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The self-assembled transient networks constitute a class of complex materials forming
spontaneously 3D networks at thermodynamical equilibrium, that can transmit transiently
elastic stresses over macroscopic distances. These physical gels are generally formed of a
network of polymer chains reversibly linked in a solvent. The transient nature of the junctions
allow them, contrary to cross-linked networks, to relax the constraints by dissociation an
reformation of the junctions: so they are able for instance to self-repair after dammage.
Because of their spectacular viscoelastic properties, these materials have many applications .
From the experimental results obtained with an experimental model this lecture will consider
successively some general interesting physical properties for this class of of systems:(i) the
pair potential induced by two beads reversibly linked by telechelic polymers, (ii), the phase
behavior of the gels, (iii) the linear viscoelastic properties, and (iv) the nucleation and
propagation of a fracture in this complex fluid.

Introduction

Transient self-assembling networks are common in both natural and synthetic
materials. They consist of self-assembled aggregates (nodes) that are reversibly con-
nected by links with a finite life-time as opposed to chemical gels where junctions
are permanent. These physical gels exhibit two universal and independent features :
a thermodynamic first order phase separation, which occurs at low volume fraction
between a dilute and concentrated solution even in the absence of any specific inter-
action, and a non-thermodynamic topological transition, where an infinite network
spanning the entire volume of the system is formed[.1) Telechelic polymers are of-
ten used as model linkers because they are architecturally simple: they consist of a
long solvophilic midblock with each end terminated by a solvophobic short chain (a
sticker). The stickers incorporate into the solvophobic domains of the aggregates and
can bridge them via their solvent-soluble midblock resulting in an attractive inter-
action between the aggregates. The nature and the morphologies of the aggregates
forming the network are versatile: (i) telechelic polymers in binary solution2) that
self-assemble spontaneously into non interacting flowerlike micelles at low concen-
tration and form three dimensional networks above a threshold concentration3) , (ii)
surfactant vesicles4) , (iii) lyotropic lamellar phases6) (iv) wormlike micelles,7)–9) (v)
spherical micelles,10) (vi) oil-in-water11) or water-in-oil12)microemulsion droplets.

This last system (telechelic-microemulsion mixtures) is of particular fundamental
interest. Indeed, the advantage of this system is that the parameters that control
the thermodynamics and structure of the physical gel can be easily identified and
independently controlled: the concentration of nodes (the droplets) and the number
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of polymers per droplets. This is in contrast with binary mixtures of telechelics,
where the number of nodes formed by the associating chain ends and the number
of links cannot be controlled separately. Other advantages of this system are the
spherical symmetry which allows for instance a simple structural analysis in the
Fourier space from scattering experiments and the versatility of the control of the
surface curvature.

On the other side, linear rheological properties are very simple and have been
indeed very well described by a simple Maxwell fluid model with a single relaxation
time and a single zero shear modulus. Again the elastic modulus is easily controlled
by the number density of polymer bridges in the sample whereas the relaxation time
can be tuned by changing the chemical length of the stickers. Finally This system
exhibit a very peculiar sudden rupture mode reminiscent of a brittle fracture in solid
materials.14)

So, the telechelic -micromemulsion mixtures serve as an elegant model system for
a general class of transient networks and allow to investigate both the equilibrium,
structural, flow an fracture properties of transient networks. In this lecture, we
will first describe the model system, and address successively (i) the pair potential
induced by two beads reversibly linked by telechelic polymers, (ii), the phase behavior
of the microemulsion-telechelics mixtures, (iii) the linear viscoelastic properties, and
(iv) the nucleation and propagation of a fracture in this brittle fluid.

§1. Experimental system

The telechelics-microemulsion mixture system system is composed of an oil-in-
water droplet microemulsion to which telechelic polymers are added . This sys-
tem was previously described by Filali et al.11) The o/w microemulsion involves a
cationic surfactant, cetyl-pyridinium chloride CPCl, and a cosurfactant n-octanol.
The droplets are swollen with decane and dispersed in 0.2 M NaCl brine. The
droplets are spheres of radius b = 62 Å and were found robust to variations of both
the microemulsion concentration and of the amount of added polymer.11) The vol-
ume fraction in oil droplets is denoted φ. The polymer chains (Poly-ethylene oxide)
of molecular weight 10 kDalton are grafted at both ends with aliphatic chains of
eighteen CH2 groups. This hydrophobic end groups (stickers) anchor reversibly into
the microemulsion droplets. The polymer amount is represented by the connectivity
r, i.e. the average number of hydrophobic stickers per droplet. The polymers chains
can either link two oil droplets ( bridge configuration) or loop one a single one ( loop
configuration). The other possible states ( free chains with no stickers adsorbed into
a sphere of dangling chains with a single sticker adsorbed ) are negligible. Indeed,
For aqueous transient networks, the stickers consist of short chains of typically 10-25
methylene groups, with a sticking energy on the order of kT per methylene group.
Therefore,the corresponding sticking energy is ε/kT ≈ 10 − 25 is large enough to
neglect the fraction of dangling or free chains.

The phase diagram13) is shown In Figure 2. For sufficiently low amount of
telechelic polymers a one phase region is obtained for all volume fraction of droplets.
For higher r, phase separation occurs in a wide range of droplets volume fraction. The
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Fig. 1. Schematic of a bridged microemulsion. The telechelic polymers can either link two oil

droplets or loop on a single one.

biphasic region comprises two isotropic and transparent phases, one being a rather
stiff gel and the other being a fluid of low viscosity. In the one phase region, a sol-gel
transition ( this is a topological transition and not a thermodynamic transition) and
defined the percolation line. A generic phase behavior is expected for mixed systems
of self-assembled aggregates and polymeric crosslinkers: an entropically driven, first-
order thermodynamic phase transition is predicted to occur even in the absence
of any specific interactions at the mean-field level.1) The configurational entropy
of polymer junctions induces indeed an effective attraction that can result in an
equilibrium between a dilute phase and a connected network.

§2. Pair potential between two droplets induced by telechelic
polymers15)

Let consider two spheres of diameter σ separated by a distance h than interact
through ideal telechelic polymer chains of N monomers of size a. The polymers are in
contact with a bulk reservoir of chemical potential µ. The stickers are free to diffuse
onto the spheres and the sticking energy ε� kT , so that the free chain configurations
and the dangling chains configurations are negligible. We first consider the simpler
case of two infinite walls separated by a distance h along the z axis.it consists of
M sites of area a2 which can be either occupied by a surfactant molecule or by the
sticker of a telechelic polymer of polymerization index N . The statistical weight
associated with all configurations of an ideal chain of N monomers located between
the two impenetrable walls with its first monomer at r = (x, y, z) and its last one at
r′ = (x′, y′, z′) is given by the chain propagator equation:16)
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Fig. 2. Phase diagram of the connected microemulsion a a function of the droplet volume fraction

φ and the mean number of polymer stickers per droplet r.

