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ABSTRACT: The need for efficient probing, sensing, and control
of the bioactivity of biomolecules (e.g., albumins) has led to the
engineering of new fluorescent albumins’ markers fulfilling very
specific chemical, physical, and biological requirements. Here, we
explore acetone-derived polymer dots (PDs) as promising
candidates for albumin probes, with special attention paid to
their cytocompatibility, two-photon absorption properties, and
strong ability to non-destructively interact with serum albumins.
The PDs show no cytotoxicity and exhibit high photostability.
Their pronounced green fluorescence is observed upon both one-
photon excitation (OPE) and two-photon excitation (TPE). Our
studies show that both OPE and TPE emission responses of PDs
are proteinaceous environment-sensitive. The proteins appear to constitute a matrix for the dispersion of fluorescent PDs, limiting
both their aggregation and interactions with the aqueous environment. It results in a large enhancement of PD fluorescence.
Meanwhile, the PDs do not interfere with the secondary protein structures of albumins, nor do they induce their aggregation,
enabling the PD candidates to be good nanomarkers for non-destructive probing and sensing of albumins.
KEYWORDS: polymer dots, non-toxic nanomaterials, serum albumins, two-photon excited fluorescence, fluorescence enhancement,
albumin’s probe, nanomarkers, biosensing

■ INTRODUCTION
Serum albumins belong to a multigene family of extracellular
plasma proteins in the vertebrates’ cardiovascular system,
having numerous physiological functions. As the carrier
proteins with multiple binding centers, serum albumins play
a crucial role in the versatile transport and distribution of a
variety of endogenous and exogenous chemical species, such as
small organic compounds, long-chain fatty acids, metal ions,
and others.1−3 Moreover, serum albumins account for the
displacement of water molecules in the bloodstream, which
influences the colloid osmotic pressure.1 The anomalies in the
contents of albumins in the blood plasma (e.g., hypo- or
hyperalbuminemia) can cause significant health issues, for
instance, diabetes and cirrhosis, whose diagnosis is essential for
the implementation of effective treatment.4−6 The most
representative blood plasma proteins, human serum albumin
(HSA) and bovine serum albumin (BSA), have been therefore
extensively studied in terms of biochemical and pharmaceutical
assays, including bioimaging,7−9 biosensing,8,10 and drug
delivery systems.11

Sensing, probing, and control of the bioactivity of supra-
molecular agents upon external stimuli are currently being

extensively developed. A particular importance is given to
optical detection through such effects as absorption and one-
and two-photon excitation (OPE and TPE, respectively)
emission processes. In the case of HSA/BSA albumins,
considerable attention has been paid to the study of
interactions between proteins and optically active agents
(probes) such as organic molecules,12−15 supramolecular
assemblies,16 inorganic nanostructures,8,17−23 metallic nano-
particles,24,25 and carbon dots.26,27

The essential biological, chemical, and optical aspects that
have to be considered when designing relevant optical,
fluorescent probes are listed below:16,28

(i) They should provide remarkable OPE and TPE
fluorescence activity.
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(ii) They should absorb/emit in the red to near-infrared
(NIR) wavelength range (the first optical window).29

(iii) The probe’s fluorescence response toward the titrating
albumins’ sample should be strong and clear to enable a
facile detection.

(iv) They need to form highly stable dispersions/solutions in
aqueous media at physiological conditions and exhibit
resistance toward ionic species.

(v) For medical and pharmaceutical applications, they
should be cytocompatible and photostable.

(vi) Ideally, novel luminescent agents should be fabricated by
simple, efficient, and cost-effective methods.

In the present paper, we focus on the merits of the use of a
specific class of carbon-based nanomaterials, polymer dots
(PDs), as fluorescent probes. Various carbon dots have been
extensively explored over the last 2 decades and have become
promising alternatives for organic dyes and inorganic semi-
conductor nanomaterials due to their interesting optical
properties, long-term colloidal stability, excellent biocompat-
ibility, low cytotoxicity, high photostability, and low-cost
fabrication routes. Among the vast family of carbon dots,
luminescent PDs are specific due to their mostly amorphous
internal design. In contrast to graphitic carbon nanomaterials,
PDs are usually composed of aliphatic chains, rich in diverse
polar moieties, and assembled in a spherical shape by effective
cross-linking, involving covalent bonding as well as weak
interactions (e.g., hydrogen bonding and van der Waals
forces). Recently, we reported a new, gram-scale synthesis
route to produce acetone-derived hydrophilic and hydrophobic
PDs featuring bright greenish-blue excitation-dependent
emission and long fluorescence lifetimes (on the order of
nanoseconds).30 In this work, we report on the cytocompat-
ibility, the photostability, and the two-photon absorption
(TPA) properties of the hydrophilic fraction of these PDs,
which we consider to be promising luminescent agents. We
investigated the interactions between PDs and both serum
albumins in colloidal solutions using both OPE and TPE
fluorescence techniques. In the different physiological con-
ditions, substantial enhancements of the fluorescence of PDs in
the presence of globular proteins were observed.

■ EXPERIMENTAL SECTION
Materials. Urea, deuterium oxide, sodium chloride, potassium

chloride, sodium phosphate dibasic, monobasic potassium phosphate,
sodium cacodylate, iron (II) chloride, copper (II) chloride,
magnesium chloride, calcium chloride, sodium hydroxide, and
hydrochloric acid were purchased from Sigma-Aldrich. Lysozyme
(LYS), ovalbumin (OVA), HSA, and BSA in lyophilized powder
forms were also purchased from Sigma-Aldrich. Acetone-based PDs
were fabricated following the mechanism of the base-induced aldol
reaction. The synthesis route and studies of their linear optical and
structural properties were reported in a previous paper.30 Stock
solutions of C1K and C1Na (for samples’ notation, see the
Supporting Information) were prepared in Milli-Q water to reach
the concentration of 0.5 mg/mL. The pH values of these samples
were 7.2 and 7.3, respectively. To obtain the concentration of 10 mM
and pH values equal to 7.2 (sodium cacodylate) and 7.4 (phosphate-
buffered saline, PBS), two buffer solutions in Milli-Q water were
prepared. BSA and HSA were dissolved in three different aqueous
solutions: in Milli-Q water (pH = 7.0), in PBS, and in cacodylate
buffer, to obtain final concentrations of 1 mM. The concentration
values and the purity of proteins were examined using UV−vis
absorption spectroscopy. High-glucose Dulbecco’s modified Eagle’s
medium (DMEM) and trypsin−ethylenediaminetetraacetic acid were
provided by the Laboratory of General Chemistry of the Institute of

