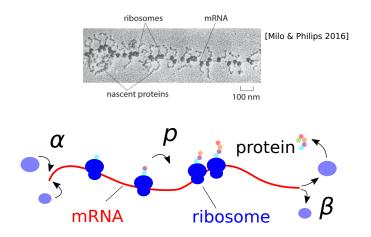
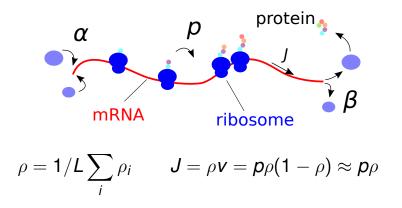
Physical modeling of ribosomes along mRNA: estimating kinetic rates from ribosome profiling experiments

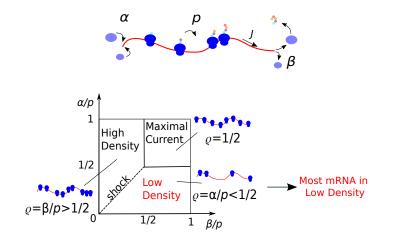
> Jean-Charles WALTER Laboratoire Charles Coulomb (L2C) CNRS & Université de Montpellier

> > RNA Club @ Genopolys Montpellier 12 October 2022

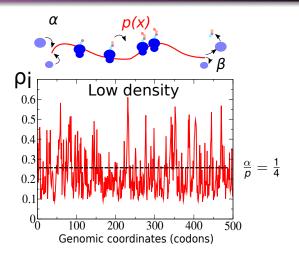




The totally asymmetric simple exclusion process

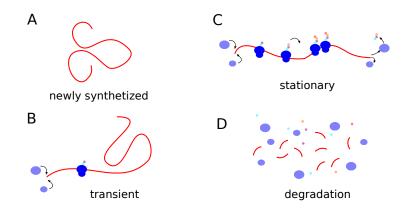


The totally asymmetric simple exclusion process



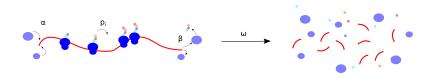
(日) 《聞) 《思》 《思》 「思」 ろくの

The totally asymmetric simple exclusion process



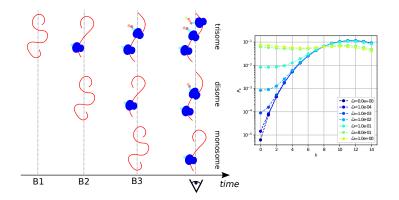
The totally asymmetric simple exclusion process

Modeling assume infinite mRNA lifetime i.e. stationarity


Mixing of dynamical state in the cytoplasm

How to quantify the effect of mRNA finite lifetime (transient dynamics due to the degradation & synthesis of mRNA) with ribosome profiles ?

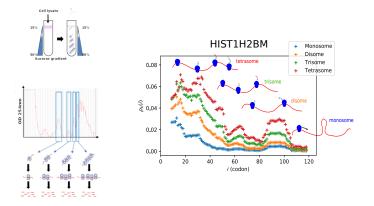
-The model


The ballistic model with degradation

- **()** Low density \rightarrow neglect the interactions (ballistic)
- 2 Distribution of mRNA lifetime θ : $\Phi_{\theta}(\theta) = \omega e^{-\omega \theta}$
- Split mRNA in k-somes according to the number of ribosomes k=1, 2, 3 & 4

-The model

Timeline of the mRNA population



The smaller k the closer the ribosomes from the start

The proportion of "young" mRNA increases with mRNA degradation/synthesis

-The model

The *k*-some experimental protocole

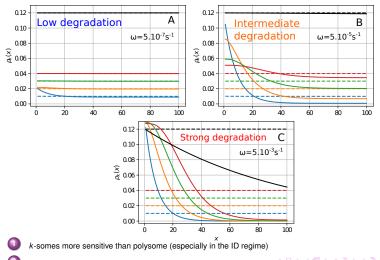
Split mRNA in k-somes according to the number of ribosomes k=1, 2, 3 & 4