( ∂

∂N
− a2

6
∇2
)
GN (r, r′) = 0 (2.1)

where GN (r, r′) = 0 outside the space between the walls.

Fig. 3. Two beads interacting via a telechelic polymer

The solution of Eq.(2.1 )is given by standard methods:
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A loop configuration is obtained by demanding that r0 = (0, 0, a) and r′0 = (x′, y′, a)
and the corresponding loop partition function is:

zl(h) = a

∫ +∞

−∞
dx′
∫ +∞

−∞
dy′GN (r0, r

′) =
2a

h

∞∑
p=1

e−
π2Na2

6h2
p2 sin2 pπa

h
(2.3)

Fig. 4. Partition function of a loop (Eq. 2.3)

A bridge configuration is obtained by demanding that r0 = (0, 0, a) and r′0 =
(x′, y′, h− a) and the corresponding bridge partition function is then:

zb(h) = a

∫ +∞

−∞
dx′
∫ +∞

−∞
dy′GN (r0, r

′) =
2a

h

∞∑
p=1

(−1)p+1e−
π2Na2

6h2
p2 sin2 pπa

h
(2.4)

Fig. 5. Partition function of a bridge (Eq. 2.4)

From Eqs( 2.3,2.4) one gets:
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zl(∞) =
3
√

6

n3/2
(2.5)

zb(∞) = 0 (2.6)

As expected the bridge partition function vanishes if the two wall are far apart(h→
∞), whereas the loop partition function remains constant. Ideal chains by hypothesis
do not interact, so, the partition function of Q ideal chains sticked on a pair of wall
is:

ZQ(h) =

(
Q

M

)
(zb(h) + zl(h))Q (2.7)

The corresponding grand partition function reads:

Ξ(h) =
M∑
Q=0

ZQ(h)eβµQ (2.8)

where µ is the chemical function of a polymer chain. Note that we use the grand
canonical statistical ensemble, because chains are free to exchange with the bulk
reservoir. The grand potential per unit area is:

J(h) =
kT

a2
ln[1 + eβµ(zb(h) + zl(h))] (2.9)

where zl and zb arge given by Eqs (2.3,2.4).
The polymer-induced effective potential per unit area between the two walls is

then:

V (h) = J(h)− J(∞) = −kT
a2

ln
1 + eβµz(h)

1 + 3
√

6N−3/2eβµ
(2.10)

where:

z(h) = zl(h) + zb(h) =
4a

h

∞∑
p=0

e−
π2Na2

6h2
(2p+1)2 sin2 (2p+ 1)πa

h
(2.11)

One has to keep in mind that the mean number of adsorbed polymer per unit area
〈q(h)〉 = −∂J/∂µ is not a conserved quantity, that is depends on h. So, in the
biphasic domain of the phase diagram, there is no reason that droplets in the dilute
phase bear the same mean number of polymers than droplets in the gel phase.

The effective pair potential induced by telechelic polymers V (h) is plotted in
Fig.(6). It exhibits an attractive minimum for a distance between the walls on the
order of the end to end distance of a polymer chain R = aN1/2 ; for this distance,
the fraction of bridges is maximal. At larger distances, there is an entropic penalty
for the bridge configurations because bridges must be stretched. At shorter distance
the entropic cost of polymer confinement ( for both loops and bridges configurations)
induces an effective repulsion between the walls.
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Fig. 6. Polymer induced effective potential per unit area between two walls

To extend these results to curved surfaces, we use the Derjaguin approximation
despite the fact that the curvature of the droplets are of the same order of magnitude
than the size of polymer chain.The Derjaguin approximation17) is a powerful approx-
imation widely use in colloidal science which gives the force between two spheres in
terms of the energy per unit area of two flat surfaces at the same separation it is ap-
plicable to any type of force law, whether attractive, repulsive or oscillatory, so long
as the range of the interaction and the separation is much less than the radii of the
spheres . Finally on obtains the contribution Vp(h) of the polymer to the interaction
potential between the droplets of diameter σ at distance h from Eqs.(2.10,2.11):

Vp(h) =
πσ

2

∫ h

∞
V (h′)dh′ (2.12)

The potential Vp is plotted in Figure(7)

Fig. 7. Polymer induced effective potential per unit area between two spheres (??)

The attractive minimum for a distance between spheres on the order of the
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polymer end to end distance is still present. However the repulsion at short distances
disappears. this a consequence of the fact , that, even at close contact, a bridge
or a loop can exist because the stickers freely slide onto the spheres as shown by
Monte Carlo simulations;18) For real chains, where the potential is non additive
with the mean number of polymer/per bead, the simulations show the repulsion due
to the entropic confinement of the polymer chains. The effective potential Vp has
been tested to fit the small angle neutron scattering data for the structure factor
of the experimental system:15) the agreement is qualitative; however, the potential
underestimates the repulsion between the spheres, due to the sliding effect , which
become less and less important for the N > 2 bodies contributions to the potential
between spheres.

§3. Entropic phase separation in polymer-microemulsions network19)

A simple mean-field theory has been developed by Zilman et al19) to explain the
experimental phase digram shown in Fig.2. It predicts how the polymer properties
control the phase behavior. The predicted phase separation has a purely entropic
origin: there are no energetic interactions among the polymers or droplets. The
phase separation occurs because the loss of the translational entropy of the droplets
is overcompensated by the high configurational entropy of the polymer connections
in the dense network.

A total of Np polymers and N beads are distributed in space so that a polymer
either connects two beads or loops on a single bead. The total free energy of the
systems which is athermal amounts to the configurational entropy. The first term
is the translation entropy of mixing of a dispersion of hard spheres given in lattice
representation by:

S0 = −k[φ lnφ+ (1− φ) ln(1− φ)] (3.1)

where S0(φ) is the entropy per site on the lattice and φ is the volume fraction of the
beads.

The second contribution is the configurational entropy of distributing the poly-
mers among the beads.

For a single polymer there are qlN available looped states where ql is the number
of positions available to a sticker of size a at the surface of a drop: ql ' σ2/a2 (σ is
the diameter of a bead). The free energy cost εl (in kT units) of a looped polymer
measures the entropic cost of both ends being confined to the same droplet. In
a simple approximation, the number of configurations available to a polymer with
radius RG, and with both ends constrained to a volume v, that is small relative to
the total volume is proportional to (v/R3

G) ' σ2l/R3
G) where l is the length of the

hydrophobic sticker. Therefore e−εl ' (σ2l/R3
G) for σ < 2RG and saturates to unity

for σ > 2RG.
We calculate now the mean number of beads connected by a polymer. For a

bead located a the origine O, the mean number of droplets at a distance [R,R+ dR]

is 4πR2dRφ
πσ3/6

. This gives the number of pair droplets at a distance [R,R+dR] (R > σ)
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N
2

4πR2dRφ

πσ3/6
= q(R)dR (3.2)

A bridge connecting two beads at distance R has stretching energy on the order of
ER = 3

2kTR
2/(Na2).