Immunology and Experimental Therapy, PAS (Wroclaw, Poland).
Fetal bovine serum (FBS), L-glutamine, and antibiotics (penicillin/
streptomycin mixture) were purchased from BioWest (Nuaille,́
France). Bacterial lipopolysaccharide (LPS) from E. coli (serotype
055:B5) and 3-(4,5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium
bromide (MTT) were obtained from Sigma (St. Louis, MO, USA).

Steady-State Spectroscopy Characterizations. The UV−vis
extinction spectra were recorded on a JASCO V-730 spectropho-
tometer in the 200−800 nm wavelength range, equipped with a
Peltier thermo cell holder to adjust and control the temperature (5−
70 °C). To provide the relevant temperature, the sample was kept in
the cell holder for 300 s before each scan. Changes in OPE emission
spectra were measured on a FluoroMax-4 spectrofluorometer (Horiba
Jobin Yvon) for the selected excitation wavelengths of 350, 377, and
450 nm.30 The OPE excitation−emission maps of free PDs were
determined using the FluoroMax-4 spectrofluorometer. To estimate
absolute fluorescence quantum yields (FQYs), emission and
excitation signals were collected on a custom-built setup, consisting
of an integrating sphere, an FLS 980 Edinburgh Instruments
spectrometer, and a BDL-375-SMN picosecond laser diode (377
nm). The abovementioned fluorescence spectroscopic measurements
were performed at room temperature. The temperature-dependent
OPE emission spectra were recorded upon the excitation at 350, 377,
and 450 nm on an FS5 spectrofluorometer (Edinburgh Instruments).
The experimental setup was equipped with a temperature-controlled
sample holder (SC-25) and a TC 1 temperature controller (Quantum
NorthWest), enabling the temperature to be tuned from 5 to 70 °C.

Time-Resolved Spectroscopy Characterizations. Changes in
fluorescence decays of PDs upon protein addition were recorded
using a time-correlated single-photon counting (TCSPC) setup
(Becker&Hickl GmbH) that contains an Acton SpectraPro SP-2300
monochromator (Princeton Instruments) and a high-speed hybrid
detector HPM-100-50 (Becker&Hickl GmbH) combined with a
DCC-100 card. A BDL-375-SMN picosecond laser diode (20 MHz,
377 nm) was used as the excitation source. Each fluorescence decay
curve was averaged over six accumulations at room temperature.

Multi-Photon Spectroscopy Experiments. Two-photon ex-
cited emission spectra were acquired on a home-built experimental
setup, consisting of a Shamrock 303i spectrometer (Andor) equipped
with a sensitive iDus camera (Andor) and a femtosecond laser system
(Ti/sapphire Chameleon laser, Coherent Inc.) with the repetition rate
of 80 MHz and the pulse duration of ∼120 fs, operating in the range
700−1000 nm. The laser beam power was monitored using a
PM100D handheld optical power and energy meter (Thorlabs). To
minimize undesired effects due to re-absorption and inner filter
effects, the fluorescence was measured for samples at concentrations
corresponding to absorbance values below 0.1 in the excitation and
emission regions. Resistance to photobleaching was evaluated by
monitoring OPE fluorescence spectra at each OPE wavelength.

All spectroscopic characterizations were performed using 10 × 10
× 45 mm quartz cuvettes.

Structural Characterization. The UV circular dichroism (CD)
spectra of native proteins, free PDs, and the corresponding PDs−
proteins assemblies were measured on a Jasco J-1500 spectropo-
larimeter (JascoInc, USA) equipped with a Jasco Peltier-type
temperature controller (CDF-426S/15), following the experimental
protocol described in the paper of Greenfield.31 Prior to the
measurements, the sample chamber was deoxygenated with dry
nitrogen. These conditions were maintained during the experiment.
Each CD spectrum was averaged over five accumulations. The as-
obtained spectral data were further scrutinized using the K2D3 tool
and the database of theoretical spectra provided by DichroCalc
according to the procedure described by Louis-Jeune et al.32

Attenuated total reflectance Fourier transform infrared (ATR-
FTIR) spectra of each sample prepared in Milli-Q or heavy water in
the middle infrared range (MIR: 4000−400 cm−1) were obtained on a
VERTEX 70v vacuum FTIR spectrometer (Bruker FM Technology).
ATR-FTIR spectra of albumins in bioconjugates were first corrected
to remove pure PDs’ and solvents’ signals, then the fingerprint region
of proteins was analyzed using the Gaussian deconvolution method.
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Gel permeation chromatography (GPC) experiments were carried
out on an ÄKTAexplorer (Amersham Biosciences) system using the
Sephadex 75 Increase resin and PBS as proper stationary and mobile
phases, respectively. Each retention volume was determined
measuring absorbance values at 220, 260, and 280 nm. Prior to the
GPC assay, the experimental setup was equilibrated with 50 mM
phosphate buffer (pH ∼7.4), and the void volume of a column was
estimated using Blue Dextran as a marker (molecular weight (MW)
∼2000 kDa). To establish the calibration curve, seven standard
proteins with the MW values ranging from 1.4 to 660 kDa were
transferred through the stationary phase with a flow rate of 0.5 mL/
min, and their retention volume values were then measured.

Dynamic light scattering (DLS) measurements were performed on
a Zetasizer Nano setup (Malvern Instruments) with 633 nm
excitation light. The raw data were analyzed using 6.10 software
(Malvern Instruments, UK).

