between the surfa-
ces of neighboring NPs. The same result had been previously observed in several experimen-
ts137,141,157,205. However, most of these works considered NPs of size larger or comparable to
that of the polymers, which could be considered as basically immobile on the time scale of
polymer diffusion: It is therefore surprising to find the same result in our system, in which
the NPs are smaller and diffuse faster than the polymer.

We also found, however, that when temperature is lowered the data don’t fall on the same
master curve anymore. Since a decrease of temperature is basically equivalent to an increase
of the polymer-NP interaction, this result is in contrast with a precedent experimental stu-
dy141, which found that attractive interactions didn’t significantly affect polymer diffusion.
We show that the data can still be made to collapse on a master curve if the 2Rg appearing
in the confinement parameter is replaced with a fit parameter λd. This parameter increases
with decreasing temperature, suggesting that it could be associated to some sort of coopera-
tivity length scale similar to the one found in supercooled liquids257. However, at present
we haven’t been able to find a satisfactory interpretation of this length scale, nor to find a
measurable quantity which could correspond to it.

The problem of nanoparticle diffusion in dense solutions is still far from being completely
understood. In general, a deeper characterization of the structural and dynamic properties of
PNCs at high NP loading is necessary. Moreover, most of the simulation studies up to now
have only considered melt PNCs, and much less attention has been given to solutions. This is
mainly because below a certain monomer density hydrodynamic interactions (HI) cannot be
neglected, but simulating systems with HI is challenging. However, theoretical predictions
exists for the solution regime184, which should be tested in simulations.

In addition to these observations, we believe that the following questions are especially
worth of attention: (1) What is the general mechanism controlling chain expansion/contraction
in a PNC, and how does it depend on σN/2Rg and on the strength of the polymer-NP interac-
tion? (2) In which range of T, ρ, N and εmN (strength of the monomer-NP interaction) does
the diffusion coefficient of the polymers collapse on a master curve when plotted as a func-
tion of h/λd, where λd is a conveniently chosen parameter? Can we formulate a microscopic
model that explains this collapse? What is the interpretation of λd? (3) In which range of T, ρ,
N and εmN does the diffusion coefficient of the NPs collapse on a master curve when plotted
as a function of h/Rh? Can we formulate a microscopic model that explains this collapse?
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(4) Why don’t we observe, in the dilute NP regime, the DN ∝ σ−2
N scaling predicted by the

CPR theory? Finally, even though it was not explored in this work: (5) What is the effect of
a high NP loading on the entanglement mesh in entangled solutions and melts? How does
it depend on σN/2Rg and on the polymer-NP interaction? Previous simulation studies exist,
but only a limited range of sizes and interactions has been explored at present212,225.

structure , dynamics and elasticity of polydisperse disordered networks

In Chapter 6, we studied via molecular dynamics simulations the structural, dynamic and
elastic properties of polydisperse, disordered, defect-free networks. The networks are as-
sembled starting from a mixture of bifunctional and f -functional “patchy” particles (cros-
slinkers)296,299. Thanks to an efficient bond-swapping potential304, an almost-fully bonded
network is formed, with > 99.8% of satisfied bonds and < 4% of the particles belonging to
dangling ends. In order to avoid the exponential relaxation times associated to the dangling
ends, these are removed by hand. Since the assembly of the network reaches equilibrium, the
structure of the network depends only on the crosslink valence f , on the crosslink fraction
c and on the initial density. In particular, the distribution of strand lengths only depends
on f and c: Therefore, networks with the same crosslink fraction and valence but assembled
at different densities will have the same mean strand length Ns, but, in general, a different
mean entanglement length Ne.

Once the network was assembled and the free ends removed, we ran NPT simulations
at T = 1 and P = 0. We found that the dynamics of the network is qualitatively well de-
scribed by the reptation model of Edwards and de Gennes3. In particular, the localization
length λ(n+1)/2 of the central monomers of the strands scales as n1/4, where n is the strand
length, in the limit of long strands, as predicted by the model. We also found that at high
ρ the ratio between the MSD, 〈r2

f (t)〉, and that of the bifunctional particles, 〈r2
2(t)〉, satisfies

to good approximation the relation 〈r2
f (t)〉/〈r2

2(t)〉 ' 2/ f . This relation (which was verified
with very good accuracy for f = 3, 4 and 5) can be understood by considering each monomer
as an harmonic oscillator attached to N identical springs, with N = f for the crosslinks and
N = 2 for the strand monomers. Indeed, the equipartition of energy gives for this simple
system 〈r2

N 〉 ∝ N−1, from which the above mentioned relation follows immediately. At low
density, 〈r2

f (t)〉/〈r2
2(t)〉 approaches the phantom network model (PNM) result: However, it is

not clear whether this is due to the fact that excluded volume interactions become less impor-
tant or to other factors, since the relation 〈r2

f (t)〉/〈r2
2(t)〉 ' 2/ f was also found in simulation

of “phantom” chains in which all the excluded volume interactions are turned off except
those between bonded neighbors. Further investigations are therefore needed in order to cla-
rify this point. Another interesting result from the simulations of these disordered phantom
networks is that the data don’t agree with the PNM prediction for the shear modulus G, whe-
reas the agreement is almost perfect for monodisperse diamond-lattice phantom networks at
high density. These observations suggest that the PNM doesn’t give a good description of
polydisperse, disordered networks, even when the excluded volume interactions are absent.