The partition function of a single chain is:

Z1 = qlN e−εl +

∫ ∞
σ/2

q(R)e−E(R)/(kT )dR = qlN e−εl + qφN (3.3)

with

q =

∫ ∞
σ/2

24R2

σ3
exp

(
−3

2

R2

Na2

)
dR (3.4)

The partition function of Np chains which are undistinguishable and independent is:

Zp =
1

Np!
Z
Np
1 =

(qlN e−εl + qφN )Np

Np!
(3.5)

The free energy per lattice site of the system is f = −kT/V (lnZp − TS0(φ)).
From Eqs.(3.1, 3.5) with c = Np/V and φ = N/V one gets:

f(φ, c)

kT
= φ lnφ+ (1− φ) ln(1− φ) + c(ln c− 1)− c ln(qφ2 + φqle

−εl) (3.6)

The first and second terms in Eq.(3.6) corresponds to the translational entropy of
the droplets; the third term corresponds the translational entropy of the polymers,
and the last term describes the effective interaction between the droplets and the
polymers.

The mixed system is stable if f(φ, c) is a convex function, i.e δ2f = fφφδφ
2 +

2fφcδφδc+ fccδc
2 should be a positive bilinear form. So, the matrix

S =

(
fφφ fφc
fφc fcc

)
must have two positive eigenvalues. Simple algebraic manipulations show that fcc is
positive , so the condition of stability reduces to detS > 0, i.e.:

2
c

φ
<
φ+ (ql/q)e

−εl

φ(1− φ)
(3.7)

The mean number of stickers per bead is r = 2c/φ, so the spinodal is defined by

r = rs =
φ+ (ql/q)e

−εl

φ(1− φ)
(3.8)

Eq.(3.8) defines the spinodal line in the plane (φ, r) ,i.e., if r > rs, the system is
thermodynamically unstable and phase separates into a system of dense droplets
that are highly connected by polymers, that coexists with a dilute system of almost
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disconnected droplets, decorated with polymer loops. The latter observation stems
from the fact that the average fraction of the looped polymers λ is given by:

λ =
−∂ lnZ1

∂εl
=

(ql/q) exp(−εl)
(ql/q) exp(−εl) + φ

(3.9)

In the dilute phase φ→ 0 and λ→ 1
In the coexistence phase domain, the equality of f the polymer chemical poten-

tials µc = ∂f/∂c in the two coexisting phases implies that:

r = m

(
φ+

ql
q
e−εl

)
(3.10)

where m is a constant defined by m = 2eµc
q . It follows that the coexisting phases lie

along the lines given by Eq.(3.10), which are not horizontal in the (φ, r) plane.
Inersection points of the coexisting lines Eq(3.10) and the spinodal Eq.( 3.8) are

the solutions of the equation φ2−φ+m = 0. For m < 4 there is no solution , and so no
phase coexistence. For m = 4, there is a single solution (φ = 0.5; r = rc = 2+2 qlq e

−εl)
which defines the critical point that is not the minimum of the spinodal. For m > 4
there are two solutions (be careful that these solutions do not define the binodal).
These simple analytical results reproduce qualitatively well the phase behavior of
the experimental system and are summarized in Figure 8. Computer simulations of
the same system20) verify the predictions of the analytical model.

Fig. 8. Phase diagram19) of drops connected with polymers. The thick line is the spinodal line of

the phase separation for qle
−εl/q = 2. Above this line the system becomes thermodynamically

unstable. The critical point is atφ = 0.5 and is shown as a black dot. Note that the critical

point is not at the minimum of the spinodal. The tie lines are shown as dotted lines in the phase

separation region. Note that they are not horizontal. The dashed line shows the percolation

threshold calculated for an fcc lattice with q = 16. Below the percolation line, the system is in

the fluid state, while above it a connected gel is formed

Because of its entropic nature, the phase separation is extremely robust and
is independent of the detailed as-sumptions about the polymer an/or the nodes
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properties. For instance its is also predicted using a self consistent field theory for
binary solutions of telechelic chains21) in agreement with experimental results,22).23)

The same type of phase separation has been also observed with entangled solutions
of wormlike micelles bridged by telechelic polymers.7)

§4. Linear viscoelastic properties

Th gel phase of the bridged microemulsion behaves as a Maxwell, fluid, that is the
simplest viscoelastic behavior: the material can be characterized by a single plateau
shear modulus µ0 and a single relaxation time τ . The constitutive differential scalar
equation of a Maxwell fluid is obtained from the spring and dashpot representation
of a Maxwell element (Fig. 9).

σ + τ
dσ

dt
= η

dγ

dt
(4.1)

where σ is the shear stress, γ is the shear strain and η = µ0τ is the viscosity of
the Maxwell fluid.

Fig. 9. Spring and dashpot representation of a Maxwell element

When a Maxwell fluid is submitted to an oscillatory stress at frequency ω char-
acterized by its complex form σ = σ0 exp iωt the material response given by the
complex strain γ is of the form σ = µ(ω)γ.

Re(µ(ω)) = µ′(ω))defines the storage modulus of the material and Im(µ(ω) =
µ′′(ω) is the loss modulus. From Eq. 4.1, one gets the storage and loss moduli for a
Maxwell fluid:

µ′(ω) = µ0
(τω)2

1 + (τω)2
(4.2)

µ′′(ω) = µ0
τω

1 + (τω)2
(4.3)

At low frequency (ωτ � 1), the modulus is purely imaginary (µ = iωµ0τ) and
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the material behaves as a liquid of viscosity η = µ0τ . At high frequency (ωτ � 1)
we are dealing with an elastic solid with an elastic moculus µ ≈ µ0.

Fig. 10. Frequency sweep experiments. Storage modulus, µ′ (closed symbols) and loss modulus, µ”

(opened symbols) as a function of the frequency ω for the fluids [r = 6, φ = 10%] (circles) and

[r = 12, φ = 10%] (triangles). Solid lines correspond to fits by a Maxwell mode (Eqs. 4.2, 4.3)

which give the elastic shear modulus and the relaxation time of each fluid.