The one-dimensional (1H and 13C) and the two-dimensional
heteronuclear single−quantum correlation (HSQC) nuclear magnetic
resonance (NMR) spectra of pure PDs were acquired on a Bruker
AvanceTM 600 MHz spectrometer. Both C1K and C1Na were
dispersed in deuterium oxide to reach the concentration of 10 mg/
mL. The as-measured raw data were analyzed using MestReNova
software.

Changes in the pH value were monitored using a Mettler Toledo
instrument (SevenCompact Series).

All structural characterizations were performed at room temper-
ature.

Cell Culture. Bone-marrow-derived macrophages (BMDMs) were
obtained from primary bone marrow cells isolated from wild type
mice (BEI Resources). The cells were maintained in DMEM
supplemented with 10% FBS, 3% L-glutamine, and antibiotics
(penicillin and streptomycin). BMDM cells were grown under
standard conditions in a humidified incubator at 37 °C in an
atmosphere of 95% air and 5% CO2. To harvest the adherent cells
from confluent cultures, 0.05% trypsin−ethylenediaminetetraacetic
acid solution was used, and the cells were centrifuged at 1300 rpm for
5 min.

Cytotoxicity Tests. Cytotoxicity of free PDs was determined
using an MTT colorimetric assay, which is used to measure the
cellular metabolic activity as an indicator of cell viability, proliferation,
and cytotoxicity. In principle, this assay relies on the reduction of a
yellow tetrazolium salt (i.e., MTT) to purple formazan crystals by
metabolically active cells.33 BMDM cells were seeded onto a 96-well
plate (1 × 104/well) and incubated overnight in a 10% FBS complete
medium (5%:95% CO2/air) at 37 °C. Afterward, a fresh medium was
added, and these cells were stimulated for 24 h with varying

concentrations of PDs in aqueous suspensions: 1, 10, and 50 μg/mL
or LPS (2, 1, 0.5 μg/mL). Subsequently, the supernatant was
removed, and the BMDM cells were incubated with the MTT reagent
(3 mg/mL) at 37 °C for 4 h. Finally, 100 μL of DMSO was added
onto the plate to dissolve the formed formazan crystals. To examine
the cells’ response evoked by the PDs, absorbance values of all
samples were then acquired on an EnSpire 2300 microplate reader
(CLARIO Star microplate reader, BMG Labtech, UK) at 570 nm.
The cell viability was expressed as a percentage of BMDM cells
relative to the control sample (100%), described as unstimulated cells.
As the positive control, the BMDM cells were stimulated with LPS
instead of PDs. Statistical analysis was performed using GraphPad
Prism 9.1.0 software. The as-obtained results were examined following
a one-sample t-test. The value of p ≤ 0.05 was considered statistically
significant.

■ RESULTS AND DISCUSSION
TPA of Free PDs. In the first step, we investigated the

nonlinear absorption properties of pristine PDs (we call them
“free PDs”). The multi-photon excited emission spectra were
measured in a wide excitation wavelength range (720−1000
nm) of the femtosecond laser system. Strong, green
fluorescence was observed under such conditions (Figure 1
and Figures S4 and S7 in the Supporting Information). The
most efficient laser excitation is in the range of the first
biological optical window,29 between 720 and 850 nm.
Double logarithmic plots of the fluorescence signal as a

function of incident laser power (log ITPE FL vs log Plaser) at 760
nm show quadratic relationships, indicating a predominant role
of the TPA mechanism, leading to two-photon excited
fluorescence (TPE FL) (Figure S6).
It should be noted that the bright green emission spectra are

excitation-dependent. The most intense peaks, centered at 505
nm (C1Na) and 507 nm (C1K), are observed upon excitation
at 720 nm (Figure S5). By moving the excitation wavelength
from 720 to 1000 nm, it is possible to shift the TPE
fluorescence maxima from 505 to 552 nm for C1Na and from
507 to 555 nm for C1K. These optical features can indicate the
presence of different fluorophore centers, assembled in a single
PD.30,34−37 In our case, as the PDs are stabilized by the
supramolecular and covalent cross-linking (improving the
rigidity of nanostructures), the strong multi-photon excited

Figure 1. Comparison of normalized one- and two-photon optical properties of C1K (left) and C1Na (right): OPE (blue dashed), OPE FL (blue
solid), TPE (red dashed), and TPE FL (red solid lines) spectra. OPE, OPE FL, and TPE FL correspond to the blue x-axis, while TPE is assigned to
the red x-axis.
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fluorescence may be due to the cross-link enhancement effect
(CEE).30 We observed a similar spectral behavior for OPE
fluorescence of our PDs; however, the TPE emission is slightly
red-shifted as compared to that of the corresponding OPE
analogue.30 Similar trends were reported for protein assemblies
(i.e., amyloid fibrils).38 In contrast, organometallic supra-
molecular assemblies and molecular cocrystals possess the
constant positions of their OPE and TPE emission peaks.39−43

The TPE bands of the PDs are also located at wavelengths
shorter than the doubled wavelength maxima of the OPE
spectrum (Figure 1), in agreement with the previous nonlinear
optical (NLO) studies on carbon dots.44−46

To quantify the TPA process, the TPA cross-section (σTPA)
values were determined using fluorescein in the basic medium
(pH = 11, see Table S2) as a standard, following the formula
given below.47,48

=
I C n

I C nTPA,sam TPA,ref
sam ref ref sam

ref sam sam ref

where σTPA indicates TPA cross-sections [GM]; I is the
integrated TPE fluorescence intensity (a.u.); n is the refractive
index of the solvent; and C and φ denote the molar
concentration and FQY, respectively. Subscripts sam and ref
indicate the sample and reference sample, respectively.
Both types of pure PDs have broad multi-peak TPA spectra

and similar σTPA values, (i.e., at 760 nm, σTPA = 2.2 GM for
C1Na and σTPA = 2.9 GM for C1K, Figure 2). The as-obtained