Regarding the systems with the excluded volume interactions, we also found that the
localization length λ f of the crosslinks scales as ρ−2. Since λ f scales as the tube diameter
de ∝ N1/2

e , this observation suggests that in these networks the entanglement length scales as
Ne ∝ ρ−2. This is also in agreement with the behavior of the shear modulus G as a function
of density and with preliminary results from primitive path analysis.
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In conclusion, we proposed a model of a polymer network which is polydisperse, di-
sordered and without dangling ends, whose global structure is entirely determined by the
crosslink valence f , the crosslink fraction c and the initial density. In particular, the average
strand length is a function only of f and c. Moreover, we have shown that the entanglement
length Ne depends on the system’s density in a rather simple way, i.e., Ne ∝ ρ−2. These pro-
perties give access to disordered, polydisperse polymer networks where the entanglement
length can be tuned by changing the initial density, whereas the mean strand length Ns re-
mains fixed, since it only depends on f and c. These networks are therefore ideal to study
how the properties of the network change from a crosslink-dominated state (Ns < Ne) to an
entanglement-dominated one (Ns > Ne).

nanoparticle diffusion in polymer networks

In Chapter 7 we used molecular dynamics simulations to study the diffusion of spherical
NPs in the same networks which were the subject of Chapter 6. We considered trivalent
networks containing a volume fraction φN < 2% of NPs with diameters ranging from σN = 2
to σN = 8. We have found that the parameter controlling NP diffusion is the confinement ratio
Cr = σN/λ f , where λ f is the localization length of the crosslinks, which is of the order of the
effective tube diameter (λ f ≈ d). Whereas small particles (Cr < 1) can freely diffuse through
the network, larger particles (Cr > 1) are trapped by the entanglement mesh. This results in
a subdiffusive regime in their mean-squared displacement, 〈r2

N(t)〉 ∝ tβ(t) (β < 1), which for
strong confinement (Cr significantly larger than 1) leads to the formation of a plateau. The
height of this plateau, i.e., the localization length of the NPs, is of order λ f , suggesting that
NP localization is mainly controlled by the crosslinks. This is also confirmed by the fact that
the NP diffusion coefficient DN is well described by the expression DN = A exp(−C2

r )/Cr,
with A > 0, which was proposed in Ref. 185 to describe the diffusion coefficient of a NP in a
network with high crosslink density (compared to the density of entanglements).

In addition to these observations, an analysis of the squared displacement of single NP tra-
jectories and of the van Hove function G(r, t) reveals that the dynamics of the NPs is strongly
heterogeneous and non-Gaussian, with the degree of heterogeneity increasing strongly upon
increase of Cr. While some NPs are trapped in the entanglement mesh and vibrate around
their equilibrium with mean amplitude ' λ f , other particles diffuse through a sequence of
jumps from one local entanglement cage to another (hopping motion). It was also revealed
by analysis of the distinct part of the van Hove function, Gd(r, t), that, even in the cases in
which the MSD reaches a diffusive regime, the NPs don’t explore the entirety of the available
space, but only a subset of it. Also the self intermediate scattering function Fs(q, t) shows
an interesting behavior when Cr is increased, going from a quasi-exponential single-step re-
laxation to a double-step relaxation reminiscent of the β and α relaxations is supercooled
liquids. Overall, these results highlight the extremely rich behavior of network nanocompo-
sites, and pave the way to further investigations through simulation studies, in which the
effects of polymer-NP interaction, polymer rigidity and different entanglements-to-crosslinks
ratios could be explored.
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characterizing the mesh size in a polymer solution

In Chapter 8 we dealt with the problem of how to precisely evaluate the geometrical mesh size
ξ in polymer solutions. What may seem like a technicality has actually deep consequences,
since a precise knowledge of ξ is fundamental to predict the diffusivity of nanoparticles
or proteins in polymeric materials. Usually, ξ is estimated either from scaling calculations
or from the monomer-monomer structure factor S(q) or radial distribution function g(r),
usually under the assumption that the small-q (for S(q)) and large-r (for g(r)) region can be
described by the Ornstein-Zernike expression. However, scaling estimates only give ξ up to
an unknown multiplicative factor, and the above mentioned correlation function gives the
typical length scale ξc of the monomer density correlations (density fluctuation correlation
length), which doesn’t necessarily coincide with the intuitive concept of mesh size as the size
of the “holes” in the system.

We proposed therefore a new method to measure ξ, which is based on the concept of pore
size distribution (PSD). Loosely speaking, the PSD gives the distribution of the sizes of the
holes in the system, an information which is precluded to the above mentioned methods. The
geometrical mesh size is identified with the mean value 〈r〉 of the PSD. We considered solu-
tions of monodisperse chains with lengths N = 50, 200 and 1000 in a wide range of monomer
densities ρ, from the dilute to the concentrated regime. We tested two different definitions of
the PSD, one due to Gubbins335 and one due to Torquato203, calculating the respective mean
values 〈r〉G and 〈r〉T . We observed that in the semidilute regime 〈r〉T coincides approxima-
tely with the correlation length ξc. Moreover, the ratio 〈r〉G/〈r〉T is approximately equal to
2, and depends very weakly on ρ. For both definitions of the PSD, we obtained the expected
density scalings 〈r〉 ∝ ρ−ν/(3ν−1) in the semidilute regime and 〈r〉 ∝ ρ−1/3 in the dilute re-
gime, showing that it is sensible to identify 〈r〉 with the geometrical mesh size. We argued,
however, that Gubbins’s PSD gives a more immediate and easy to interpret information on
the actual size of the pores, and therefore we suggest to use Gubbins’s definition (although
slightly more cumbersome to calculate) for most applications.

We then compared our results for Torquato’s PSD with analytical predictions for systems
of spheres, finding that it is possible to map a polymer solution on a system of hard or over-
lapping spheres with effective radius Reff and effective density ρeff. Based on an extrapolation
of the available data, we made the prediction that in the semidilute regime, for very large N
we would obtain Reff ∝ ξ ∝ ρ−ν/(3ν−1) and ρeff ∝ ξ−3 ∝ ρ3ν/(3ν−1). This ansatz is motivated
by the fact that in the semidilute regime the only relevant length scale in the system is ξ, and
since the PSD is a purely geometrical quantity it must scale as ξ. Finally, we have calculated
〈r〉T in the limit ρeffR3

eff → 0, where the hard spheres and the overlapping spheres models
give the same result, and showed that if one assumes that Reff = Rg (radius of gyration) and
ρeff = ρ/N a very good agreement with the measured 〈r〉T is obtained up to densities much
higher than the overlap density. This result allows to estimate 〈r〉T with very good accuracy
by only knowing Rg, ρ and N. Moreover, since 〈r〉G/〈r〉T ' 2 as discussed above, this result
can also be used to estimate 〈r〉G.