Sensitivity of the profile increases as k decreases

we define as polysomes as the whole population of mRNA (all k-somes)

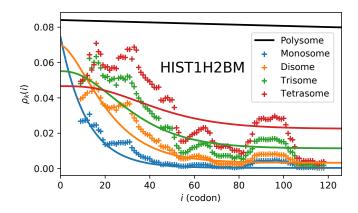
Analytically solvable model

Namely the *k*-some profiles:


$$\rho_{k}(x) = \frac{\alpha^{k}}{P_{k}p(x)} \frac{e^{-(\alpha+\omega)}}{(k-1)!} + \dots$$

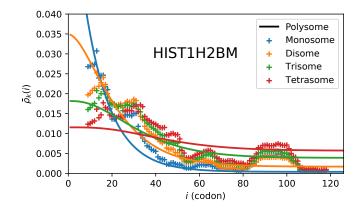
... + $\frac{\omega}{P_{k}p(x)} \left(\frac{\alpha}{\alpha+\omega}\right)^{k} \frac{\gamma(k,\alpha+\omega) - \gamma(k,(\alpha+\omega)\tau(x))}{(k-1)!}$

where P_k is the probability distribution of k-somes, γ is the gamma function, $\tau(x) = \mathcal{T}(x)/\mathcal{T}(L)$ and $\mathcal{T}(x) = x/L$.


Physical modeling of ribosomes along mRNA

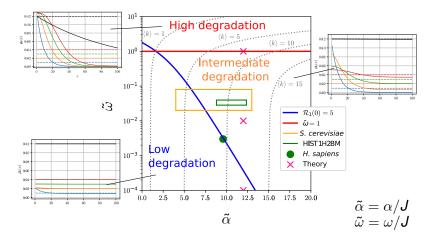
-Results

3 regimes of mRNA degradation

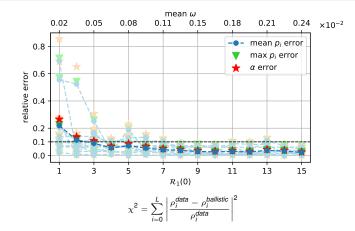


Experiments (symbols) versus theory (full lines)

• Fixed $\alpha = 0.06s^{-1}$, $\omega = 1h^{-1} \rightarrow \text{intermediate degradation}$ • Fit the protein production rate $1/J = 180s \rightarrow p = 0.7s^{-1}$


Experiments versus theory (density normalized to 1)

• Fixed $\alpha = 0.06s^{-1}$, $\omega = 1h^{-1} \rightarrow \text{intermediate degradation}$


3 Fit the protein production rate $1/J = 180s \rightarrow p = 0.7s^{-1}$

Dynamical phase diagram

• Intermediate degradation \rightarrow prevalent biological regime

k-some optimize the fit in the intermediate regime

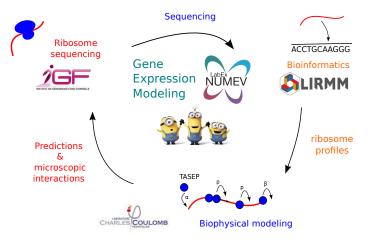
Fit all the parameters self-consistently

Increased information (4 decoupled profiles) in the intermediate regime,

- Conclusion & perspectives

Conclusion & perspectives

Take home message


- New k-some protocole: access to mRNA lifetime
- 2 Most living cells in the intermediate degradation regime
- Improve quantitative fit of kinetic rates: self-consistent & four profiles per experiments)

Perspectives

- Explicit fit of initiation and elongation rates
- Oategorize cell types through kinetic rates

Reference: Chevalier C., Dorignac J., Ibrahim Y., Choquet A., Alexandre D., Ripoll J., Rivals E., Geniet F., Palmeri J., Parmeggiani A. & JCW (2022) *Physical modeling of ribosomes along messenger RNA: estimating kinetic rates from* ribosome profiling experiments with a ballistic model, submitted & available on ArXiv - Thank you for your attention!

Gene Expression Modeling project (GEM)