TPA results are slightly weaker as compared to the TPA
activity of polymeric nanostructures prepared by hydrothermal
synthesis (20 GM).44 As expected, all PDs exhibit weaker TPA
properties than highly ordered carbon dots49 and nano-
graphenes (130 GM)50 due to the absence of large, π-
conjugated structures�one of the most crucial factors
determining the TPA of dyes and nanoobjects.51 These σTPA
values of PDs are much lower than the σTPA values of carbon
dots reported in the literature, which ranged around 103−104
GM.46,49,52−54 However, we note that most of the papers
reporting large σTPA parameters obtained from the TPE FL
method provide little details concerning the molarity of
fluorophores and the employed methodology. It should be
remembered here that carbon dots vary strongly in their
designs, from the self-assembled polymeric chains to the highly
ordered graphitic structures; the calculations of σTPA from the

TPE FL have to take into account these structural features or,
at least, an appropriate estimation of their molar mass (M). In
our case, the M values of PDs were determined by means of
the comparative size exclusion chromatography−gel perme-
ation chromatography (SEC−GPC) approach with respect to
globular proteins. This method is relevant for diverse carbon
dots, including graphene quantum dots55,56 and PDs.57 The
estimated values of MWs are 2.1 kDa (C1K), and 2.2 kDa
(C1Na) (Table S1). These values were used to estimate the
molar concentrations and σTPA parameters; however, it should
be remembered that the results from the SEC−GPC
experiments approximate the order of M values rather than
show their exact values.
A better way to quantify the TPA performance of diverse

nanostructures with the different chemical character is to scale
the σTPA parameters using a structure-related factor, such as M
or the species volume.48,58−60 The peak σTPA/M values have
been estimated to be 1.05 × 10−3 and 1.32 × 10−3 GM mol/g
at 760 nm for C1K and C1Na, respectively. Although these
values are lower than those observed for the best TPA dyes or
semiconductor nanoparticles (typically 0.1−1 GM mol/g),
they still are high enough to consider the TPA-based
applications of our PDs.
The major advantage of carbon dots’ is their significant

photostability as compared to that of organic fluorescent dyes
and inorganic semiconductor nanomaterials. However, in the
previous studies, those carbon nanomaterials were exposed to
the UV or green lights only.61,62 To evaluate the possibility of
applying the PDs for bioapplications involving the illumination
in the first biological window, we monitored their photo-
stability upon exposure to strong laser irradiation (at 760 nm)
using UV−vis and conventional fluorescence spectroscopy
techniques. The PDs do not show evident photobleaching for
up to 30 min of exposure to the laser beam (Figure S8).

Cytotoxicity Assays. The cytotoxicity of free PDs was
tested in vitro on the BMDM cell line. The BMDM cells were
exposed for 24 h to three concentrations of the PDs: 1, 10, and
50 μg/mL, and the cell viabilities were estimated using the
MTT assay. For these concentrations, in the presence of PDs,
we observed an increase in the growth of BMDM cells (by ca.
10% compared to that of the control sample) upon the
incubation process (Figure 3). This observation is contrary to
previously reported results suggesting that the cell viabilities
decrease in the presence of diverse carbon dots, even at
relatively low nanomaterial concentrations (e.g., 5−50 μg/
mL);63−68 this decrease becomes sharp when the quantity of
carbon dots in the system increases.67 Liu et al. also
demonstrated the photodegradation-induced cytotoxicity of
carbon dots exposed to white light irradiation.69 Hence, the
absence of toxic effects of the currently studied PDs on
BMDM cells and the outstanding photostability may constitute
their unique properties; this hypothesis needs detailed
verification.

Enhancement of One-Photon Excited Emission. To
evaluate the influence of albumins on the optical features of
PDs, extinction and fluorescence spectra of protein-titrated
C1Na and C1K at three simulated physiological conditions
were recorded. Figures 4 and S9−S11 show the evolution of
fluorescence spectra when the albumin concentrations
increase. For all samples (C1K/BSA, C1K/HSA, C1Na/
BSA, and C1Na/HSA), the fluorescence intensity increases
with the increasing proteins concentrations. In the aqueous
media, upon illumination at 350, 377, and 450 nm, a

Figure 2. TPA spectra of free PDs in an aqueous medium (pH ∼7.4).
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hypsochromic shift (Δλ) of the spectra is observed. The
excitation at these wavelengths do not induce a direct
excitation of proteins, only weak emission signals at 434,
449, and 505 nm (Figures S12 and S13 and Table S3). The
protein-induced Δλ and the OPE fluorescence enhancement
coefficient (FEC) are dependent on the excitation wavelength
(Table S4). The FEC is the highest in the presence of HSA,
even reaching 276% [C1Na-HSA; λexc. = 450 nm and Δλ ∈ (2;
20) nm]; the FQYs of PDs also increase in the presence of
proteins (Table S4). A similar observation was made for each
aqueous sample at given physical conditions, suggesting that
PDs−albumins interactions are not sensitive to the chemical
composition of aqueous media. This fact pleads in favor of PDs
being used for further studies in complex biological environ-
ments. More detailed results are listed in the Supporting
Information.
We also measured the evolution of fluorescence decays of

PDs upon binding proteins using the TCSPC method (λem. =
471 nm and λexc. = 377 nm). The decay profiles were fitted
using the tri-exponential equation, resulting in three
fluorescence lifetime components (see the Supporting
Information). We found that the coupling of blood proteins
to PDs slows down the decays. Figures 4, S18, and S19 show
an increase in the average fluorescence lifetime (by 1 ns with

respect to that of unbound PDs). Such elongated fluorescence
lifetimes along with higher FQYs (Table S6) indicate a
decreasing contribution of non-radiative relaxation pathways:
the presence of albumins seems to prevent different molecular
motions of PDs’ sub-structures and reduce dynamic
fluorophore−solvent interactions,70 also suggesting the high
importance of modifications of the fluorophores’ environ-
ment.71 Similar observations were already reported in the
literature; the adsorption of proteins onto the surface of gold
and silver nanoclusters also led to longer fluorescence
lifetimes.72,73