The method we proposed allows to estimate the geometrical mesh size with great accura-
cy if the positions of the monomers are known. Moreover, it gives access to the distribution of
mesh sizes (the PSD), whereas scaling estimates and measurements of the correlation length
only give a single length scale. The range of applicability of the PSD method to evaluate the
mesh size is very broad, and by no means limited to polymer solutions. Moreover, it can also
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be extended to polymer networks and gels. We point out, however, that in gels there exist
another relevant “mesh size”, which is related to the average distance between neighboring
crosslinks and is in general quite different from ξ 353. If, for example, a polymer melt is cros-
slinked, one expects the structural properties, and therefore ξ, to remain basically unchanged
with respect to the un-crosslinked system76. However, the diffusivity of a spherical probe
particle will change significantly if the particle diameter is comparable to the average distan-
ce between the crosslinks. The same is of course true for entangled polymer melts, where
ξ ' 0 and the relevant parameter controlling the diffusion of particles and the mechanical
properties is nothing else than the diameter of the reptation tube3, since on timescales shorter
than the entanglement relaxation time the entanglements effectively act as crosslinks185,191.
Another factor which should be taken into account is that the PSD does not depend on the
flexibility of the polymers, although in reality this can have a very strong influence on the
diffusion of nanoparticles in polymeric systems. For example, it has recently been shown in
simulations that increasing the chain rigidity will decrease the diffusivity of nanoparticles in
polymer solutions236. This, however, is also not accounted for in estimates based on scaling
predictions and on measurements of the correlation length, which in addition only give ac-
cess to an average mesh size, and not to the whole distribution. To summarize, the method
which we have proposed to measure the mesh size should represent a substantial improve-
ment over conventional methods such as scaling estimates and methods which identify the
mesh size with the correlation length. It will be interesting, in further studies, to address the
problem of characterizing the relevant mesh size in networks and gels and understanding the
role played by polymer flexibility.



R É S U M É E T C O N C L U S I O N S

Dans cette thèse, j’ai montré comment les simulations de dynamique moléculaire peuvent
être utilisées pour acquérir une compréhension approfondie des nanocomposites à base de
polymères (NCP), qui sont des systèmes à base de polymères contenant des nanoparticules
(NP). En particulier, nous nous sommes concentrés sur le cas des NP sphériques, dispersées
soit dans des solutions denses (Ch. 5) soit dans des réseaux réticulés (Ch. 7). En outre, une
partie importante de ce travail a été consacrée à la caractérisation des propriétés statiques
et dynamiques de ces systèmes, en particulier la taille de maille des solutions de polymères
(Ch. 8) et les propriétés dynamiques des réseaux (Ch. 6). Nous présentons ici un bref résumé
de la thèse, en soulignant les principaux résultats et en discutant des questions encore en
suspens et des axes de recherche futurs possibles dans le domaine des NCP.

structure et dynamique d’un ncp

Dans le chapitre 5, nous avons étudié les propriétés statiques et dynamiques d’une solution
de polymères dense non enchevêtrée contenant des NP. Alors que la plupart des études par
simulation précédentes portaient sur le régime des faibles fractions volumiques de NP φN ,
nous avons considéré une très large gamme de valeurs φN , allant de φN ' 10−4 à φN ' 0, 5.
Nous avons également considéré une large gamme de diamètres de NP σN , de σN = σ

(taille du monomère) à σN ' Rg ' 6σ (rayon de giration du polymère). Le régime de taille
σN . 2Rg, appelé régime "nanoparticule" ou "protéine", est le plus difficile à aborder sur le
plan théorique, car l’action des polymères sur les NP ne peut être facilement décrite par un
potentiel effectif comme dans la limite "colloïde" σN � 2Rg. Afin de nous assurer que les NP
sont uniformément dispersées dans la matrice polymère et ne forment pas d’agrégats, nous
avons introduit une interaction faiblement attractive entre les NP et les monomères.

En accord avec les observations expérimentales précédentes140,159,161 et les prédictions
théoriques164, nous avons constaté que des NP uniformément dispersées de taille σN > σ

causent un gonflement des chaînes, agissant donc comme un bon solvant. Nous avons aussi
constaté, cependant, que les NP de la taille des monomères (σN = σ) causent une contraction
des chaînes. Nous avons interprété ces comportements comme résultant d’une concurrence
entre le volume exclu (effet entropique) et l’interaction monomère-NP attractive (effet enthal-
pique). Lorsqu’une grosse NP entre dans le volume occupé par une chaîne, la NP induit
un gonflement local de la chaîne en l’obligeant à prendre un chemin moins tortueux. Les
petites NP, par contre, s’intègrent facilement dans le volume occupé par la chaîne, où elles se
répartissent uniformément et provoquent une contraction de la chaîne, agissant comme un
potentiel d’attraction effectif entre les monomères.. Il y a donc un “diamètre critique des NP”
(dépendant du modèle) σ∗N tel que la chaîne se dilate pour σN > σ∗N , alors qu’elle se contracte
pour σN < σ∗N . A notre connaissance, c’est la première fois que cet effet est observé. Nous
notons que la phénoménologie décrite ci-dessus est probablement fausse pour les NP plus
grandes que les polymères (σN > 2Rg) : Dans ce cas, la chaîne pourrait être partiellement
"aplatie" à la surface des NP et son Rg diminuerait en conséquence, puisque la taille d’une
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chaîne réelle gonflée en deux dimensions serait de N3/4.