Figure 10 show that the Maxwell behavior is almost perfect for the telechelics-
microemulsion mixtures. The shear modulus and the relaxation time are respectively
equal to 330 Pa and 0.59 s for [r = 6, φ = 10%], 2400 Pa and 2 s for [r = 12, φ =
10%].24)

The origin of the Maxwell behavior is explained by the transient network the-
ory.25) We summarize here the main results. At high frequency, where we can
neglect the transient nature of the network the gel is a a polymer network. The sim-
plest model to describe the elastic properties of a permanent polymer network like a
rubber is the affine network model which is described in textbooks (see for instance
Ref.27)). The elasticity arises primarily from the changes in entropy of the network
strands when the network is macroscopically deformed. So the shear modulus is:

µ0 = nbkT (4.4)

where nb ∝ r
2φ is the number density of polymer bridges. The stress relaxation arises

from the finite residence time τR of a sticker in a given droplet. Since the escape of a
given sticker from a droplet is presumably a thermally activated process, we expect
τR and therefore τ ∝ τR to exhibit an Arrhenius dependance versus the temperature:

τ = τ0 exp(Es/kT ) (4.5)

where τ0 is some inverse frequency of attempts and the activation energy Es is the
reversible work of extraction of the sticker from the hydrophobic core into the free
water. The activation energy is itself proportional to the number of methyl groups
nCH2 in a sticker E ' 1.2kTnCH2 . The longer are the stickers of the telechelic
chains, the longer is the relaxation time of the network. Eqs (4.4,4.5) do not describe
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properly the viscoelastic behavior near the percolation line as shown in Figure 11. For
a given droplet concentrations both the elastic plateau modulus and the relaxation
time exhibit a power law dependance with the apparent connectivity r on the form
µ0(r) = A(r − rp)α and τ = B(r − rp)β, where rp defines the percolation point of
the network for a given φ.28) In principle, in percolation situations, the singular
power law dominates the evolution of a given quantity only close to the threshold.
Far above, the mean field behavior is usually recovered. In contrast,in this system,
the fits happen to be surprisingly good even far above rp(φ) a feature that is not
understood.

Fig. 11. Evolution of the shear modulus µ0 and the relaxation time τ near the percolation threshold

(Note that in these experiments the polymer chains have a molecular weight of 35kDa). The

lines are t fits with the expressions µ0(Pa) = 389(r − 1.9)1.55 and τ(s) = 0.6(r − 1.9)0.6

.

µ0 characterizes the immediate elastic response of the network to a sudden de-
formation, before any relaxation due to the finite lifetime of a link. It is natural in
this picture that it vanishes below a finite value rp of the connectivity parameter:
below rp, there is no cross-linked infinite path, connecting continuously the cone and
the plate of the rheometer and capable of sustaining the transient elastic torque.
Since by definition µ0 does not involve any feature related to relaxations, its evolu-
tion can be compared to theoretical predictions derived at true sol- gel transitions
The exponent calculated for the elastic modulus is 1.7 above the gel point29) close
to the value measured in this system. The terminal relaxation time τ is related to
the residence time of a sticker in a droplet. In the usual interpretation of the stress
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relaxation in transient net- works25), 26) the spatial distribution of the nodes is as-
sumed to be affinely deformed by the step strain and the length distribution of the
links is thus shifted accordingly. The transient off equilibrium length distribution is
at the origin o f the measured stress . From time to time stretched links disengage
due to the finite residence time of their stickers and reconnect with the equilibrium
length distribution: they forget the initially imposed strain and no more contribute
to the stress. In this picture the stress at time t is a simple measure of the number
of links that still reminds the initial strain after time t, and we would expect τ to
be simply identical to the residence time. The measurements do not support this
expectation: τ sensitively depends on the average degree of connectivity r and van-
ishes at rp, whereas the residence time is completely determined by the adsorption
energy of a sticker in a droplet. It should not depend on nonlocal features such as the
degree of connectivity of the network. To understand the discrepancy, we note that
the above affine picture is a mean field description which assumes that the imposed
strain distributes homogeneously within the network. Such homogeneity certainly
breaks when approaching the percolation point. Close to the threshold, the infinite
connected cluster consists of more densely cross-linked subclusters connected to each
other by weaker parts where the links are less dense. Breaking a small number of
links only, in a weak part, will suddenly release the stress within the whole adja-
cent dense subclusters. In this non-mean-field picture, we expect τ to be shorter
than the residence time and indeed to vanish at the percolation as observed in the
experiments.

§5. Microscopic mechanisms of the brittleness of the transient
network14)

Her we investiigate the fracture nucleation in the transient network; indeed we
will show that this liquid i liable to fracture in a brittle manner since it possesses
structure capable of transmitting elastic forces over macroscopic scales. But this
structure is also be labile and reversible to let the material flows; so the fracture
should only be observed for high rates of deformation for which the fluid cannot
relax, the material responding in a solid-like manner.

5.1. Pendant drop experiments

Such a brittle fracture can be observed for several flow geometries. we focus in
this lecture on purely extensional flow experiments during a pendant drop experiment
monitored with a fast camera , equipped with a macro lens, (Fig. 12). A syringe
pump was used to form the drops with a fixed volume of 50 µL and a constant rate
of 2 mL/h for all the solutions. The fluid initially in the syringe flows through a
lower plastic tube of diameter of 2.60 mm and a drop emerges at the tube outlet
which is enclosed in a glass box to reduce air currents.

During the experiment, the tensile stress steadily increases as the cylindrical
body of the drop thins up. At any time, the recorded extension rate ε̇ as a function
of the effective extensional stress σN agrees with the Maxwell model: the extensional
viscosity at moderate rate is found three time larger than the shear viscosity (σN '
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Fig. 12. Experimental setup for fracture observation in pendant drop experiments

.

3µ0τ ε̇). But suddenly again, inside the linear regime (ε̇τ ' 0.2), a fracture nucleates
and propagates across the sample which leads to the rupture of the drop . We get the
critical stress at the rupture of the drop σN in the following way. We measure the
diameter of the drop where the fracture occurs and we weight the mass of the falling
part with the help of a laboratory balance of accuracy 1 mg (placed underneath the
injection set-up. In this condition the stress σzz is measured with a precision of 5%.
Finally the stress at the rupture is equal to σN = σzz − σyy with σyy the radial
stress corresponding to the Laplace pressure. The failure is brief and completed
within 20ms, which gives a crack speed of 25 mm/s, much slower than the transverse
shear wave velocity (

√
µ0/ρ ∼ 1000mm/s, with ρ the mass density of the fluid) (see

Fig.13). It is worth noting that upon growing, the fracture exhibits the parabolic
shape (Fig. 14) expected for an elastic solid breaking under tension.30), 31)

When the polymer concentration changes (r increases) at fixed volume fraction
of surfactant (φ = 10%), the critical fracture stress changes too as seen in Fig.15.
Finally we observe that the critical rupture stress is independent of the sticking
energy ε. Indeed experiments where performed with samples with the same polymer
and surfactant concentration, but which differ by the length of the hydrophobic
stickers ( 21 respectively 18 methyl group per sticker) that increases the relaxation
time by a factor 5:τ21 ' 5τ18) as shown in Fig.16.