Enhancement of Two-Photon Excited Emission.
Although the albumins do not show any detectable TPE
emission,74 the TPE fluorescence of PDs is significantly
enhanced in their presence. The fluorescence intensity
increases with the concentration of proteins (Figures S14
and S15), which also induces the hypsochromic shift (up to Δλ
∼17 nm). As for OPE fluorescence, the enhancement
parameters are sample composition- and excitation-dependent
(Table S5); the highest FEC values are again observed for the
C1Na-HSA sample (λexc. = 850 nm). The protein-induced
enhanced TPE FL showed outstanding photostability upon
exposition to the femtosecond laser irradiation. The
fluorescence dependence on excitation power (log ITPE FL vs

Figure 3. Cytotoxic effect of PDs on BMDM cells viability using an MTT assay. The cells were treated with PDs at varying concentrations: 1, 10,
and 50 μg/mL. The positive control was cells stimulated with LPS (2, 1, 0.5 μg/mL). The negative control was untreated cells. It was shown that
PDs did not affect BMDM cell viability after 24 h of incubation. Results are presented as mean to min−max based on three independent
experiments. One sample t-test was used to examine the mean differences between samples and the control; (*) p ≤ 0.05; (**) p ≤ 0.001; and
(***) p ≤ 0.0001 vs control.

Figure 4. OPE fluorescence of C1Na in the presence of BSA, excited at 450 nm (left). Evolution of the average fluorescence lifetime in the
proteinaceous environment (right). Gray and blue areas correspond to the error bars.
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log Plaser) is quadratic (Figure S16), as expected for the TPE
mechanism.
It is worth noting that albumin-enriched PDs exhibit

stronger TPA properties than their free analogues. The
maximum σTPA/M values are higher than those calculated for
pristine PDs: 2.9 × 10−3 GM mol/g (for C1K-HSA), 2.0 ×
10−3 GM mol/g (for C1Na-HSA), and 2.2 × 10−3 GM mol/g
(for C1K-BSA) at 760 nm. The σTPA/M values of C1Na-BSA
remain unchanged (1.3 × 10−3 GM mol/g at 760 nm).
These fundamental TPA parameters are not sufficient to

compare the performance of albumin-containing mixtures with
that of free PDs in terms of TPE fluorescence applications. To
quantify the evolution of the albumin-sensitive TPA activities
of PDs that can lead to the emission process, we determined
their two-photon brightness (φ·σTPA/M). If we combine the
increased FQYs of PDs dispersed in the proteinaceous
environment with varying TPA performances (σTPA/M), we
can confirm a significant improvement of TPA properties for
each albumin−PDs composition. It should be noticed that the
proteins differ in the enhancement efficiency: HSA-including
samples provide 2.8−4.8-fold higher σTPA/M values than BSA-
including systems (1.4−2.8-fold enhancement in the whole
wavelength range). The strong increase of the TPA cross-
sections normalized by molar mass and presented as two-

photon brightness values are comparatively illustrated in
Figures 5 and S17. The data reported so far in the literature
showed that albumins reduce (e.g., 6.1-fold decrease)75 or, at
the best, enable an unchanged two-photon brightness of
fluorescent probes.16 Therefore, the present result showing the
above-described enhancement of the fluorescence response of
the PDs in the presence of albumins is unique and promising.
To the best of our knowledge, this is also the first report
demonstrating such a behavior in fluorescent carbon nanoma-
terials.

Structural Characterization. The PD-induced conforma-
tional changes occurring within the albumins (i.e., the
modification of secondary and tertiary protein structures)
were studied using UV CD and FTIR spectroscopy techniques.
Following the procedure provided by Louis-Jeune et al.,32 the
structural studies reveal that the CD spectra of native blood
proteins are composed of two negative ellipticity peaks at 209
and 222 nm and one embedded minor component at 218 nm
(Figures 6 and S19). These spectral features indicate the
predominant role of the α-helix relative to that of β-sheets and
unordered components (64 and 57% for HSA and BSA,
respectively), a result that is consistent with the literature
data.12,16,25,76 Pure PDs, on the other hand, show no
chiroptical effects in a wide wavelength range. Upon the

Figure 5. Molar-weight-scaled TPA cross-section spectra of free and protein-including C1K systems (left) and the corresponding two-photon
brightness spectra (right).

Figure 6. UV CD spectra of BSA doped with C1K (left). Gaussian deconvolution of the amide I band of HSA in the C1K-including composites
(right).
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titration of the proteins with PD colloidal solutions, the
ellipticity values at 209 and 222 nm tend to slightly decrease.
Such CD changes are attributed to the rearrangement of the
secondary protein structure of albumins: the α-helix content
decreases and random coil components starts to increase.
However, the presence of both C1Na and C1K has only a
minor effect on the secondary protein structure, resulting in
weak protein unfolding: the α-helix contents are reduced (by
ca. 4% in HSA and 5% in BSA), while the β-sheet contents
remain constant (Figure S21). This confirms that our PDs
interact with the proteins without denaturing them.
To identify any conformational changes of proteins, the