À faible fraction volumique, le coefficient de diffusion DN des NP ne suit pas la relation
de Stokes-Einstein (SE), c.-à-d. DN ∝ kBT/ησN , en accord qualitatif avec la théorie CPR184.
(Sec. 4.2.2). Même si la relation de SE est valide pour σN > 2Rg (comme le révèlent les simu-
lations pour des NP de taille σN = 10, 12 et 14), on ne trouve pas, pour σN < 2Rg, la relation
DN ∝ σ−2

N prédite par la théorie CPR. Il y a plusieurs raisons possibles à cet écart, comme les
effets inertiels du mouvement des NP ou l’absence d’interactions hydrodynamiques dans nos
simulations. Nous notons, cependant, que la relation DN ∝ σ−2

N devrait fonctionner en utili-
sant le diamètre hydrodynamique σh, qui est cependant difficile à définir puisque la relation de
SE n’est pas valide. Nous avons testé différentes définitions de σh, ce qui a permis de montrer
que l’accord entre les données et la théorie dépend assez significativement de la définition
utilisée.

En ce qui concerne la dynamique des polymères, nous avons constaté que le coefficient
de diffusion réduit des polymères, Dp/Dp0, suit une courbe maîtresse lorsqu’il est tracé en
fonction de h/2Rg (paramètre de confinement), où h est la distance entre les particules, c’est-
à-dire, la distance moyenne entre les surfaces de NP voisines. Le même résultat avait déjà
été observé dans plusieurs expériences137,141,157,205. Cependant, la plupart de ces travaux
considéraient des NP de taille supérieure ou comparable à celle des polymères, qui pouvaient
donc être considérées comme essentiellement immobiles sur l’échelle de temps de diffusion
des polymères : il est donc surprenant de trouver le même résultat dans notre système, dans
lequel les NP sont plus petites et diffusent plus rapidement que le polymère.

Nous avons également constaté que lorsqu’on abaisse la température, les données ne
suivent plus la même courbe maîtresse. Puisqu’une baisse de température équivaut fonda-
mentalement à une augmentation de l’interaction polymère-NP, ce résultat contraste avec une
étude expérimentale précédente141, qui a montré que des interactions attractives n’affectaient
pas significativement la diffusion des polymères. Nous montrons que les données aux diffé-
rentes températures peuvent suivre une courbe maîtresse à condition de remplacer, dans le
paramètre de confinement, 2Rg par λd où λd est un paramètre d’ajustement. Ce paramètre
augmente quand la température diminue, ce qui suggère qu’il pourrait être associé à une
échelle de longueur de coopérativité. Cependant, à l’heure actuelle, nous n’avons pas été en
mesure de trouver une interprétation satisfaisante de cette échelle de longueur, ni de trouver
une quantité mesurable qui pourrait lui correspondre.

Le problème de la diffusion des nanoparticules dans les solutions denses est encore loin
d’être complètement compris. En général, une caractérisation plus approfondie des proprié-
tés structurales et dynamiques des NCP à forte fraction volumique de NP est nécessaire. De
plus, la plupart des études par simulation n’ont jusqu’à présent pris en compte que les NCP
dans le cas de fondus de polymères, et beaucoup moins d’attention a été accordée aux solu-
tions de polymères. La raison principale vient du fait qu’en dessous d’une certaine densité
de monomères, les interactions hydrodynamiques (IH) ne peuvent pas être négligées, or la
simulation de systèmes avec IH est difficile. Toutefois il existe des prédictions théoriques
pour les solutions de polymères, qui devraient être testées par simulation.

En complément de ces observations, nous pensons que les questions suivantes méri-
tent une attention particulière : (1) Quel est le mécanisme général de contrôle de l’expan-
sion/contraction de la chaîne dans un NCP, et comment dépend-il de σN/2Rg et de la force
de l’interaction polymère-NP ? (2) Dans quelle plage de T, ρ, N et εmN (force de l’interac-
tion monomère-NP) le coefficient de diffusion des polymères suit-il une courbe maîtresse
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lorsqu’il est représenté en fonction de h/λd, où λd est un paramètre choisi de façon adéquate
? Peut-on formuler un modèle microscopique qui explique l’origine de cette courbe maîtresse
? Quelle est l’interprétation de λd ? (3) Dans quelle plage de T, ρ, N et εmN le coefficient de
diffusion des NP suit-il une courbe maîtresse lorsqu’il est représenté en fonction de h/Rh ?
Peut-on formuler un modèle microscopique qui explique cette courbe maîtresse ? (4) Pour-
quoi n’observe-t-on pas, dans le régime où les NP sont diluées, la loi d’échelle DN ∝ σ−2

N
prévue par la théorie CPR ? Enfin, même si ces questions n’ont pas été explorée dans ce tra-
vail : (5) Quel est l’effet d’une fraction volumique élevée de NP sur les enchevêtrements dans
les solutions de polymères enchevêtrées et les fondus ? Comment cela dépend-il de σN/2Rg

et de l’interaction polymère-NP ? Des études par simulation antérieures existent, mais seule
une gamme limitée de tailles et d’interactions a été explorée à ce jour212,225.

structure , dynamique et élasticité des réseaux polydisperses et désordon-
nés

Dans le chapitre 6, nous avons étudié, par simulation de dynamique moléculaire, les pro-
priétés structurales, dynamiques et élastiques de réseaux polydisperses, désordonnés et sans
défaut. Les réseaux sont assemblés à partir d’un mélange de particules bifonctionnelles et
f -fonctionnelles “patchy” (crosslinkers)296,299. Grâce à un potentiel qui permet des échanges
de liaisons efficaces304, un réseau presque entièrement lié se forme, avec > 99.8% de liaisons
formées et < 4% de particules appartenant à des extrémités libres. Afin d’éviter les temps de
relaxation exponentiels associés aux extrémités libres, celles-ci sont supprimées. Comme le
réseau ainsi assemblé est à l’équilibre, la structure du réseau dépend uniquement de la valen-
ce des crosslinkers f , de la fraction de crosslinkers c et de la densité initiale. En particulier,
la distribution des longueurs de brins dépend uniquement de f et de c : par conséquent, les
réseaux ayant la même fraction de particules f -fonctionnelles et la même valence moyenne,
mais assemblés à des densités différentes, auront la même longueur moyenne de brin Ns,
mais, en général, une longueur moyenne d’enchevêtrement différente Ne.