To summarize the experimental results, three experimental facts present strong
analogies with the fracture of brittle solids: rupture suddenly appears within the
linear regime, it is driven by the tensile stress and it exhibits a parabolic profile
in the extensional test. Moreover, the critical rupture stress σf ≈ 0.5Y and is
independent on the bonding energy ε.

5.2. The Griffith-Pomeau theory

Solid mechanics predicts that tensile rupture of solids occurs for an applied stress
high enough to break atomic bonds. However the true values of critical stress are
several orders of magnitude lower than the predicted value. Griffith32) clarified this
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Fig. 13. Flow and fracture of a pendant drop.

Fig. 14. Pictures of the propagation of the fracture across the sample r = 6from the right to the

left. The time left to pinch off corresponding to each picture labelled with a letter is: a (8.50

ms), b (5.16 ms), c (2.67 ms), d (2.00 ms), e (1.00 ms), f (0.33 ms), g (0.17 ms) and for h (0.33

ms after the pinch off). The last picture on the right shows almost all the elongated drop the

crack being well developed. The white scale bar corresponds to 0.1 mm.

discrepancy and laid down the foundation of brittle fracture theory: microcracks
created during material processing act as stress concentrators and lower the overall
strength. The Griffith’s point of view starts up with preexisting micro-cracks and
considers the energy required for them to grow spontaneously under a given constant
stress. A surface energy has to be paid to break more cohesive bonds, counterbal-
anced by the bulk elastic energy released by the opening of the crack. For a given
stress σN the Griffith energy cost W for a crack of size l reads then:
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Fig. 15. Plot of the rupture stress coming from the pendant drop experiments (circles) and expected

values from Eq. 5.6 as a function of the connectivity r. f as been fixed to its expected value :

f = 0.5. The only free parameter is then α. Here, α = 0.9 (α ∼ 1 as expected). The vertical

dashed line corresponds to the percolation threshold (r=3). The inset gives the variation of the

experimental rupture stress with the Young modulus Y = 3µ0, corresponding to the different

connectivites. Note that the observed deviation of σc from its linear dependance with Y observed

at small r, originates form the vicinity of the percolation threshold.

Fig. 16. Statistics of the rupture stress for pendant drop experiments with two series of samples

with the same surfactant concentration φ = 10% and same connectivity r = 9 but with two

different lengths for the hydrophobic stickers ( 21 versus 18 methyl groups)

W (σ, l) =
π

2
l2γ − απl

3σ2

6Y
, (5.1)

with l the size of a disc-like crack, γ the cohesive energy per unit area, Y = 3µ0 is the
Young modulus and α ' 1 a constant depending on geometrical factors. Note that
Grffith’s therory is based on the hypothesis that the deformation of the material is
in the linear elastic regime, i/e. σ ∝ Y ∆V/V . The variation of W (σ, l) with l for a
fixed σ is plotted in Fig. 17. It has typical shape of the free energy for a nucleation
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phenomenon.

Fig. 17. Variation free energy of a crack with its length (Eq. 5.1)

The stress σ being fixed, W (σ, l) reaches a maximum:

Wmax(σ) =
2π

3α2

γ3Y 2

σ4
(5.2)

for a crack size (the so called Griffith length)

lc(σ) =
2

α

γY

σ2
(5.3)

For a crack of size larger than lc, dW/dσ < 0, leading to a catastrophic growth of
the crack, in contrast with a crack of size smaller than lc. In brittle solids, micro-
cracks are formed irreversibly during the material processing. Upon increasing the
applied stress the largest amongst them become critical and leads to fracture. In
our case however, the elastic network results from an equilibrium self assembly and
micro-cracks can only arise from thermally activated fluctuations of the connectivity.
Indeed, in the absence of applied stress, there is a statistical thermal distribution
of domains without polymers connecting droplets n(l) ∝ e−4πγl2/kT that we identify
with microcracks. Pomeau33) suggested that the Griffith’s energy (Eq. 5.1) can be
viewed as an energy barrier of height Wmax(σ) that can be overcome by thermal
fluctuations according to Kramers theory. This occurs as soon as Wmax(σc) ≤ kBT .
Then, from Eq. 5.2, a fracture appears for σ ≤ σc with

σc =

(
2π

3α2

γ3Y 2

kBT

)1/4

. (5.4)

Notice that Griffith-Pomeau theory of thermally activated fracture failed to quanti-
tatively explain thermally activated fracture nucleation in solids34) until yet, because
in through solids, thermal fluctuations are irreversible, in contrast with the present
material where healing and growth of the microcracks are both possible.



SELF-ASSEMBLED TRANSIENT NETWORK 19

We need a precise estimate of the surface energy γ. The micro-cracks appear
well before the fracture forms an interface with air. A micro-crack corresponds to
a surface across which there is no connection between oil droplets. The crack is
completely wet by the aqueous solvent and the only contribution to γ comes from
the polymer network.

5.3. Entropic origin of the wet fracture interfacial energy

At first sight, the nucleation of crack requires some stickers to be pulled out
of the oil droplets and dangle free into the solvent. This would cost a free energy
per link equal to the sticking energy ε. The corresponding fraction surface energy
γ would be then proportional to this binding energy, and consequently (see Eq.5.4),
the critical fracture stress σc would increase with ε. This is not was is observed as
shown clearly in Fig.16. But in fact a crack can be achieved at a much lower energy
cost corresponding to the lack of accessible configurations of the polymers which face
the crack surface. These cracks always exist, in the fluid, due to equilibrium thermal
fluctuations. A micro-crack corresponds to a region without polymers connecting
droplets. In the vicinity of a crack, polymers do not cross the crack surface and
therefore lose roughly half of the configurations they would have had if they were
far from the crack surface, Fig. 1. Those polymers are redistributed parallel to the
crack surface (see Fig. 18).

Fig. 18. (Left) Before the crack nucleation (bold dashed line) polymers can bridge oil droplets on

both side of the bold dashed line. (Right) When the crack occurs, the same polymers can not

cross the bold dashed line anymore and form bridges in the other directions.