ATR FTIR spectra of pure PDs, free blood plasma proteins,
and PDs−albumin mixtures were recorded. According to the
literature, BSA and HSA plasma proteins display nine
characteristic absorption peaks (i.e., amide bands A−B and
I−VII), which are assigned to different vibrations from N−H,
C�O, and C−N bonds.77,78 The major absorption signals
correspond to the amide I band (C�O stretching) and amide
II band (C−N stretching and N−H bending). They are
located in the range of 1500−1750 cm−1, considered as the
fingerprint region of proteins and usually studied in the
quantitative conformational analysis.38,77−82 All normalized
amide I bands of proteins−PDs samples exhibit only a small
broadening and a blue shift. Amide II bands decrease slightly in
the presence of varying contents of PDs (see Figure S22). This
implies negligible changes in the tertiary and secondary protein
structures of albumins. The Gaussian deconvolution of the
amide I band uncovers five peaks in the case of native proteins
and six components upon PDs’ binding (Figures 6 and S23).
The position of the main absorption band is nearly constant
(1652.5−1654.5 cm−1), and its intensity decreases insignif-
icantly for bound proteins (as compared with that of free
albumins), thereby indicating an almost unchanged contribu-
tion from α-helix domains (BSA: from 60.1 to 59.4% and HSA:
from 64.9 to 59.0%). Smaller absorption peaks, centered at
1621 cm−1 (BSA: 1623.5 cm−1), 1637 cm−1 (BSA: 1636
cm−1), 1679 cm−1 (BSA: 1674 cm−1), and 1691 cm−1 (BSA:
1688 cm−1), indicate the presence of β-sheets, random coils, β-
turns, and β-antiparallel sheets. Their amplitudes and positions
are only slightly affected by the PDs (Table S7). All four

mixtures also show new minor absorption peaks at 1611 cm−1

(C1Na-BSA) or 1615 cm−1 (C1Na-HSA, C1K-HSA, and
C1K-BSA), which indicate the formation of the intermolecular
β-sheets (2.2−5.1%) and, consequently, imply negligible
proteins’ aggregation.83−85 These results confirm that the
binding between globular proteins and PDs do not induce
albumin unfolding and are in a good agreement with the CD
data.
To monitor the aggregation processes for PDs or proteins

and the potential formation of their bioconjugates, the SEC−
GPC method was also used. As depicted in Figure S24, blood
plasma proteins exhibit the narrow major peaks at the elution
time of their monomers at ca. 18.3 min and a smaller one for
their dimers at 16.2 min with no significant shifts in the
presence of PDs. Similarly, chromatograms of PDs with serum
albumins display only a minor shift (less than 0.8 min) with
respect to that of free PD samples.
The abilities of albumins to form aggregates and

bioconjugates were also verified using the DLS method. It is
worth noting that similar tendencies were found for hydro-
dynamic diameters (Dhydr) of albumins in native forms and in
the presence of PDs (Table S8, ∼0.3 nm of variations). These
results indicate that the proteins do not form any bigger
conjugates with PDs or with themselves.
Altogether, the investigations prove that, in contrast to

several previous studies on albumin nanostructure assemblies
that showed significant protein unfolding,23,25,86 the structural
properties of albumin−PD mixtures are preserved. It should be
remembered that any structural rearrangements of proteins
may lead to the loss of their biological activity. We conclude
then that our PDs have good biocompatibility toward the
blood proteins.
Furthermore, since mixing PDs and albumins does not

noticeably change their MW and diameter values, we can
deduce that protein−marker conjugates are not formed.8,22

Formation of aggregates with the aggregation-induced
emission15 reported previously is not observed here.

Temperature Effect on PDs and Their Optical
Activity. To correctly evaluate the real potential of PDs in
albumin sensing and probing, it is essential to explore their
properties in the thermodynamic conditions that mimic the

Figure 7. Normalized temperature-dependent extinction map of C1Na (left) and the evolution of the integrated emission intensity of C1K, scaled
by the fluorescence intensity observed at 20 °C vs temperature values (right).
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actual conditions occurring in biological samples. Two aspects
have to be considered: (i) the thermal stability of PDs and (ii)
the temperature effect on the OPE emission activity of PD−
albumin conjugates.
To study the thermostability of both C1K and C1Na in

aqueous suspensions, the extinction spectra of PDs at varying
temperatures were acquired first. The profiles of UV−vis
extinction spectra of PDs remain unchanged in the temper-
ature range from 5 to 70 °C (Figures 7 and S25). Moreover,
small absorbance changes at the absorption band at 240 nm
(π−π* transitions) and a negligible absorption peak of PDs at
310 nm (n−π* transitions) are observed in the whole
temperature range. These findings prove that in the analyzed
temperature range, single PDs are thermodynamically stable:
neither undesirable aggregation nor degradation processes
occur.
To explore the influence of temperature on the fluorescence

of PDs and the albumin conjugates (C1K-BSA and C1K-
HSA), the emission spectra was recorded at temperatures
varying from 5 to 70 °C. The integrated fluorescence
intensities (I) were then normalized by the corresponding
integrated intensity measured at 20 °C (IR.T).
Figures 7, S26, and S27 show the variation of OPE emission

spectra of PDs and PD−albumin samples as a function of
temperature. The fluorescence intensity decreases with
increasing temperature, but no spectral shifts are observed.
The emission, the most intense at a low temperature (below 20
°C), gradually decreases above 40 °C. This variation may
result from the different contribution of non-radiative
relaxation pathways of PDs in an aqueous environment.
From a structural point of view, rapid motions of solvent
molecules and nanostructures at higher temperatures87 causes
weakening of their hydrogen bonds.88 In contrast, at low
temperatures, immobilization of PDs is stronger. A similar
temperature-dependent emission intensity of carbon dots was
reported by Yu et al.89 Both PDs show high and relatively
constant OPE fluorescence between 20 and 40 °C (almost
90% of the IR.T. value at λexc. = 377 nm, T = 40 °C for C1K).
Similar stability trends were also observed for the PD−

albumin systems, indicating that a significant temperature
resistance remains unchanged in the presence of proteins. It
confirms the high potential of PDs to be applied in both in vivo
and in vitro biochemical assays.