Une fois le réseau assemblé et les extrémités libres enlevées, nous avons exécuté des si-
mulations NPT à T = 1 et P = 0. Nous avons constaté que la dynamique du réseau est
qualitativement bien décrite par le modèle de reptation d’Edwards et de Gennes3. En parti-
culier, la longueur de localisation λ(n+1)/2 des monomères centraux des brins est de n1/4, où
n est la longueur du brin, dans la limite de brins longs, comme prévu par le modèle. Nous
avons aussi trouvé qu’à haute densité ρ le rapport entre le MSD, 〈r2

f (t)〉, et celui des particu-

les bifonctionnelles, 〈r2
2(t)〉, est bien approximée par la relation 〈r2

f (t)〉/〈r2
2(t)〉 ' 2/ f . Cette

relation (qui a été vérifiée avec une très bonne précision pour f = 3, 4 et 5) peut être comprise
en considérant chaque monomère comme un oscillateur harmonique attaché à N ressorts
identiques, avec N = f pour les crosslinks et N = 2 pour les monomères bifonctionels. En
effet, l’équipartition de l’énergie donne pour ce système simple 〈r2

N 〉 ∝ N−1, dont la relation
mentionnée ci-dessus découle immédiatement. À faible densité, 〈r2

f (t)〉/〈r2
2(t)〉 donne un

résultat proche de celui du modèle de réseau fantôme (MRF): Cependant, il n’est pas clair
si cela est dû au fait que les interactions de volume exclu deviennent moins importantes ou
à d’autres facteurs, puisque la relation 〈r2

f (t)〉/〈r2
2(t)〉 ' 2/ f a également été trouvée dans

la simulation des chaînes "fantômes" où toutes les interactions de volume exclu sont étein-
tes sauf celles entre voisins liés. Des investigations complémentaires sont donc nécessaires
pour clarifier ce point. Un autre résultat intéressant des simulations de ces réseaux fantô-
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mes désordonnés est que les données ne concordent pas avec la prédiction du MRF pour le
module de cisaillement G, alors que l’accord est presque parfait pour les réseaux fantômes
monodisperses à réseau diamant à haute densité. Ces observations suggèrent que le MRF ne
donne pas une bonne description des réseaux polydispersés et désordonnés, même lorsque
les interactions de volume exclu sont absentes.

En ce qui concerne les systèmes avec interactions de volume exclu, nous avons également
constaté que la longueur de localisation λ f des crosslinks varie comme ρ−2. Puisque λ f est
proportionnel au diamètre du tube de ∝ N1/2

e , cette observation suggère que dans ces réseaux
la longueur d’enchevêtrement varie comme Ne ∝ ρ−2. Ceci est également en accord avec le
comportement du module de cisaillement G en fonction de la densité et avec les résultats
préliminaires de la primitive path analysis (analyse de la trajectoire primitive).

En conclusion, nous avons proposé un modèle de réseau de polymères polydispersé, dé-
sordonné et sans extrémités libres, dont la structure globale est entièrement déterminée par
la valence des crosslinkers f , la fraction de crosslinkers c et la densité initiale. En particulier,
la longueur moyenne des brins est une fonction uniquement de f et c. De plus, nous avons
montré que la longueur d’enchevêtrement Ne est contrôlée par la densité du système de façon
assez simple, c’est-à-dire Ne ∝ ρ−2. Ces propriétés donnent accès à des réseaux de polymères
polydispersés désordonnés où la longueur d’enchevêtrement peut être réglée en modifiant
la densité initiale, alors que la longueur moyenne des brins Ns reste fixe, puisqu’elle ne dé-
pend que de f et c. Ces réseaux sont donc pertinents pour étudier comment les propriétés
du réseau passent d’un état dominé par la réticulation (Ns < Ne) à un état dominé par les
enchevêtrements (Ns > Ne).

diffusion de nanoparticules dans des réseaux de polymères

Dans le chapitre 7 nous avons utilisé des simulations de dynamique moléculaire pour étudier
la diffusion de NP sphériques dans les mêmes réseaux qui ceux du chapitre 6. Nous avons
considéré des réseaux trivalents contenant une fraction volumique φN < 2% de NPs avec des
diamètres allant de σN = 2 à σN = 8. Nous avons constaté que le paramètre contrôlant la
diffusion des NP est le ratio de confinement Cr = σN/λ f , où λ f est la longueur de localisation
des particules f -fonctionnelles, qui est de l’ordre du diamètre effectif du tube (λ f ≈ d).
Alors que les petites particules (Cr < 1) peuvent diffuser librement à travers le réseau, les
particules plus grosses (Cr > 1) sont piégées par le maillage du réseau. Il en résulte un
régime sous-diffusif dans leurs déplacements au carré moyen (mean-squared displacement,
MSD), 〈r2

N(t)〉 ∝ tβ(t) (β < 1), ces derniers présentant un plateau pour un confinement fort (Cr

nettement supérieur à 1). La hauteur de ce plateau, c’est-à-dire la longueur de localisation
des NP, est de l’ordre de λ f , ce qui suggère que la localisation des NP est principalement
contrôlée par les crosslinks. Ceci est également confirmé par le fait que le coefficient de
diffusion des NP DN est bien décrit par l’expression DN = A exp(−C2

r )/Cr, avec A > 0, qui
a été proposée dans Ref. 185 pour décrire le coefficient de diffusion des NP dans un réseau à
forte densité de réticulation (comparée à la densité des enchevêtrements).