So the free energy cost associated to the crack is kT ln 2 per active polymer.
Therefore the surface energy can be written as

γ =
fr

2d2
kT ln 2 (5.5)

where r is the average number of hydrophobic stickers per droplet (connectivity),
f is the average fraction of bridging configurations for a given polymer (f ∼ 0.518)).
d is the center-to-center distance between droplets d = (4π/3/φ)1/3r0 (φ and r0 are
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the volume fraction and the oil droplet radius respectively. The typical value of γ is
extremely low and roughly equal to 10 µJ.m−2. This a depletion interfacial tension
of purely entropic origin. Knowing the surface energy γ we are able to calculate the
critical stress σc (Eq. 5.4), above which the fracture occurs:

σc =

(
3

πα2

(
f ln 2

4

)3

φ2
r3

r60

)1/4

(kTY )1/2 (5.6)

Since far from the percolation threshold the Young modulus is roughly equal to
Y = 3nkBT where n = 3φrf/(4πr30), we eliminate φ and r0 in Eq.5.6 which can then
can be approximated by:

σc '

((
ln 2

3

)3 π

4α2
rf

)1/4

Y (5.7)

For typical values of f and r, the prefactor in remains of the order of unity:
σc ∼ Y (far from the percolation threshold). Fig.15 shows that the critical stresses
measured during the pendant drop experiment are in very good agreement with the
ones derived from our simple approach (Eq. 5.7), when the polymer concentration
changes (r increases), at a fixed volume fraction of droplets. This result confirms
the physical basis of the fracture interfacial energy we have chosen. The fracture
mechanism of the transient network is a two step process. Tthe first step consists in
the spontaneous nucleation of a wet fracture starting up from a lack of cohesion of the
network, the microcrack being filled up with solvent. The second step corresponds
to the destabilsation of the capillary bridge, driving eventually to the dry fracture
with parabolic profile as displayed in Fig.14. This last step and the properties of the
fracture propagation will be described in details in the next section.

§6. Propagation of a brittle fracture in the transient network24)

6.1. Velocity of the fracture propagation in an elastic solid

In an elastic solid the velocity of fracture propagation is high, with a maximum
given by the sound velocity vmax ≈ (Y/ρ)1/2 .

This result can be shown using the following oversimplified argument.35) In a
2D version of the Griffiths theory, the Griifith energy cost for a crack of size l can be
written as a function of the Griffith length∆E = 2γl−πl2σ2/Y = 2γlc−2γ(l−lc)2/lc,
which is valid for l < lc. For l > lc, the material fails suddenly and the fracture
propagates so rapidly that the total energy of the 2D solid can be considered as
constant with time: ∆Etot = 2γlc= 2γlc − 2γ(l − lc)2/lc + Ekin. Indeed, there is
an extra term in the total energy : the kinetics energy of the atoms located in the
region (of size l2); where the constraint is relaxing. Ekin ≈ ρl2(du/dt)2 where ρ is
the density of the material, and u is the displacement of the atoms caused by the
relaxation of the stress inside a region of size l where the fracture takes place. So
u ≈ lσ/Y and Ekin ≈ ρl2(σ2/Y 2)v2 where v = dl/dt is the fracture velocity. Now,
because all the released elastic energy is converted into kinetics energy, one finds:
v = vmax(1− l/lc).
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We will se that in the transient network under consideration, the velocity of the
fracture is much smaller than the sound velocity, despite the fact that the fracture
propagation can be considered as brittle.

6.2. Experimental results

During the pendant drop experiment, a filament is formed from the drop which
hangs at the outlet of the glass tube. As the drop falls, this filament continuously
thins up and the tensile stress steadily increasing, until a crack nucleates at the
surface of the filament for a critical stress σc ' 0.5Y .14) Then the fracture propagates
across the sample and eventually leads to the rupture of the drop (fig. 14). In the
experiments presented here, the fracture mechanism is a two step process. the first
step consists in a spontaneous nucleation (thermally activated crack) of a microcrack
within the oil droplet/telechelic polymers network, the microcrack being filled up
with solvent. In the following we discuss in details the second step which corresponds
to the destabilization of the capillary bridges and the propagation of a dry fracture
which propagates through the material.

Fig. 19. Fracture profiles u(x) for different times before the pinch off, in the fracture moving frame,

corresponding to the pictures of the part a of this figure. The black line is a parabolic fit

corresponding to the eq. (6.1) with G = 2γs. We report only the profile for L < 0.1D0.

It’s worth noting that from the beginning of the propagation up to the pinch-off
(i.e., the sample is separated in two parts) the fracture profile exhibits a parabolic
shape (Fig. 19) expected for an elastic solid breaking under tension31).30)

u(x) =
KI

Y ′

√
8x

π
(6.1)

where Y ′ = Y/(1 − ν2) due to the plane strain condition.These observations were
confirmed by a quantitative analysis of the fracture profile u(x) on the overall crack
propagation across the sample. Different fracture profiles measured in the fracture
moving frame and a parabolic fit are represented in figure 14. The (local) stress
intensity factor KI is thus estimated using equation (6.1) and the corresponding
strain energy release rate G is evaluated according to the equivalence:
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G =
K2
I

Y ′
(6.2)

We stress the point that the use of equation (6.1) essentially assumes a 2D sym-
metry of the crack profile which is not realistic in the case of a cylindrical filament.
However, since the movie has been selected in order to present an excellent orthog-
onality between the camera orientation and the direction of crack propagation, the
observed opening profile provides a good estimate of the local stress intensity factor,
the measurement being more accurate for shorter cracks.

(a)

(b)

Fig. 20. (a) Fracture energy versus the time which left to pinch-off trupt−t for r = 6 (closed circles)

andr = 12 (opened circles) fluids. The letters still correspond to the picture in fig. 14 associated

with the r = 6 fluid fracture. The dotted line corresponds to G = 2γs. (b) Evolution of the total

length of the fracture L (D0 − L in the graph) with the time which left to pinch-off trupt − t.

The legend is the same as part a. The diameter of the filament when the crack occurs at the

surface of the material D0 are equal to 0.584 mm and 0.407 mm for (r = 6) andr = 12) fluid

respectively. The dotted lines correspond to the linear fit of the data which give roughly a crack

speed V = 4 mm/s.

The variation of the estimated fracture energy G and the measured length of
fracture L as a function of trupt− t are represented in figure 20. Two distinct regimes
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are clearly evidenced depending on the length of the crack:
(i) for L < 0.1D0, both the fracture energy and the crack speed remain almost

constant with values roughly equal to G ≈ 100 mJ/m2 and V = 4 mm/s. It turns out
that the estimated value for G is roughly twice the surface tension γs ' 50 mJ/m2 of
the stabilized oil-in-water droplet microemulsion without telechelic polymers (that
we will call the solvent). We remark firstly that the surface energy needed to pull-
out the hydrophobic stickers from the oil droplet γpol, of the order of 10µN/m14)

is completely negligible. Secondly, the relation G ≈ 2γs suggests that there is no
significant dissipative contribution in the crack tip region.

(ii) for L > 0.1D0, the estimated fracture energy and the crack speed increase
when we go closer to the pinch-off. It’s worth noting that the results concerning
G must be interpreted with caution as finite size effect may be important. It is
then questionable whether the use of equation (6.1) to fit the profile is still justified.
Moreover, in this regime we clearly observe an axisymmetric thinning of the filament
rather than a fracture which grows and propagates across the sample (images d-g in
fig.14). This was confirmed by the analysis of the variation of the diameter of the
filament.