pH Dependence of PD Fluorescence Properties. The
OPE emission spectra of PDs and PD−albumin systems were
monitored taking into account the following factors: (i) pH
values, (ii) molecular interferents, and (iii) other proteins. The
pH constitutes the essential parameter in biochemical assays
(for example in biosensing). To explore how the pH of an
aqueous environment affects the fluorescence activity of PDs
and their interactions with albumins, the pH of solutions was
tuned using sodium hydroxide and hydrochloric acid solutions
(1 M), then OPE emission spectra were recorded at three
excitation wavelengths (Figures 8 and S28), Both PDs exhibit
pH-responsive emission characteristics but differ slightly in
their behavior. The fluorescence of free C1K remains almost
unchanged in the wide pH range (2.9−13.1); a sharp drop is
observed only in the acidic conditions. For C1Na, the emission
intensity first gradually increases from I/Ineutral pH ∼0.60 (for
pH = 2.9) to ∼1 (for pH = 6.7), reaches a plateau in neutral
(physiological) conditions, and then grows. Since both PDs are
rich in polar groups (Figures S31−S34),30,90,91 their structure
may account for a pH-responsive OPE fluorescence. More
specifically, carboxyl groups can be deprotonated when pH is
greater than 2.9, thereby forming gradually the negatively
charged “protective shell” for single PDs. The negative charge
also originates from the present enol conjugates. Such negative
charge sites seem to account mostly for the OPE fluorescence
stability in the wide pH range.92 As expected, the lowering of
pH below 2.9 leads to the protonation process of carboxyl
groups and, as a result, reduced emission intensity.92,93 Note
that the numerous hydroxyl moieties also play an essential role;
they form the strong hydrogen bonding network and enol
conjugates. Additionally, at an alkaline pH, hydroxyl groups
undergo progressive deprotonation, resulting in a stronger
emission signal.30

The OPE emission of free PDs remains relatively stable at
varying pH conditions; the proteinaceous environment can
even enhance this property. According to Figure 8, the I/
Ineutral pH values for C1K remain unchanged upon the protein
binding, at both acidic and alkalic conditions (2.0 < pH <
11.0). As the albumins are positively charged at pH > 4.7
(isoelectric point: pIBSA = 4.7),94 it is evident that the
electrostatic forces are important between PDs and albumins.
Moreover, the strong hydrogen bonding should be also
considered�globular proteins and PDs have common

Figure 8. Evolution of the integrated fluorescence intensity vs pH values for C1K (left) and comparative analysis for C1K, C1K-BSA, and C1K-
HSA (right). The integrated fluorescence intensities (I) were scaled by the relevant reference value at neutral conditions (Ineutral pH).
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potential donor (i.e., hydroxyl or amine) and acceptor
(carbonyl) groups.
We conclude that serum albumins act as remarkable

stabilizing agents for PDs, protecting them against the excess
of H+ and OH− ions and reducing the protonation/
deprotonation processes.

Molecular Interferents versus OPE Fluorescence.
Blood plasma constitutes a complex biochemical system
containing not only globular proteins but also a variety of
other biological and chemical species, for instance, simple
organic molecules (e.g. glucose, uric acid, and urea) and ionic
components.95,96 Therefore, we analyzed the OPE fluorescence
signals of PD−albumin samples exposed to representative
blood plasma components, such as urea molecules (50 mM)
and metal ions (50 mM Mg2+, 50 mM Ca2+, 10 mM Fe2+, and
50 mM Cu2+). No significant changes in FEC values were
found in the presence of alkaline earth metal cations. Both
transition metal ions reduce the fluorescence enhancement
efficiency only slightly. The presence of urea improves the FEC
parameter (Figures 9 and S29). Overall, the variations of FEC
in the presence of common interfering agents are small,
indicating their minor influence on the PD−albumin system.
Therefore, these findings offer the advantage of PDs for
sensing applications in biological samples.

Selectivity toward Proteins versus Fluorescence
Enhancement. Since the fluorescence signal of PDs is
enhanced in the presence of BSA and HSA, it is crucial to
examine their emission in the presence of other common
proteins, for instance, LYS and OVA. These proteins differ
from BSA and HSA in molecular weights (MWLYS = 14 400 Da
and MWOVA = 45 000 Da)97 and charge under neutral
conditions (pILYS = 10.7 and pIOVA = 4.5).97,98 Figures 9 and
S30 clearly show that all four types of proteins are able to
improve OPE emission signals of PDs. However, the
enhancement efficiency depends strictly on protein: the FEC
parameter is 26.1% for C1Na-LYS (λexc. = 377 nm) and 14.9%
for C1K-OVA (λexc. = 350 nm). These values are several folds
weaker than serum albumins, allowing a facile discrimination of
BSA and HSA.

Albumin−PD Interaction Mechanism. To gain deep
insights into the mechanism of interactions and the origin of
the sensitive albumin probing, several observations have to be
taken into account.

First, no aggregating conjugates were found using the SEC−
GPC and DLS assays, suggesting that both PDs and globular
proteins disperse well as free species in aqueous environments.
Knowing that both chemicals are similar in size,99,100 no
specific binding between them occur, as opposed to proteins’
interactions with small molecular species.2,12,15

The above condensate-free model is also consistent with the
ATR-FTIR and CD spectroscopy results, which excluded the
formation of the covalent bonding between PDs and albumins.
The interactions between PDs and blood plasma components
should be then either electrostatic, van der Waals, hydrogen
bonding, or hydrophobic in nature.101 Analyzing the internal
structure of free PDs and their fluorescence response in varying
pH indicates that PDs are rich in different polar sub-units,
including hydroxyl, carboxyl, and carbonyl (enol) groups.
Their presence accounts for the pH-responsive emission of free
PDs where the negative charge sites of PDs favor electrostatic
interactions with positively charged albumins under neutral
conditions. They also form a strong hydrogen bonding
network. In addition, the contribution of hydrophobic forces
should be considered�both albumins and PDs possess non-
polar structural domains, such as subdomain IIa2,102 and
aliphatic hydrocarbon chains,30 respectively.
The improvement of fluorescence properties of PDs may

originate from the substantial modification of their environ-
ments. Two scenarios appear to be possible. First, albumins
may act as a sponge�they create more hydrophobic
conditions, which prevents PDs from water molecules, slowing
the relaxation rate and increasing the contribution of radiative
pathways.87 Second, serum albumins may induce steric effects,
which hinder effective rotations of flexible aliphatic sub-units of
PDs, as reported for small organic molecules,71 resulting in a
more rigid architecture with a decreasing role of non-radiative
relaxation pathways. Note that the interactions between PDs
and albumins are sensitive to protein/PD stoichiometry and
are the most pronounced for the protein: a nanomaterial molar
ratio of 4:1 (Figure S20).103