En complément de ces observations, une analyse des MSD des NP prises individuellement
et de la fonction de van Hove G(r, t) révèle que la dynamique des NP est fortement hétéro-
gène et non Gaussienne, le degré d’hétérogénéité augmentant fortement avec l’augmentation
de Cr. Alors que certaines NP sont piégées dans le maillage et vibrent autour de leur position
d’équilibre avec une amplitude moyenne ' λ f , d’autres particules diffusent via une séquence
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de sauts d’une cage locale à une autre (mouvement par sauts). L’analyse de la partie distincte
de la fonction de van Hove, Gd(r, t) a également révélé que, même dans les cas où les MSD
atteignent un régime diffusif, les NP n’explorent pas la totalité de l’espace disponible, mais
seulement une partie de celui-ci. De plus, la fonction de diffusion intermédiaire "self" Fs(q, t)
montre un comportement intéressant lorsque Cr est augmenté, passant d’une relaxation quasi
exponentielle en une seule étape à une relaxation en deux étapes rappelant les relaxations β

et α des liquides surfondus. Dans l’ensemble, ces résultats mettent en évidence le comporte-
ment extrêmement riche des nanocomposites constitués d’un réseau de polymères et ouvrent
la voie à d’autres études par simulation, dans lesquelles les effets de l’interaction polymère-
NP, de la rigidité des polymères et des différents ratios entre crosslinks et enchevêtrements
pourraient être étudiés.

caractérisation du maillage dans une solution de polymères

Dans le chapitre 8 nous avons abordé le problème de l’évaluation précise de la taille carac-
téristique du maillage géométrique ξ dans les solutions de polymères. Ce qui peut paraître
comme un point technique a en fait des conséquences profondes, puisqu’une connaissance
précise de ξ est fondamentale pour prédire la diffusivité des nanoparticules ou protéines dans
les matériaux polymères. Habituellement, ξ est estimé soit à partir des calculs de lois d’échel-
le, soit à partir du facteur de structure des monomères S(q) ou de la fonction de distribution
radiale g(r), en supposant généralement que la région des faibles valeurs de q (pour S(q)) et
des grandes valeurs de r (pour g(r)) peut être décrite par l’expression de Ornstein-Zernike.
Cependant, les estimations à l’aide des lois d’échelle donnent des valeurs de ξ à un facteur
multiplicatif près, et la fonction de corrélation mentionnée ci-dessus donne l’échelle de lon-
gueur typique ξc des corrélations de densité des monomères (longueur de corrélation des
fluctuations de densité), qui ne correspond pas nécessairement à la notion intuitive de taille
de maille comme taille des " trous " dans le système.

Nous avons donc proposé une nouvelle méthode pour mesurer ξ, qui est basée sur le
concept de distribution de tailles de pores (pore-size distribution, PSD). En substance, la
PSD donne accès à la distribution des tailles des trous dans le système, une information
qui n’est pas accessible par les méthodes mentionnées ci-dessus. La taille caractéristique du
maillage géométrique est identifié à la valeur moyenne 〈r〉 de la PSD. Nous avons considéré
des solutions de chaînes monodisperses de longueurs N = 50, 200 et 1000 dans une large
gamme de densités de monomères ρ, du régime dilué au régime concentré. Nous avons testé
deux définitions différentes de la PSD, l’une due à Gubbins335 et l’autre à Torquato203, qui
donnent accès aux valeurs moyennes respectives 〈r〉G et 〈r〉T . Nous avons observé que dans
le régime semi-dilué 〈r〉T coïncide approximativement avec la longueur de corrélation ξc. De
plus, le ratio 〈r〉G/〈r〉T est approximativement égal à 2, et dépend très faiblement de ρ. Pour
les deux définitions de la PSD, nous avons obtenu les lois d’échelle attendues en fonction de
la densité, 〈r〉 ∝ ρ−ν/(3ν−1) dans le régime semi-dilué et 〈r〉 ∝ ρ−1/3 dans le régime dilué, ce
qui montre qu’il est raisonnable d’identifier 〈r〉 avec la taille géométrique caractéristique du
maillage. Nous faisons toutefois remarquer que la PSD de Gubbins fournit une information
plus immédiate et plus facile à interpréter sur la taille réelle des pores, et nous suggérons
donc d’utiliser la définition de Gubbins (bien que légèrement plus lourde à calculer) pour la
plupart des applications.

Nous avons ensuite comparé nos résultats obtenus avec la PSD de Torquato avec les pré-
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dictions analytiques pour des systèmes constitués de sphères. Nous avons montré qu’il est
possible de représenter une solution de polymères par un système de sphères dures ou de
sphères qui se chevauchent avec un rayon effectif Reff et une densité effective ρeff. En extra-
polant les données disponibles, nous avons prédit que dans le régime semi-dilué, pour les
valeurs de N élevées, nous obtiendrions Reff ∝ ξ ∝ ρ−ν/(3ν−1) et ρeff ∝ ξ−3 ∝ ρ3ν/(3ν−1). Ceci
est motivé par le fait que dans le régime semi-dilué, la seule échelle de longueur pertinente
dans le système est ξ, et puisque la PSD est une grandeur purement géométrique, elle doit
avoir le même comportement que ξ. Enfin, nous avons calculé 〈r〉T dans la limite ρeffR3

eff → 0,
où les sphères dures et les modèles de sphères chevauchantes donnent le même résultat. Cela
nous a permis de montrer que si on suppose que Reff = Rg (rayon de giration) et ρeff = ρ/N,
on obtient, pour les densités nettement supérieures à la densité de recouvrement, un très bon
accord avec la valeur mesurée de 〈r〉T . Ce résultat permet d’estimer 〈r〉T avec une très bonne
précision en ne connaissant que Rg, ρ et N. De plus, puisque 〈r〉G/〈r〉T ' 2 comme discuté
ci-dessus, ce résultat peut aussi être utilisé pour estimer 〈r〉G.