6.3. Trumpet model for the fracture in a Maxwell fluid

In order to provide a rationale for the presented behaviour, we review here the de
Gennes model of the viscoelastic trumpet36), 37) reassessed by Saulnier et al,38) which
present a qualitative theroretical analysis of the dissipative process during the bulk
fracture in a viscoelastic material; we apply this scaling approach to the simplest
case of a Maxwell fluid.38) This model allows to explain at the level of scaling law
the remarkable relation between the fracture energy per unit area G(V ) at crack
velocity V and G0, the limiting value of the fracture energy at zero rate crack that
was reported for elastomeric materials:39), 40)

G(V ) = G0(1 + φ(aTV )) (6.3)

where aT is the temperature shift factor given by the Williams-Landel-Ferry equa-
tion.41) For a Maxwell fluid, the complex modulus µ(ω) as function of frequency is
the following:

µ(ω) = µ′(ω) + iµ′′(ω) = µ0
iωτ

1 + iωτ
(6.4)

A low frequency (ωτ � 1), the modulus is purely imaginary (µ = iωµ0τ) and the
material behaves as a liquid of viscosity η = µ0τ .

At high frequency (ωτ � 1) we are dealing with an elastic solid with an elastic
moculus µ ≈ µ0. de Gennes discusses in36) the consequences of this property on
a moving fracture. Let consider a fracture of crack lenght L(t) moving at velocity
V . He shows that for a viscoelastic medium, the scaling law for the stress σ as
a function of distance r from the crack tip is still equivalent to that we have for
a steadyly growing mode I interface in plane stress or plane strain in an elastic
medium43)
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σ(r) ∼=
KI√
r

(6.5)

where KI is the applied stress intensity factor. The key point of de Gennes theory is
that far from the crack tip, r > V τ , i.e. at large spatial scales or long time, viscous
dissipation occurs and the dissipation T Ṡ (per unit length of the fracture line) is:

T Ṡ = V (G(V )−G0) =

∫
dxdyσγ̇ (6.6)

where σ is the local stress and γ̇ the local share rate. During crack propagation, the
strain rate imposed to the material is high near the fracture tip and lowers as the
distance r to the head increases (far from the fracture tip the material has more time
to relax the stress) and de Gennes assumes a simple scaling for the local sweeping
frequency of the form ω ∼= V/r.

Since the complex strain γ can be related to the complex stress σ through the
complex modulus γ = σ/µ(ω) equations (6.4,6.6) lead for a Maxwell fluid to:38)

G(V )−G0 = −K2
I

∫ ωmax

ωmin

µ′′(ω)

µ′(ω)2 + µ′′(ω)2
dω

ω
= (6.7)

=
K2
I

µ0τ

(
1

ωmin
− 1

ωmax

)
(6.8)

The limiting values ωmin = V/L and ωmax = V/` define the range of frequency
over which the material is excited, ` being the length of a small microscopic non
linear zone (see figure 21).

Fig. 21. Schematic representation of the space and time scales of associated to a crack of length

L moving with a velocity V in a Maxwell fluid according to the trumpet model.38) A small

microscopic non linear zone of length ` is represented in black. The behavior of the material is

solid like at scales smaller than V τ , then fluid like at larger scales.

For a simple Maxwell fluid exhibiting a crack propagation we can distinguish
three spatial regions with different viscoelastic properties corresponding to three
regimes of frequencies:
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(i) 0 < x < `: directly ahead the crack tip there is a small microscopic non linear
zone of length `, independant of the separation rate, where the fracture process lead
to the G0 term of the fracture energy in equation (6.3); ` is typically on the order
of 100 Å.38)

(ii) ` < x < V τ . In this region, the complex modulus is essentially real (µ(ω) ≈
µ0), the viscous dissipation is negligible and the material can be considered as an
elastic solid.

(iii) V τ < x < L(t) In this region, the complex modulus is essentially imaginary
(µ(ω) ≈ iωµ0τ) and the material can be viewed as Newtonian liquid of viscosity
η = µ0τ . Only this region contributes to the viscous dissipation processes.

From this model several interesting features appear:
(i) The limiting value G0 of the fracture energy at zero rate which characterizes

also the relevant energy of the fracture is governed by the small non linear zone of
size ` near the crack tip and G0 = 2γs is the Dupr work needed to cut the material
in air, γs being the surface tension of the material.

(ii) If the fracture length is small (` < L(t) < V τ), viscous dissipation does not
occur according to equation (6.7) and G(V ) = G0; this regime takes place at short
times or if there is some maximal cut-off for the length fracture Lmax < V τ , as it does
for the filament rupture experiment reported in this paper, where Lmax = D0 ≈ 600
µm is the diameter size of the filament just before failure. In this purely elastic regime
of the fracture propagation, where the viscous region does not appear because of the
finite size of the sample, the profile u(x) of the fracture should be parabolic43) as in
equation (6.1), and it should not depend on the rate of propagation of the fracture.
(iii) Viscous dissipation will occur only if Lmax > V τ . In this regime, equations
(6.7,6.2) give:

G(V,L(t))

G0
= 1 +

L(t)

V τ
(6.9)

provided that ` remains small with respect to the sample dimension. In this zone
(V τ < x < L(t)), de Gennes has shown that the scaling form (6.5) for the stress
components remains valid for a viscoelastic medium leading to the expected profile
u(x) ∼ x3/2. The sign change in the concavity of the fracture profile at x ∼ V τ is at
the origin of the name “trumpet” for this model. Such a trumpet profile has been
experimentally observed for adhesive fractures in polymer melts.38) We remark that
the scaling form (6.3) can not be observed in the fracture of Maxwell fluids since they
do not present an elastic behaviour at long time scales as is the case of viscoelastic
solids that was initially considered by de Gennes.37)

6.4. Application of the Trumpet model to the experiments

For our fluids (r = 6)and (r = 12) the characteristic length V τ is respectively 2.4
mm and 8 mm, which are always larger than the upper bound for the crack length
D0 = 0.6 mm, the diameter of the filament when the crack appears. Therefore
the response of the material is completely elastic (L < V τ), the size of the sample
being too small to see any viscous dissipation on the overall rupture phenomenon.
The fracture energy is thus expected to be independent of crack speed and to equal
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G0 = 2(γs+γpol). The first term is the classical Dupr work needed two form two new
air/gel surfaces (dry fracture). However before dry fracture occurs by instability of
the capillary bridge, the wet fracture must have already occurred and its interfacial
cost is 2γpol. As reported by Tbuteau et al.,14) this term of purely entropic origin is
related to the loss of configurational entropy of polymer chains at the crack surface