The explanations given above facilitate the differentiation of
enhanced fluorescence phenomena from the fluorescence
quenching processes, which lower the fluorescence intensity,
relying on either dynamic (effective collisions with quenchers)
or static (the formation of the non-fluorescent complex)
mechanisms.70,104

Figure 9. Interferents’ effect on the FEC values for C1Na-BSA (left) and selectivity of C1Na toward various proteins (right).
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Protein Sensing. The strong enhancement of OPE and
TPE fluorescence of PDs with almost no morphological
alterations of proteins and the absence of cytotoxicity have
prompted us to explore the possibility of applying the PDs in
the non-destructive and selective recognition of proteins. For
this purpose, we performed the OPE fluorescence titration
experiments for low concentrations of proteins, that is, in the
linear relationship region (Figure S35), and estimated the limit
of detection (LOD), defined as.105,106

= 3
a

LOD

where LOD is the limit of detection (μM or mg/mL), σ
denotes the standard error of the regression line, and a
corresponds to the slope of the linear relation between the
integrated fluorescence intensity of PDs and the concentration
of albumins.
The calculated LOD values for HSA range from 0.21 mg/

mL (3.22 μM, C1K for excitation at 350 nm) to 0.36 mg/mL
(5.50 μM, C1K at 450 nm), as listed in Table S8. These values
are comparable to other reported LOD values16 and suggest
that our PDs can be successfully used in the fluorescence
enhancement-based recognition of albumins. Their perform-
ance in complex biological systems, which include other
analytes and potential interfering agents, needs to be analyzed
in future studies (Scheme 1).

■ CONCLUSIONS
Acetone-derived PDs were investigated in terms of their NLO
activity, biocompatibility, and use in non-destructive and
reversible albumins sensing and probing. The as-prepared PDs
revealed intense TPE fluorescence upon excitation in the first
biological window and reasonably high TPA cross-sections (up
to 2.9 GM at 760 nm). The cytotoxicity assays showed unique
proliferation effects in a wide concentration range for both
types of PDs. OPE and TPE fluorescence of PDs shows strong
sensitivity toward globular albumins, up to 27 times stronger
than the fluorescence intensity of free PDs and featuring longer
lifetimes. Conformational studies demonstrated that the
protein−PD interactions did not affect significantly the
secondary protein structure of blood albumins, nor induced
aggregates formation. Therefore, the PDs seem to be
promising candidates for non-destructive and reversible
probing of albumins in various physiological conditions, having
great perspectives to be further explored in complex biological
samples with a variety of potential chemical interferents and
analytes.
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PDs, polymer dots
OPE, one-photon excitation
TPE, two-photon excitation
TPA, two-photon absorption
OPE FL, one-photon excited fluorescence
TPE FL, two-photon excited fluorescence
NLO, nonlinear optical
PBS, phosphate-buffered saline
BSA, bovine serum albumin
HSA, human serum albumin
LYS, lysozyme
OVA, ovalbumin
DMEM, high-glucose Dulbecco’s modified Eagle’s medium
FBS, fetal bovine serum
LPS, bacterial lipopolysaccharide
MTT, 3-(4,5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium
bromide
TCSPC, time-correlated single-photon counting
CD, circular dichroism
ATR-FTIR, attenuated total reflectance Fourier transform
infrared
MID, middle infrared

BMDM, bone-marrow-derived macrophage
SEC, size-exclusion chromatography
GPC, gel permeation chromatography
CEE, cross-link enhanced effect
DLS, dynamic light scattering
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W.; Lu, J.; Wei, M.; Evans, D. G.; Duan, X. A Cocrystal Strategy to
Tune the Luminescent Properties of Stilbene-Type Organic Solid-
State Materials. Angew. Chem., Int. Ed. 2011, 50, 12483−12486.
(42) Yang, X.-G.; Zhai, Z.-M.; Lu, X.-M.; Ma, L.-F.; Yan, D. Fast
Crystallization-Deposition of Orderly Molecule Level Heterojunction
Thin Films Showing Tunable Up-Conversion and Ultrahigh Photo-
electric Response. ACS Cent. Sci. 2020, 6, 1169−1178.
(43) Gao, R.; Yan, D. Layered host−guest long-afterglow ultrathin
nanosheets: high-efficiency phosphorescence energy transfer at 2D
confined interface. Chem. Sci. 2017, 8, 590−599.
(44) Huo, Z.; Chen, G.; Geng, Y.; Cong, L.; Pan, L.; Xu, W.; Xu, S.
A two-photon fluorescence, carbonized polymer dot (CPD)-based,
wide range pH nanosensor: a view from the surface state. Nanoscale
2020, 12, 9094−9103.
(45) Pan, L.; Sun, S.; Zhang, L.; Jiang, K.; Lin, H. Near-infrared
emissive carbon dots for two-photon fluorescence bioimaging.
Nanoscale 2016, 8, 17350−17356.
(46) Liu, Q.; Guo, B.; Rao, Z.; Zhang, B.; Gong, J. R. Strong Two-
Photon-Induced Fluorescence from Photostable, Biocompatible
Nitrogen-Doped Graphene Quantum Dots for Cellular and Deep-
Tissue Imaging. Nano Lett. 2013, 13, 2436−2441.
(47) Makarov, N. S.; Drobizhev, M.; Rebane, A. Two-photon
absorption standards in the 550−1600 nm excitation wavelength
range. Opt. Express 2008, 16, 4029−4047.
(48) Medishetty, R.; Zaręba, J. K.; Mayer, D.; Samoc,́ M.; Fischer, R.
A. Nonlinear optical properties, upconversion and lasing in metal−
organic frameworks. Chem. Soc. Rev. 2017, 46, 4976−5004.
(49) Santos, C. I. M.; Mariz, I. F. A.; Pinto, S. N.; Gonçalves, G.;
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