La méthode que nous avons proposée permet d’estimer la taille caractéristique du mailla-
ge géométrique dû aux polymères avec une grande précision si la position des monomères
est connue. De plus, il donne accès à la distribution des tailles de mailles (PSD), alors que les
valeurs déduites des lois d’échelle et les mesures de la longueur de corrélation ne donnent
qu’une seule échelle de longueur. Le champ d’application de la méthode PSD pour évaluer
le maillage est très large et ne se limite en aucun cas aux solutions de polymères. En effet,
cette méthode peut également être étendue aux réseaux de polymères et aux gels. Nous sou-
lignons, cependant, que dans les gels, il existe une autre "taille de maille" pertinente, qui est
liée à la distance moyenne entre les points de réticulation voisins et qui est en général très
différente de ξ 353. Si, par exemple, un polymère fondu est réticulé, on s’attend à ce que les
propriétés structurales, et donc ξ, restent pratiquement inchangées par rapport au système
non réticulé76. Cependant, la diffusivité d’une particule sphérique changera de façon signifi-
cative si le diamètre des particules est comparable à la distance moyenne entre les points de
réticulation. Il en va de même pour les polymères fondus enchevêtrés, où ξ ' 0 et le para-
mètre pertinent contrôlant la diffusion des particules et les propriétés mécaniques n’est autre
que le diamètre du tube de reptation3, puisque sur des échelles de temps plus courtes que
le temps de relaxation des enchevêtrements, ces derniers agissent effectivement comme des
points de réticulation185,191. Un autre facteur à prendre en compte est le fait que la PSD ne
dépend pas de la flexibilité des polymères, bien qu’en réalité cela puisse avoir une très forte
influence sur la diffusion des nanoparticules dans les systèmes de polymères. Par exemple, il
a récemment été démontré par des simulations que l’augmentation de la rigidité de la chaîne
diminue la diffusivité des nanoparticules dans les solutions de polymères236. Cette rigidité
n’est toutefois pas non plus prise en compte dans les estimations basées sur les lois d’échelle
et dans les mesures de la longueur de corrélation, qui ne donnent en outre accès qu’à une
valeur moyenne des tailles des mailles, et non à la distribution de ces tailles. En résumé, la
méthode que nous avons proposée pour caractériser la géométrie du maillage devrait repré-
senter une amélioration substantielle par rapport aux méthodes conventionnelles telles que
les estimations basées sur les lois d’échelle et les méthodes qui identifient la taille caractéristi-
que des mailles avec la longueur de corrélation. Il sera intéressant, dans des études futures,
de trouver une façon pertinente de caractériser le maillage dans le cas de réseaux et de gels
et de comprendre le rôle joué par la flexibilité des polymères.



A
T H E O R N S T E I N - Z E R N I K E C O R R E L AT I O N F U N C T I O N

In this section, we will show how to derive the Ornstein-Zernike expression for the structure
factor (Eq. (46)) and for the radial distribution function (Eq. (47)). Our presentation is based
on the one of Ref. 40.

For a generic system of M particles with position vectors r1, . . . , rM and number density
ρ, we can define the structure factor S(q), Eq. (32), and the pair correlation function1,

g(r) ≡ 1
ρM

M

∑
k=1
j 6=k

〈δ(r + rk − rj)〉, (A.1)

where δ is Dirac’s delta distribution We note that the radial distribution function g(r), Eq. (34),
is nothing else than the spherical average of the pair correlation function.
It can be shown that S(q) and g(r) are connected by the following relation1 (see also Eq. (35)):

S(q) = 1 + ρh̃(q) + (2π)3δ(q), (A.2)

where h̃(q) is the Fourier transform of the function h(r) ≡ g(r)− 1 (net correlation function).
The term containing the δ function only gives a contribution at q = 0 (infinite wavelength),
and we will therefore ignore it in the following. We have therefore

S(q) = 1 + ρ
∫

h(r)e−iq·rdr, (A.3)

and the inverse relation

h(r) =
1

(2π)3ρ

∫
[S(q)− 1]eiq·rdq. (A.4)

The function h(r) also satisfies the Ornstein-Zernike integral equation1,

h(r1 − r2) = c(r1 − r2) + ρ
∫

c(r1 − r3)h(r3 − r2)dr3, (A.5)

where c(r) is the so-called direct correlation function. Sometimes, Eq. (A.5) is taken as the very
definition of c; however, other definitions of c(r) are possible, which give to this function a
direct physical meaning1.
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On taking the Fourier transform of both sides of Eq. (A.5), we get

1 + ρh̃(q) =
1

1− ρc̃(q)
. (A.6)

From Eqs. (A.6) and (A.2) we get, neglecting the δ term,

S(q) =
1

1− ρc̃(q)
. (A.7)

Let us now assume that c̃(q) has a Taylor expansion for q → 0 (where q = |q|). Since c(r) is
an even function, the expansion of c̃(q) can only contain even powers of q:

c̃(q) = c̃(0)[1− aq2 +O(q4)] (A.8)

We thus readily obtain

S(q) ' S(0)
1 + (qξ)2 , (A.9)

where we have written S(q) to highlight the fact that S only depends on the magnitude of q.
The parameters S(0) and ξ are given by

S(0) =
1

1− ρc̃(0)
; ξ2 =

ρc̃(0)a
1− ρc̃(0)

. (A.10)

From Eq. (A.4), we readily obtain, using the fact that S is independent on the direction of q,

h(r) ' 4π

(2π)3ρ

∫ ∞

0

sin(qr)
qr

S(q)q2dq− δ(r)
ρ

=
S(0)

4πξ2ρ

(
e−r/ξ

r

)
− δ(r)

ρ
. (A.11)

The δ term appearing in Eq. (A.11) should be considered an artifact coming from the fact
that we have performed a low-wavevector approximation of S, and should be disregarded.
However, we note that it is necessary if one wants to use Eq. (A.3) to formally transform back
the expression (A.11) and obtain (A.9). We thus finally obtain, for large r,

g(r) = 1 + h(r) ' 1 +
S(0)

4πξ2ρ

(
e−r/ξ

r

)
. (A.12)



B
C A L C U L AT I O N O F T H E M S D I N T H E P H A N T O M N E T W O R K M O D E L

Assuming that the network has a Bethe lattice structure and that all the strands are ideal and
have the same length n, the phantom network model (PNM) predicts that the MSD of the
crosslinks is74

〈r2
f (t)〉 = 〈R2

e (n)〉0
f − 1

f ( f − 2)
, (B.13)

where 〈R2
e (n)〉0 is the mean-squared end-to-end distance of the strands in the unperturbed

state, i.e., it is the value 〈R2
e (n)〉0 would have if the strand was not attached to the network.