γpol ' (ln 2/2)kBTN
2/3
P , where NP ≈ 3φr/8πb3 is the number density of polymer

chains in the sample (cf. Fig. 18). This interfacial tension is extremly low and
roughly equal to 10 µNm−1 and is thus negligible compared to the air/gel interfacial
tension γs ' 50 mNm−1. It has been proved that for many systems G0 exhibits a
marked dependence on V , and most of the rate dependence of G(V ) then originates
from the rate dependence of G0 itself.42) Raphael and de Gennes44) have shown
theoretically that the surface energy required to debond the connectors between
two surfaces is indeed velocity dependant. However, in our fluid this argument
would apply to the component γpol which is negligible in front of the dominant
term γs, thus resulting in a substantial independence of G0 from V . Although
the condition L < V τ is respected throughout the experiment, the trumpet model
can only accurately describe the first observed regime of crack propagation where
L < 0.1D0. This is not surprising, since the modelling is relative to the fracture
propagation in a semi-infinite medium. The second regime for L > 0.1D0 must
clearly be attributed to the finite size of the soft filament and to the increasing value
of the strain in the progressively thinning ligament (cf. Fig. 14). In the regime 2,
(L > 0.1D0), we invoke finite size effects but it’s possible that we observe a blunting
phenomenon. Indeed, in this regime the deformation of the polymers is not linear.
A secondary contribution is the progressive failure of the rough 2D approximation.
The modeling of this second regime certainly requires further analysis.

6.5. Microscopic model for the fracture velocity

In the following we will only focus on the first elastic regime where both G and
V are constant in time and also take approximately the same values in the two fluids
r = 6 and r = 12, although Y and KI are significantly different. It’s worth noting
that V � C, C (of the order of 1 m/s) being the speed of sound in the medium.
What is the mechanism that explains this low speed propagation?

Basically, we argue that the scaling of the velocity V of the fracture is given
by the characteristic speed of relaxation of a microemulsion droplet at the opening
crack interface, under the action of the unbalanced elastic force of the polymer
bridge towards the gel (fig. 22). This velocity is given by balancing the elastic force
and the viscous drag force acting on the droplet (Reynolds number Re � 1). The
control of the crack velocity by network /solvent friction has been already proposed
by Baumbergeret al.45), 46) in the viscoplastic fracture dynamics of an other class of
reversible gel, i.e. gelatin.

6πηwbV ∼ Y d20 (6.10)

where d0 ' (4πφ/3)1/3b is the mean distance between two connected beads and ηW
is the viscosity of the water. A more precise calculation developedjust bellow gives:
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Fig. 22. Cartoon of the viscous relaxation mechanism of a bead at the tip of the fracture. The

polymer bridge between beads (1) and (2) just debonded, forming a loop on bead (2). Bead

(1) thus experiences the srpingback force f(t) due to the gel under tension; this will lead to an

increasing extra tension on bead (3) and crack propagation at velocity V .

V < α
Y d20

6πηW b
(6.11)

For the (r = 12) sample inequality (6.11) gives V < α25 mm/s ∼ 6 mm/s for a
reasonable expected value α ∼ 0.25.

Just before the bead at the tip of the fracture is released (at time t = 0) by the
debonding of a polymer bridge, it is submitted to the normal force :

f0 = σi(d0/
√
λi)

2 =
σid

2
0

λi
, (6.12)

where λi = di/d0 is the elongation of the network at the crack tip, d0 is the mean
distance between droplets at rest and σi is the local normal stress at the tip of the
fracture. Note that equation (6.12) assumes the incompressibility of the gel. For
t > 0, the bead experiences the following springback force due to the gel under
tension (fig.22):

f(t) =
σ(t)d20
λ(t)

(6.13)

From the relationship between σ(t) and λ(t) = d(t)/d0 given by the affine net-
work model of the unentangled rubber elasticity theory,27) one gets:

f(t) =
Y d20

3

(
λ(t)− 1

λ2(t)

)
(6.14)
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The size of the bead is submicrometric and so, its motion in water obeys the
Stokes law:

6πηW bd0
dλ

dt
= f(t) (6.15)

where ηW is the viscosity of the water. Substituting (6.14) in (6.15) and integrating
the obtained differential equation with the initial condition given by (6.12) gives:

λ(t) =
[
1 + (λ3i − 1) exp(−t/τ1)

]1/3
(6.16)

with a characteristic time

τ1 =
6πηWR

Y d0
(6.17)

To obtain the characteristic fracture velocity, one can estimate that the next
bead will debond (causing the growth of the fracture of length d0/λi) when λ = fdλi,
where λ−1i ≤ fd ≤ 1 is a critical elongation felt by the chain on the next bonded bead,
that is difficult to estimate. Indeed, the relaxation of the debonded bead induces
extra elastic tensions on the next bead at the tip of the fracture that will grow with
time. The time necessary to reach this critical elongation is then according to eq.
(6.16):

tp = τ1 ln

[
λ3i

fdλ
3
i − 1

]
(6.18)

The time scale is thus given by eq. (6.18) with logarithmic corrections. Finally
the fracture velocity is:

V ≡ d0√
λi

1

tp
=

Y d20
6πηW b

[√
λi ln

(
λ3i − 1

f3dλ
3
i − 1

)]−1
(6.19)

The function g : λi →
[√

λi ln
(

λ3i−1
f3dλ

3
i−1

)]−1
exhibits a maximum whose position

and value depend on fd and determines an upper bound for the fracture velocity.
We choose fd = 0.5, Indeed 2 < λi < 8 (λi = 2 corresponds roughly to the maximal
macroscopic elongation for the network experimentally observed before rupture %
occurs in pendant drop experiments and λi =∼ 1847) corresponds to the maximal
elongation usually observed in permanent rubbers), one gets max(g) = α = 0.25.
We note that max(g) is a decreasing function of fd. So the choice fd = 0.5 will give
the upper limit for the estimation of the crack velocity.

The debonding of a polymer bridge under tension leads to a viscous dissipation
due both to the motion of the released bead in the solvent and to the friction of
the monomer of the polymer bridge with the solvent too. Both forms of dissipated
energy will be of the same order of magnitude. the polymer contribution being even
smaller since the hydrodynamic radius of the polymer chain RH ∼ 4nm < b.

We focus here to the viscous dissipation due to the motion of a released bead.The
energy dissipated by a bead after debonding is given by:
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Ed = −
∫ 1

λi

f(t)d0dλ (6.20)

where f(t) is given by equation (6.14). This leads to a dissipative contribution to
the fracture energy ∆G0:

∆G0(V ) ≈ (Np/2)2/3
Y d30

2
=

1

3
(π/12)1/3

r2/3bY

φ1/3
(6.21)

where we have assumed that roughly half of the polymer chains are in bridge con-
figuration18) and that λi = 2. For the fluid (φ = 10%, r = 12), ∆G0(V ) ∼ 35
µJm−2 � 2γs, which is once again of the same order as γpol and is thus negligible in
front of the dominant term 2γs.

Acknowledgements

A large part of the work described in thi slecture notes was realized by many col-
laborators: Jacqueline Appell, Matteo Ciccotti, Serge Mora, Grégoire Porte, Hervé
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