Since the strands are assumed to be ideal, 〈R2
e (n)〉0 = Cnn`2, where ` is the bond length and

Cn > 0 .

To calculate the MSD of any given monomer in a strand, we enumerate the strand mono-
mers from i = 1 to i = n, taking in addition i = 0 and i = n + 1 to represent the crosslinks
at the two extremities of the strand (i.e., i ∈ [0, n + 1]). The MSD of the ith monomer in the
strand is then given by the following expression74

〈r2
i (t)〉 = 〈R2

e (n)〉0
[

f − 1
f ( f − 2)

+
ζi(1− ζi)( f − 2)

f

]

= 〈r2
f (t)〉+ 〈R2

e (n)〉0
[

ζi(1− ζi)( f − 2)
f

]
,

(B.14)

where ζi is defined as

ζi ≡
i

n + 1
(0 ≤ ζi ≤ 1). (B.15)

We note that for i = 0, n + 1 we obtain 〈r2
i (t)〉 = 〈r2

f (t)〉, as expected. To obtain the MSD of
the bifunctional particles, we calculate the average of Eq. (B.14) over i, excluding the values
i = 0, n + 1, which correspond to the crosslinks. We have therefore to calculate

n+1

∑
i=0

pi ζi(1− ζi), (B.16)

where
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pi =





0 i = 0, n + 1

1/n otherwise,
(B.17)

since we are neglecting the crosslinks. We thus obtain

n+1

∑
i=0

pi ζi(1− ζi) =
1
n

n

∑
i=1

ζi(1− ζi)

=
1
n

n

∑
i=1

(
i

n + 1

)(
1− i

n + 1

)

=
1

n(n + 1)2

n

∑
i=1

i(n + 1− i)

=
n + 2

6(n + 1)
,

(B.18)

and therefore, from Eq. (B.14),

〈r2
2(t)〉 = 〈r2

f (t)〉+ 〈R2
e (n)〉0

(
f − 2

f

)(
n + 2

6(n + 1)

)
. (B.19)

We note that since 〈R2
e (n)〉0 ∝ n for an ideal chain, the fluctuations are always larger for

longer strands. We thus obtain

〈r2
f (t)〉
〈r2

2(t)〉
=

[
1 +

( f − 2)2

f − 1

(
n + 2

6(n + 1)

)]−1

(B.20)

In the limit of large n, Eq. (B.20) becomes

〈r2
f (t)〉
〈r2

2(t)〉
=

6( f − 1)
f ( f + 2)− 2

(n large). (B.21)

From Eq. (B.21) we obtain 12
13 ' 0.92 for f = 3, 9

11 ' 0.82 for f = 4 and 8
11 ' 0.73 for f = 5.

We also observe that for large f , one obtains

〈r2
f (t)〉
〈r2

2(t)〉
' 6

f
(n, f large). (B.22)
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M E A S U R E M E N T O F T H E S H E A R M O D U L U S

To measure the shear modulus G of the polymer networks, the method described in Ref. 300

is used. In this Section, we briefly describe this method, following the presentation of Ref.
300.

One starts by defining the deformation gradient tensor F̂, which is defined with respect to
a stress-free reference configuration. By taking as a reference configuration Lα = 〈Lα〉, where
Lα (α = x, y, z) are the box sides, one obtains

F̂ ≡




Lx
〈Lx〉 0 0

0 Ly
〈Ly〉 0

0 0 Lz
〈Lz〉


 . (C.23)

The Green-Lagrange strain tensor Ĉ ≡ F̂T F̂ can then be calculated:

Ĉ =




(
Lx
〈Lx〉

)2
0 0

0
(

Ly
〈Ly〉

)2
0

0 0
(

Lz
〈Lz〉
)2




. (C.24)

One can then build the following strain invariants:

J =
√

det(Ĉ) (C.25a)

I1 = tr(Ĉ)J−2/3 (C.25b)

I2 =
1
2
[tr2(Ĉ)− tr(ĈTĈ)]J−4/3. (C.25c)

(C.25d)

The probability distributions P(J), P(I1) and P(I2) are then calculated. Following the Mooney-
Rivlin theory of rubber elasticity5,354, the energy due to thermal fluctuations can be written
as a function of the strain invariants:

E(J, I1, I2) = E0 + W(J) + W(I1) + W(I2)

= E0 + V
[

K
2
(J − 1)2 + c10(I1 − 3) + c01(I2)

] (C.26)
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where E0 is the energy of the reference configuration, V ≡ 〈Lx〉〈Ly〉〈Lz〉, K is the bulk modu-
lus (see Sec 3.5.2) and 2(c01 + c10) = G (here cij are the elements of the Ĉ tensor). Assuming
that the deformations are statistically independent, one can approximate the W functions
with the potentials of mean force extracted from the respective probability distributions:

W(X) = −kBT ln[P(X)] + const. (X = J, I1, I2). (C.27)

The approximated potentials of mean force are then fitted to the functional form

W(X) = MX(X− X0)
γ + AX , (C.28)

where AX are constants, γ = 2 for X = J and γ = 1 for X = I1, I2. The shear modulus is then
estimated as

G =
2(MI1 + MI2)

V
. (C.29)

It is also possible to estimate the bulk modulus K as

K =
2MJ

V
, (C.30)

or equivalently from the density fluctuations, as the inverse of the isothermal compressibility
κT

1

K = κ−1
T =

(
kBT
〈V2〉 − 〈V〉2
〈V〉

)−1

. (C.31)

where V = LxLyLz. Finally, the Young modulus can then be obtained from Eq. (91).
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